
An Energy Scalability Model for Efficient Resource
Allocation on Manycore Architectures

Joosung Kim, Hakbong Kim, Hyunhee Kim, and Jihong Kim
School of Computer Science and Engineering

Seoul National University, Korea
Email: {testype, haknalgae, hh0726, jihong}@davinci.snu.ac.kr

Abstract—For energy-efficient manycore-based systems, energy
scalability support is an important system requirement. In this
paper, we propose an energy scalability model for dynamically
multithreaded programs (written in Cilk) running on manycore-
based systems. The proposed model takes advantages of execution
characteristics of dynamically multithreaded programs based
on a work-stealing scheduling model. Our experimental results
show that the proposed energy scalability model can accurately
estimate the energy consumption of Cilk applications under
varying number of cores and threads within the average 5%
of estimation errors.

I. INTRODUCTION

For manycore-based systems with hundreds of cores, ef-
ficient scalability support is one of the most important re-
quirements. For example, for a given parallel application
P, understanding how P’s energy efficiency varies as the
number of cores allocated to P changes is essential for the
manycore-based systems to be managed in an energy-efficient
fashion. Without such scalability information, a resource allo-
cator/manager of the manycore-based systems cannot intelli-
gently adapt to the dynamically varying resource requirements
of various parallel applications. In this paper, we propose an
energy scalability model for manycore-based systems as the
number of allocated cores changes.

Although it is rather difficult to predict what programming
languages would be widely accepted for programming such
manycore-based systems, we conjecture that such program-
ming languages would separate how to express the logical
parallelism in a program from how to map the parallelism
to cores. The latter task of mapping the parallelism to cores
will be handled by a run-time system without a program-
mer’s intervention. Furthermore, a run-time system should
dynamically balance the workload among the cores. For these
reasons, we choose Cilk [1], which is a high-level dynamically
multithreaded language based on a work-stealing scheduling
model, for this study.

More specifically, in this paper, we propose an energy
scalability model for a Cilk parallel application in terms of the
number of physical cores and the number of software threads
(running on the physical cores). The proposed scalability
model needs a prior execution time information and energy
consumption information of a Cilk application when a single
physical core and a single thread are used to run the Cilk
application. Our model can be useful for a resource alloca-
tor/manager of the manycore systems to make an intelligent
decision on the system’s energy efficiency. For example, when
a Cilk parallel application starts or terminates, the resource
allocator/manager can adapt the core assignments to active
Cilk parallel applications in a way that optimizes the overall
energy efficiency of the system.

As a first step of our energy scalability study on manycore-
based systems, we have developed an energy scalability model
for ARM11 MPCore1 which has four cores using the Cilk
5.4.6 system, and validated predicted energy consumption val-
ues with measured energy consumption values over different
combinations of the number of physical cores and the number
of software threads. Our initial results show that our model
produces accurate energy estimates for most test cases with
less than 5% error on average.

II. ENERGY SCALABILITY MODEL

In the proposed energy scalability model, the energy con-
sumption of a Cilk program P is computed by the product
of the average power consumption of P and the execution
time of P. In Cilk applications, a large number of fine-grained
tasks are created during runtime and they are managed by
the Cilk runtime system. Since the Cilk runtime is based on
the work-stealing scheduling policy, these tasks tend to be
evenly distributed to participating threads. Furthermore, these
fine-grained tasks’ power consumption characteristics are quite
similar. Therefore, the power consumption of each thread,
when a different number of cores and threads are used, can
be reasonably estimated to be similar to that of each thread
when a single core and a single thread is used to execute the
threads.

As an input to our energy scalability model, we estimate
the average power consumption of each thread under the
combination of a single core and a single thread using the
power model we have developed in our previous work [3].

In order to estimate the execution time of P under a different
number of cores and threads, we extend the existing Cilk
execution time scalability model [2] by better estimating the
overhead cost when a different number of cores and threads
are used. Cilk views the execution of a multithreaded program
as a set of small work, task, and the parallel execution of a
program can be described as a directed acyclic graph of tasks,
dag. In this dag model, the execution time along the critical
path is called span, which indicates the minimum possible
execution time regardless of the number of cores and threads
used.

The tasks which are not in the critical path can be distributed
to multiple threads, and they can be concurrently executed.

1Although a four-core ARM11 MPCore is not a manycore processor, we
think that it can be considered as a reasonable approximation of a part of
the manycore processor. Since a single Cilk program is not likely to use
all the available cores when there are other parallel applications that run
concurrently, a single multicore can approximate a fraction of the manycore
which was allocated to the single Cilk program, especially when allocated
cores are spatially close.



1.5

2

2.5

3

3.5

4

4.5

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n
matmul

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

[1, 1] [2, 2] [3, 3] [4, 4] [5, 4] [6, 4] [7, 4]

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n

[T, C]

matmul

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n

mergesort

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

[1, 1] [2, 2] [3, 3] [4, 4] [5, 4] [6, 4] [7, 4] [8, 4]

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n

[T, C]

mergesort

MeasuredEstimated

Fig. 1: Normalized Energy Consumption Comparisons

TABLE I: Coefficients of The Overhead Model

Coefficient Performance Event Type Value
C1 No. of L1 d-cache miss/L1 i-cache miss 1.39E + 01
C2 No. of shared L2 cache access 3.42E + 05
C3 No. of stall cycles due to data dependency −2.26E + 07

Since an actual execution time will include various overheads
such as thread management cost, Cilk runtime overhead, and
memory hierarchy misses, it is clearly higher than the span of
the Cilk program.

