
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007 369

Optimizing Intratask Voltage Scheduling Using
Profile and Data-Flow Information

Dongkun Shin and Jihong Kim, Member, IEEE

Abstract—Intratask dynamic-voltage scheduling (IntraDVS),
which adjusts the supply voltage within an individual-task bound-
ary, has been introduced as an effective technique for developing
low-power single-task applications or low-power multitask appli-
cations, where a small number of tasks are dominant in total exe-
cution time. The original IntraDVS technique used the remaining
worst case execution cycles, and the control-flow information to
identify the voltage-scaling points (VSPs) of a program. In this
paper, two kinds of improvement techniques enhancing the energy
performance of the IntraDVS are proposed. One is to use profile
information to optimize the voltage schedule for the remaining
average-case execution path (RAEP-IntraDVS). The other is to
use data-flow information to optimize the locations of VSPs [look-
ahead IntraDVS (LaIntraDVS)]. The experimental results show
that the RAEP-IntraDVS can reduce the energy consumption
by 20% on average and the LaIntraDVS can reduce the energy
consumption by 40%–45% compared with the original IntraDVS.

Index Terms—Dynamic-voltage scaling, low-power design,
power management, real-time systems, variable-voltage processor.

I. INTRODUCTION

S INCE ENERGY consumption of CMOS circuits has a
quadratic dependence on the supply voltage, lowering

the supply voltage is the most effective way of reducing
energy consumption. However, lowering the supply voltage
also decreases the clock speed. The tradeoff introduced vari-
ous dynamic-voltage-scheduling (DVS) techniques. DVS tech-
niques change the clock speed and its corresponding supply
voltage dynamically to the lowest possible level while meeting
the task’s deadline constraint.

In real-time systems, the utilization of the processor is fre-
quently less than one even if all tasks run at worst-case exe-
cution time (WCET), meaning that there is always some slack
time. Moreover, workload of each task may vary from time to
time, which results in another kind of slack time. These slack
times can be exploited to lower the supply voltage. We denote
them as worst case slack time and workload-variation slack
time, respectively. For real-time systems, several DVS tech-
niques are proposed to utilize these slack times. There exist two
DVS approaches for real-time systems depending on the scaling

Manuscript received April 12, 2005; revised August 28, 2005 and
December 25, 2005. This work was supported by the Ministry of Informa-
tion and Communication (MIC), Korea, under the Information Technology
Research Center (ITRC) support program supervised by the Institute of In-
formation Technology Assessment under Grant IITA-2005-C1090-0502-0031.
This paper was recommended by Associate Editor R. Gupta.

D. Shin is with Samsung Electronics Company, Seoul 100-742, Korea
(e-mail: dongkun.shin@samsung.com).

J. Kim is with the School of Computer Science and Engineering, Seoul
National University, Seoul 151-742, Korea (e-mail: jihong@davinci.snu.ac.kr).

Digital Object Identifier 10.1109/TCAD.2006.883928

granularity. Intertask dynamic-voltage scheduling (InterDVS)
[1]–[3] determines the supply voltage on task-by-task basis,
while intratask dynamic-voltage scheduling (IntraDVS) [4]–[6]
adjusts the supply voltage within an individual-task boundary.
Given multiple tasks, the InterDVS techniques assign the proper
speed to each task dynamically while guaranteeing all their
deadlines. InterDVS has several practical limitations. For exam-
ple, since a task scheduler in OS determines the supply voltage
of a task, it requires OS modifications. Furthermore, it cannot
be applied to a single-task environment, because the supply
voltage is determined as a constant value for a given task.
Considering many small-size embedded-mobile applications
are based on a single-task model, this can be detrimental to a
wide adoption of variable-voltage processors in practice. Even
in a multitask environment, InterDVS may not be effective in
energy reduction if the execution time of one task is dominant
in the total execution time [5].

IntraDVS was proposed as a solution to overcome the lim-
itations of InterDVS. Since IntraDVS does not involve OS in
adjusting the clock speed, it has an advantage that existing OS
can be used without any modifications on a variable-voltage
processor. The main issue of IntraDVS algorithm is how to
select the program points where the voltage and clock will be
scaled. Depending on the selection mechanism, we can separate
IntraDVS algorithms into four categories.

A. Segment-Based IntraDVS

Technique partitions a task into fixed-length segments [4],
[7]. After executing a segment, it adjusts the clock speed and
supply voltage exploiting the slack times from the executed
segments of a program. The segment-based IntraDVS was im-
proved into collaborative IntraDVS technique [8]. In the collab-
orative IntraDVS, OS and compiler collaborate for the voltage
scaling within a task. At the offline stage, the compiler anno-
tates an the application’s source code with power-management
hints (PMHs). During the run time (online stage), the OS pe-
riodically changes the processor’s clock frequency and voltage
based on the temporal information provided by the PMHs.

B. Path-Based IntraDVS

Techniques use the control-flow information to find slack
times [5], [6], [9]. It selects all the program locations where
we can identify the changes of remaining workload and inserts
voltage-scaling codes in compile time. The voltage-scaling
code is executed at run time to exploit all slack times coming
from run-time variations of different execution paths.

0278-0070/$25.00 © 2007 IEEE

370 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

In designing a path-based IntraDVS algorithm, two key
issues exist. The first issue is how to predict the remaining
execution cycles. Depending on the prediction method, several
IntraDVS algorithms are proposed. We have proposed two
kinds of IntraDVS algorithms, using the remaining worst case
execution path (RWEP-IntraDVS) [5] and using the remaining
average-case execution path (RAEP-IntraDVS) [6]. Recently,
Seo et al. proposed the IntraDVS algorithm using the re-
maining optimal-case execution path (ROEP-IntraDVS) [9].
The RAEP-IntraDVS and the ROEP-IntraDVS generate more
energy-efficient schedules over the RWEP-IntraDVS, because
they exploit the profile information of a task execution. While
the remaining execution cycles are predicted based on the
most frequent execution path in the RAEP-IntraDVS [6], the
ROEP-IntraDVS uses the optimal predicted execution cycles
considering the profile information [9].

The second issue of path-based IntraDVS is how to determine
the voltage-scaling points (VSPs) in the program code. The
optimal points are the earliest points where we can detect the
slack times. For this purpose, the original path-based IntraDVS
used the branch and the loop structures. For example, the
technique inserts a voltage-scaling code at the termination point
of the loop, because we can know the difference between the
actual number and the user-provided maximum number of loop
iteration. However, if we can know the bound on loop before
executing the loop, there is no need to scale clock and voltage
after the loop. Walsh et al. [10] proposed a parametric IntraDVS
technique, which places voltage-scaling code at a point in the
program where the bound on loop is set at run time.

C. Memory-Aware IntraDVS

Memory-aware IntraDVS utilizes the CPU idle times which
are due to external memory stalls. While the compiler-driven
IntraDVS [11] identifies the program regions where the CPU
is mostly idle due to memory stalls at compile level, the
event-driven IntraDVS [12], [13] uses several performance-
monitoring events to capture the CPU idle time at run time.

D. Stochastic IntraDVS

Stochastic IntraDVS utilizes the stochastic information of a
program’s execution time [14], [15]. This technique is moti-
vated by the idea that it is usually better to “start at low speed
and accelerate execution later when needed” than to “start at
high speed and reduce the speed later when the slack time
is found” in the program execution. This technique finds a
speed schedule that minimizes the expected energy consump-
tion while still meeting the deadline. A task starts executing at a
low speed and then gradually accelerates, to meet the deadlines.
Since the task might not follow the worst-case execution path
(WCEP), it can happen that high-speed (and power eager)
regions are avoided.

The main contributions of this paper are as follows: First,
we raise the question whether ROEP-IntraDVS is an energy-
efficient and practical solution when the voltage-transition over-
head is considered. From this motivation, we derive three kinds
of new RAEP-IntraDVS techniques. Two of them try to use
the optimal formulation, but one adapts a simple and practical

solution. Then, we examine the energy performances of the
techniques by taking the transition overhead into account. From
the evaluation, we propose a new practical and simple policy,
which can reduce the energy consumption without increasing
the voltage-scaling overhead. We also describe how we can
guarantee the deadline constraint in the path-based IntraDVS
using profile information.