In the extended model, we divide the execution time into
three parts. For an application P with C cores and T threads,
the execution time model is given as follows:

ExecT ime(P, T,C) = (ExecT ime(P, 1, 1)− Span)/C

+ Span

+ Overhead(P, T,C)

(1)

The first term of Eq. (1) estimates the execution time of P
when the workload of P is evenly distributed among C cores
and Cilk runtime-related overhead when C cores are used. The
third term, Overhead(P, T,C), can be further decomposed
into three part as follows:

Overhead(P, T,C) = (L1MRatio/C1 × (T − C))2

+ L2Access/C2 × C

+ DataDep/C3 × (T − C)/T

(2)

Each term in Eq. (2) represents the effect of context
switching and resource contention, inter-core communication,
and task granularity, respectively. In the first term, the number
of threads larger than that of physical cores increases execu-
tion time by interfering with each other. We select L1 data
cache misses per L1 instruction cache miss (L1MRatio) to
represent the degree of data communication overhead among
threads. Moreover, due to work-stealing and synchronization
characteristics of the Cilk runtime, uni-directional inter-core
communications are necessary from spawned children to their
parents. This linearly increases the overhead as the number of
physical cores increases as in the second term. An L2 cache
access event (L2Access) is selected to reflect the amount of
data transfer and task migration along the memory hierarchy.

In the work-stealing scheduler of the Cilk runtime, an idle
thread steals the remaining work from another thread, and thus
the total work is evenly divided and distributed to threads.
Because of this behavior, as the number of threads increases,
the size of working sets of the threads decreases, which in turn
improves the locality of the threads as represented in the last
term of Eq. (2). Stall cycles due to data dependency (DataDep)
is used to consider the reduction of workload size.

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 E

n
e

rg
y

-D
e

la
y

 P
ro

d
u

ct

fib

0

0.2

0.4

0.6

0.8

1

1.2

[1
, 

1
]

[3
, 

3
]

[5
, 

5
]

[7
, 

7
]

[9
, 

9
]

[1
1

, 
1

1
]

[1
3

, 
1

3
]

[1
5

, 
1

5
]

[1
7

, 
1

6
]

[1
9

, 
1

6
]

[2
1

, 
1

6
]

[2
3

, 
1

6
]

[2
5

, 
1

6
]

[2
7

, 
1

6
]

[2
9

, 
1

6
]

[3
1

, 
1

6
]

N
o

rm
a

li
ze

d
 E

n
e

rg
y

-D
e

la
y

 P
ro

d
u

ct

[T, C]

fib

2

3

4

5

6

7

N
o

rm
a

li
ze

d
 E

n
e

rg
y

-D
e

la
y

 P
ro

d
u

ct

lu

0

1

2

3

4

5

6

7

[1
, 

1
]

[3
, 

3
]

[5
, 

5
]

[7
, 

7
]

[9
, 

9
]

[1
1

, 
1

1
]

[1
3

, 
1

3
]

[1
5

, 
1

5
]

[1
7

, 
1

6
]

[1
9

, 
1

6
]

[2
1

, 
1

6
]

[2
3

, 
1

6
]

[2
5

, 
1

6
]

[2
7

, 
1

6
]

[2
9

, 
1

6
]

[3
1

, 
1

6
]

N
o

rm
a

li
ze

d
 E

n
e

rg
y

-D
e

la
y

 P
ro

d
u

ct

[T, C]

lu

Estimated

Fig. 2: Normalized Energy-Delay Product Estimations

III. EXPERIMENTAL RESULTS

Fig. 1 illustrates the accuracy of the proposed energy scala-
bility model over the measured data under varying numbers of
cores and threads. We estimate the energy consumption using
the proposed model, and compare them to the measured data
which are calculated by using actual event counter values and
execution time of each cases. Over seven Cilk applications,
the average estimation error was 4.99%.2

In Fig. 2, we evaluate how the proposed scalability model
can be used in estimating the energy-delay product of a Cilk
application when large cores are used. We assume that up to
16 cores can be allocated to a Cilk program while up to 32
software threads can be spawned. The result shows that differ-
ent Cilk applications have different optimal configurations of
cores and threads. For example, fib achieves the best energy-
delay product when 6 cores and 6 threads are used while lu
achieves the best energy-delay product when 4 cores and 4
threads are used.

IV. CONCLUSIONS

We proposed an energy scalability model for Cilk ap-
plications running manycore-based systems. The proposed
scalability model accurately estimate the energy consumption
of a Cilk application when different numbers of cores and
threads are used. The model can also estimate the energy-
delay product of a Cilk application. We plan to extend our
initial work to a real manycore-based systems such as Intel’s
Single-Chip Cloud systems.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MEST) (No. 20100018873, No. R33-2010-10095, and No.
2010-0020724). This work was also supported by the Brain
Korea 21 Project in 2011. The ICT at Seoul National Univer-
sity and IDEC provided research facilities for this study.

REFERENCES

[1] M. Frigo, C. E. Leiserson, and K. H. Randall, The Implementation of the
Cilk-5 Multithreaded Language. In Proceedings of International Sym-
posium on Programming Languages Design and Implementation, 1998,
pp. 212-223.

[2] Y. He, C. E. Leiserson, and W. M. Leiserson, The Cilkview Scalability
Analyzer. In SPAA, 2010.

[3] W. Choi, H. Kim, W. Song, J. Song, and J. Kim, ePRO-MP: A Tool for
Profiling and Optimizing Energy and Performance of Mobile Multipro-
cessor Applications. In Scientific Programming, 17(4):285-294, 2009.

2The maximum estimation error was 6.97%, which happened in the Cilk
fft application.