Second, we propose optimization techniques, which move
VSPs to earlier program points. While the existing path-based
IntraDVS algorithms find the VSPs of a program using the
control-flow information of the program, the proposed tech-
nique identifies the VSPs using the data-flow information of the
program as well as the control-flow information [look-ahead
IntraDVS (LaIntraDVS)]. While the parametric IntraDVS by
Walsh et al. [10] focused on only the loop, the LaIntraDVS
finds the earliest VSP for both the branch structure and the loop
structure, thus, it is more general. We also consider the tradeoff
between the code overhead and the energy reduction due to the
VSP change.

The rest of this paper is organized as follows. The generic
intratask dynamic voltage scheduling is described in Section II,
and three previous IntraDVS techniques are presented in
Section III. While the optimizing techniques for RAEP-based
IntraDVS technique are introduced in Section IV, the LaIn-
traDVS techniques are proposed in Section V. In Section VI,
experimental results with randomly generated control-flow
graphs and MPEG-4 programs are discussed. Section VII con-
cludes this paper with a summary and a future work.

II. GENERIC INTRADVS

A. Power and Energy in Variable-Voltage Processors

The power consumption of CMOS circuit is composed of the
static power Pstatic and the dynamic power Pdynamic

PCMOS = Pstatic + Pdynamic. (1)

The static power is dissipated due to the leakage current, which
depends on the threshold voltage and on the technological
process. At the current process technologies, the static-power
consumption can be ignored, but it will be more critical at future
systems.

The dynamic-power consumption Pdynamic is represented by
the following equation:

Pdynamic = α · CL · V 2
dd · fclk = Ceff · V 2

dd · fclk. (2)

α is the switching-activity factor (the average number of high-
to-low transitions in one clock period), CL is the load capaci-
tance, Vdd is the supply voltage, and fclk is the clock frequency.
Ceff is the effective load capacitance.

This means that the dynamic-power consumption in a CMOS
circuit is proportional to switching activity, capacitive load,
clock frequency, and the square of the supply voltage. All
the power- and energy-reduction techniques try to minimize
one or more of these factors. Especially, supply-voltage (Vdd)
reduction appears to be the most promising because of its
quadratic dependence to power.

SHIN AND KIM: OPTIMIZING INTRATASK VOLTAGE SCHEDULING USING PROFILE AND DATA-FLOW INFORMATION 371

In this paper, we focus on energy rather than power consump-
tion. Formally, the energy consumed by a system is the amount
of power used during a certain period of time. We can denote the
dynamic-energy consumptionEdynamic during the time interval
T as follows:

Edynamic =

T∫
0

Pd(t)dt = Ceff · V 2
dd · fclk · T = Ceff · V 2

dd ·Nc.

(3)

Pd(t) is the dynamic power at the time t, and Nc is the number
of clock cycles during the time interval T . Equation (3) tells us
that reducing only the clock frequency makes no change in the
energy consumption, although it reduces the power dissipation
(when we ignore the static-power consumption).

Unfortunately, we cannot reduce the supply voltage for free.
The circuit delay Td, which sets the clock frequency, depends
on the supply voltage [16]

1
fclk

∝ Td ∝ Vdd
(Vdd − Vt)γ

(4)

where Vt is the threshold voltage and γ is the saturation velocity
index (γ is between one and two). For a sufficiently small Vt,
we can rewrite the relation between clock frequency and supply
voltage as

fclk ∝ Vdd
(γ−1). (5)

For this reason, supply voltage and clock frequency should
be scaled together. Consequently, dynamic-voltage scaling pro-
vides the energy reduction but leads to a slow system. We use
the processor speed S instead of fclk as follows:

S =
fclk
fmax

∝ Vdd
(γ−1) (6)

where fmax is the maximum clock speed. In this paper, for a
simple description, we assume that the effective capacitance
Ceff is one and γ = 2 and use the following equation to cal-
culate the energy consumption:

E = Nc · S2. (7)

The energy consumption E is not an absolute energy value
but a relative value. In this paper, we use the relative energy
consumption E instead of the real energy consumption.1

Throughout this paper, we make the following assumptions
on a target variable-voltage processor. The processor provides
a special instruction, change_f_V(fclk), that can dynamically
control clock frequency fclk and the corresponding voltage Vdd
of the processor. fclk and Vdd can be set continuously within
the operational range of the processor. This assumption is not
realistic, because most of variable-voltage processors provide
only discrete voltage/clock levels. We use this assumption for
a simple explanation, but we provide the experimental results
under the variable-voltage processors with finite-voltage levels
at Section VI.

1If γ < 2, (7) should be changed into E = Nc · S2/γ−1.

We assume that there is no upper bound on processor speed
to simplify the description of the generic intratask dynamic
voltage scheduling, i.e., S can be larger than one. This un-
realistic assumption is removed at Section III-B1. When the
processor changes clock and voltage, there is a transition time
overhead ∆t and the power overhead ∆p. For the time and
power overheads, we assume a fixed value for all transitions.2

During clock/voltage transition, the processor stops running
and enters into power-down mode.

B. Details of IntraDVS

IntraDVS consists of two key steps: to predict a task’s
workload and to adjust the clock speed at run time depending
on the real workload. At the prediction step, we calculate the
remaining predicted execution cycles (RPEC) at a basic block
bi, which is a branching node in the control-flow graph, δ(bi),
as follows:

δ(bi) = c(bi) + P (δ(bj), δ(bk)) . (8)

c(bi) is the execution cycles for the basic block bi, and P is
the prediction function. The basic blocks bj and bk are the
immediate successor nodes of bi in the control-flow graph.
Depending on the function P , the RPEC are determined. In
this paper, we assume that the target processor has a simple
architecture without instruction pipelining and cache memory.
Therefore, c(bi) is the same to the number of instructions in bi,
and δ(bi) is the sum of c(bi) and P(δ(bj), δ(bk)).3

There can be several methods to predict the execution cycles.
With the predicted value of δ(bi), we set the initial clock
frequency and its corresponding voltage assuming that the task
execution will follow the predicted execution path. We call
the predicted execution path as the reference path, because the
clock speed is determined based on the execution path.

For a loop, we use a following equation to predict the
remaining execution cycles for a loop L:

δ(L)= c(HL)+ (c(HL)+ c(BL)) ·Npred(L)+ δ(postL).
(9)

c(HL) and c(BL) are the execution cycles of the header and
the body of the loop L, respectively.4 Npred(L) is the predicted
number of loop iterations, and postL denotes the successor node
of the loop, which is executed just after the loop termination.

When the actual execution deviates from the (predicted)
reference path (say, by a branch instruction), the clock speed

2The clock/voltage transition time is different depending on the source
voltage and the target voltage. However, we assumed there is a fixed-voltage
transition time for a simple explanation. The voltage transition time (overhead)
is used to select the voltage-scaling points. This is done at the compile time.
We cannot know the exact transition time at the compile time, because the
real transition time is different depending on the executed path. Therefore, we
assume the worst case transition time.

3For a complex architecture, we should use a more sophisticated operation
such as timing schema instead of the simple addition. Lim et al. [17] proposed
the timing schema, which can model the effects of instruction pipelining and
cache memory. They presented a timing tool, which estimates the WCET of
a program traversing the program’s syntax tree. To extend this paper for the
complex architecture, we can use the timing tools by inserting the prediction
function P into the timing schema.

4HL and BL can be composed of several basic blocks.

372 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

can be adjusted depending on the difference between the re-
maining execution cycles of the reference path and that of the
newly deviated execution path. If the new execution path takes
significantly longer to complete its execution than the reference
execution path, the clock speed should be raised to meet the
deadline constraint. On the other hand, if the new execution
path can finish its execution earlier than the reference execution
path, the clock speed can be lowered to save the energy con-
sumption. Once the actual execution takes a different path from
the reference path, a new reference path is constructed starting
from the deviated basic block.

In actual implementation of the IntraDVS, we do not need to
maintain the reference path. To implement the IntraDVS algo-
rithm efficiently, we identify the appropriate program locations
where the clock speed should be raised or lowered relative to the
current clock speed using a static-program-analysis technique.
For run-time clock-speed adjustment, voltage-scaling codes are
inserted into the selected program locations at compile time.
The branching edges of the control-flow graph (CFG), i.e.,
branch or loop statements, are the candidate locations for in-
serting voltage-scaling codes, because it is where the prediction
miss for the reference path can occur. They are called as VSPs,
because the clock speed and voltage are adjusted at these points.
While the VSP due to the branch statement is called a B-type
VSP, the VSP due to the loop statement is called an L-type VSP.
Moreover, the VSP can be categorized into Up-VSP and Down-
VSP, where the clock speed is raised and lowered, respectively.
At each VSP (bi, bj), the clock speed is determined using δ(bi)
and δ(bj) as follows:

S(bj)=
δ(bj)
T

=S(bi) · δ(bj)
δ(bi) − c(bi) − ∆t

=S(bi) · r(bi, bj).
(10)

S(bi) and S(bj) are the clock speeds at the basic blocks bi and
bj , respectively. T is the remaining time until the deadline from
the edge (bi, bj). r(bi, bj) is called as the speed-update ratio
of the edge (bi, bj). ∆t is the voltage-transition overhead. If
∆t > 0, r(bi, bj) can be larger than one even when δ(bj) <
δ(bi) − c(bi). In this case, the edge (bi, bj) is excluded from
the VSPs. That is, an edge is selected as a Down-VSP only
when the number of saved cycles is larger than ∆t. If δ(bj) >
δ(bi) − c(bi) (in this case, r(bi, bj) is always larger than one),
we select the edge as an Up-VSP regardless of the value of
r(bi, bj) to meet the deadline. In this paper, we ignore the
overhead time of voltage scaling for a brevity afterward.

For a loop, we should consider two cases. If the actual
number of loop iterations Nactual is smaller than the predicted
number of loop iterations Npred, the clock speed is reduced
after the loop as follows:

S(postL) = S(preL)

· δ(postL)
(c(HL)+ c(BL)) · (Npred(L) −Nactual(L))+ δ(postL)

.

(11)

S(preL) is the clock speed before executing the loop L. When
the actual number of loop iterations Nactual is larger than the

predicted number of loop iterations Npred, we can take two
kinds of approaches. The first one is to increase the clock speed
only at the exit point of the loop. At this approach, the clock
speed is increased as follows:

S(postL) = S(preL)

· (c(HL)+ c(BL)) · (Nactual(L) −Npred(L))+ δ(postL)
δ(postL)

.

(12)

The second approach is to increase the clock speed after every
execution of the loop’s header once Nactual exceeds Npred.
At this approach, expecting optimistically that the loop will
execute one more iteration, the clock speed is increased as
follows:

S
(
Bi+1

L

)
= S(Bi

L) · c(HL) + c(BL) + δ(postL)
δ(postL)

. (13)

S(Bi
L) means the start speed of ith execution of the loop body.

III. INTRADVS ALGORITHMS

A. RWEP-IntraDVS

Among the prediction policies for the remaining execution
cycles, the simplest and most conservative one is to use the
remaining worst case execution cycles (RWEC) for RPEC. We
call this technique as RWEP-IntraDVS [5]. For the prediction
function of (8), the following function is used to calculate the
RWEC δw:

δw(bi) = c(bi) + Max (δw(bj), δw(bk)) . (14)

The predicted total execution cycles calculated by this equation
is the same to the worst case execution cycles (WCEC), and
there are only Down-VSPs in CFG. Therefore, the speed is
dropped at all VSPs, and there is no possibility of deadline miss.

For L-type VSP, we should use the maximum loop iteration
numberNw. We insert a voltage-scaling code at the exit point of
the corresponding loop. The RWEC of a loop L is determined
as follows:

δw(L) = c(HL) + (c(HL) + c(BL)) ·Nw + δ(postL). (15)

Although the RWEP-IntraDVS reduces the energy consump-
tion significantly while guaranteeing the deadline, this is a
pessimistic approach, because it always predicts that the longest
path will be executed. Therefore, it is inefficient.

B. RAEP-IntraDVS

RAEP-IntraDVS utilizes the profile information of a program
execution to optimize the energy efficiency of IntraDVS. The
average-case execution path (ACEP) is used as a reference path.
ACEP is defined to be an execution path with the largest pos-
sibility to be executed. The average-case remaining execution

SHIN AND KIM: OPTIMIZING INTRATASK VOLTAGE SCHEDULING USING PROFILE AND DATA-FLOW INFORMATION 373

cycle δa is defined by the following equation, where bj and bk
are the immediate successor nodes of a branching node bi:

δa(bi) = c(bi) +
{
δa(bj), if pj ≥ pk

δa(bk), otherwise.
(16)

pj and pk are the probabilities of bj and bk, respectively, are
executed after bi at run time.

For L-type VSPs, we should use the average iteration
number Na

δa(L)= c(HL)+ (c(HL)+ c(BL)) ·Na(L)+ δa(postL). (17)

The Down-VSPs in the RAEP-IntraDVS are selected with
(10), considering the voltage-scaling overhead. However, all the
edges where the clock speed should be raised should be selected
as Up-VSPs, because the deadline miss can occur if the clock
speed is not raised at the edges.

It is easily understood that using ACEP instead of WCEP
is more energy efficient. For a typical program, about 80% of
the program execution occur in only 20% of its code, which is
called the hot path [18]. To achieve high-energy efficiency, an
IntraDVS algorithm should be optimized so that these hot paths
are energy efficient. If we use one of hot paths as a reference
path, the speed-change graph for the hot paths will be a near-
flat curve with little changes in the clock speed, which gives the
best energy efficiency under a given amount of work [19]. In
this case, even other paths (that are not the hot paths) become
more energy efficient because they can start with a lower clock
speed than when the WCEP is used as a reference path.

1) Guaranteeing Safeness: Although the RAEP-based
scheduling is more energy effective than the RWEP-based
scheduling, the pure RAEP-based approach cannot meet the
timing requirements of hard real-time applications because
there is an upper bound in the maximum clock frequency.
For example, consider the case when the WCEP and ACEP
take significantly different number of execution cycles. When
the execution takes the WCEP at the middle of the program
execution, it is possible that the program fails to meet its
deadline even if the processor runs at its maximum speed
during the remaining paths. Therefore, we need a safe approach
that can guarantee the timing constraint.

To overcome the deadline-miss problem of the pure RAEP-
IntraDVS algorithm, we find the remaining safe execution
cycles (RSEC), denoted by δs. When we determine the clock
speed based on the RSEC, the safeness is guaranteed. To know
the RSEC of a basic block, we should first calculate the lower
bound of a basic block’s clock speed SLB(bi). For a given start
time of bi, σ(bi), we can represent SLB(bi) as follows:

SLB(bi) =
c(bi)

d(bi) − σ(bi)

where d(bi) is the deadline of bi. The deadline of a basic block
bi means the latest completion of bi to satisfy the deadline of
the overall program and can be defined as follows:

d(bi) = D − δw(bi) − c(bi)
fmax

where D is the deadline of overall program and fmax is the
maximum clock speed. The deadline of bi is estimated by
subtracting the worst case execution time, which is required to
execute all basic blocks after bi under fmax from the relative
deadline D.

The clock speed of bi, S(bi) should be larger than SLB(bi).
Then, the RSEC can be represented as follows:

S(bi) =
δs(bi)

D − σ(bi)

≥SLB(bi)

=
c(bi)

d(bi) − σ(bi)
(18)

δs(bi) ≥ D − σ(bi)
d(bi) − σ(bi)

c(bi). (19)

The right-hand side of (19) has the maximum value when σ(bi)
is the largest value. The largest value of σ(bi) is the latest start
time of a basic block bi, lst(bi), which is defined as follows:

lst(bi) = min
(
D − δa(bi)

Smax(bi)
, d(bi) − c(bi)

fmax

)
(20)

where Smax(bi) is the maximum clock speed that bi can have
under the original RAEP-IntraDVS. Since the deadline miss
is inevitable when the start time of bi is larger than d(bi) −
c(bi)/fmax, lst(bi) should be estimated as the minimum value
between D − δa(bi)/Smax(bi) and d(bi) − c(bi)/fmax.

Consequently

δs(bi) =
D − lst(bi)

d(bi) − lst(bi)
c(bi). (21)

We should estimate both δa(bi) and δs(bi) for a basic block
bi. If δs(bi) is larger than δa(bi), the clock speed should be
determined based on δs(bi). Therefore, the clock speed is
changed as follows at an edge (bi, bj):

S(bj) = S(bi)
max (δa(bj), δs(bj))

max (δa(bi), δs(bi)) − c(bi)
. (22)

When δs(bi) is used for bi, we can represent the latest end
time of bi, let(bi), as follows:

let(bi) = lst(bi) +
c(bi)
S(bi)

= lst(bi) + c(bi) · D − σ(bi)
δs(bi)

(by (18))

≥ lst(bi) + c(bi) · D − lst(bi)
δs(bi)

(by the definition of lst(bi))

= lst(bi) + c(bi) · d(bi) − lst(bi)
c(bi)

(by (21))

= d(bi). (23)

374 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Fig. 1. Pure RAEP-IntraDVS. (a) Task graph. (b) Speed change at (b1, b3, b4). (c) Speed change at (b1, b3, b5).

Fig. 2. Safe RAEP-IntraDVS. (a) Task graph. (b) Speed change at (b1, b3, b4). (c) Speed change at (b1, b3, b5).

Since the latest end time of bi is smaller than the deadline of bi,
we can guarantee the safeness of this scheduling technique.

Fig. 1(a) shows a control-flow graph with a deadline 50 and
the remaining average-case execution cycles (RAEC) of basic
blocks. The ACEP (b1, b3, b4) is used as the reference path.
The bold edges indicate the average-case execution path. As
shown in Fig. 1(c), the deadline miss occurs for the execution
path (b1, b3, b5), because there is an upper bound of clock
speed. Fig. 2(a) shows the RSEC as well as the RAEC of
basic blocks. For example, the basic block b3 has a deadline of
d(b3) = 50 − (20/1.0) = 30 and a latest start time of lst(b3) =
50 − (20/0.6) = 16.7. Therefore, δs(b3) is 25.04 (= (50 −
16.7)/(30 − 16.7) · 10) by (21). A basic block bi uses the
maximum between δs(bi) and δa(bi). Therefore, the remaining
execution cycles of the basic block b3 is 25.04. At the edge
(b1, b3), the speed-update ratio is 1.25(= δs(b3)/(δa(b1) −
c(b1)) = 25.04/(30 − 10)).

Using this safe RAEP-IntraDVS, we can get an energy-
efficient speed schedule satisfying the deadline constraint. But,
there is a more energy-efficient speed schedule under the dead-
line constraint. Although the speeds of basic blocks b1 and b3
are different in Fig. 2(b) and (c), it is more energy efficient
to use the same speed for both b1 and b3. In other words, it
is better for the basic blocks on a reference path to have the
same clock speed, because there is a large probability for the
path to be taken at run time. If the basic blocks bi, . . . , bj
compose a reference path, we estimated the deadline and the

latest start time of the group of basic blocks. The deadline
and the latest start time of basic blocks bi, . . . , bj , d(bi, . . . , bj)
and lst(bi, . . . , bj) are same to d(bj) and lst(bi), respectively.
For example, in Fig. 3(a), the group of basic blocks (b1, b3)
has the deadline d(b1, b3) = d(b3) = 30, and the latest start
time lst(b1, b3) = lst(b1) = 0. Using these values, we estimate
δs(bi), . . . , δs(bj) as follows:

δs(bk) =

D−lst(bi,...,bj)
d(bi,...,bj)−lst(bi,...,bj)

· (c(bi) + · · · + c(bj)) , if k = i
δs(bp) − c(bp), otherwise

where bp is the predecessor basic block of bk. The speed
schedules in Fig. 3(b) and (c), where the basic blocks b1 and
b3 have a same speed, consume less energy than the schedules
in Fig. 2(b) and (c). Moreover, the task graph in Fig. 3(a) has
less voltage-scaling edges than the task graph in Fig. 2(a). This
technique is called the profile-aware safe RAEP-IntraDVS to
separate from the original safe RAEP-IntraDVS. For a brevity,
we use the terminology of the safe RAEP-IntraDVS to denote
the profile-aware safe RAEP-IntraDVS.

The safeness-guarantee process can also be applied to the
basic blocks in a loop. A basic block bi in a loop, which
has N number of maximum loop iterations, has N number
of δa(bi) values. We denote δa(bi) and δs(bi) in the jth
loop iteration as δj

a(bi) and δj
s(bi), respectively. By estimating

δ1a(bi), . . . , δN
a (bi) and δ1s(bi), . . . , δN

s (bi) after unrolling the

SHIN AND KIM: OPTIMIZING INTRATASK VOLTAGE SCHEDULING USING PROFILE AND DATA-FLOW INFORMATION 375

Fig. 3. Profile-aware Safe RAEP-IntraDVS. (a) Task graph. (b) Speed change at (b1, b3, b4). (c) Speed change at (b1, b3, b5).

loop, we can determine the speed-update ratios guaranteeing
safeness. However, in the original IntraDVS, it is not necessary
to unroll a loop to insert a voltage-scaling code. By representing
the remaining execution cycles of a basic block in a loop with
the loop-iteration index, a single voltage-scaling code can be
inserted in a loop [5]. Therefore, it is required to insert the
voltage-scaling code without unrolling the loop.

If there are j and k(j �= k), which satisfy the following
equation:

δj
a(bi) ≥ δj

s(bi) and δk
a(bi) < δk

s (bi) (24)

it is difficult to use a single voltage-scaling code in a loop. In
the profile-aware safe RAEP-IntraDVS, all the basic blocks in a
reference path are treated as a group of basic block, which share
the same deadline and the same latest start time. Therefore,
using the profile-aware safe RAEP-IntraDVS, we can guarantee
that there are no j and k(j �= k) that satisfy (24).

C. Optimal RAEP-IntraDVS

It is not always energy efficient to use the ACEP as a
reference path. This is because we consider only the probability
of the execution path but the remaining execution cycles to
determine the reference path. Especially when the average-
case execution cycle is significantly smaller than the worst case
execution cycle, the energy consumption in RAEP-IntraDVS
can be larger than RWEP-IntraDVS if WCEP is executed at
run time.

Therefore, Seo et al. [9] proposed a profile-based optimal
IntraDVS algorithm, which considers both the probability and
the execution cycles of a path. They showed that we can get
the optimal voltage schedule using the following prediction rule
under the provided profile information5:

δa(bi) = c(bi) + 3

√
δa(bj)3 · pj + δa(bk)3 · pk. (25)

5The general form of this equation is δa(bi) = c(bi) + (δa(bj)
3/(γ−1) ·

pj + δa(bk)3/(γ−1) · pk)(γ−1)/(γ+1) where γ is the saturation-velocity
index.

Though this prediction rule generates the optimal energy
schedule, it has some serious drawbacks. Since both the out
edges of a branching node are not the reference path, all branch-
ing edges become VSPs. This generates two critical problems.
One is that the code size of the transformed application in-
creases, because we should insert the voltage-scaling codes
at all branching edges. The other is that the clock speed and
voltage should be changed at all edges generating the voltage-
transition overhead. In addition, since Seo et al. [9] assumed
that all loop is unrolled for L-type VSPs, the clock speed and
voltage should be changed at every loop iteration. While some
Down-VSPs can be excluded when the speed-update ratio is
larger than one in (10), all Up-VSPs should be used as noted in
Section III.

IV. CONSIDERING VOLTAGE-TRANSITION OVERHEAD

A. Near-Optimal RAEP-IntraDVS

To solve the problem of optimal RAEP-IntraDVS, we modify
it such that only one of branching edges should be the VSP.
In this approach, the path whose δa is closer to the optimal
remaining execution cycles is selected as a reference path

δa(bi) = c(bi)+
{
δa(bj), if g(bj , bk, pj , pk)≤0
δa(bk), otherwise

(26)

g(bj , bk, pj , pk) =
∣∣∣∣δa(bj)− 3

√
δa(bj)3 · pj +δa(bk)3 · pk

∣∣∣∣
−

∣∣∣∣δa(bk)− 3

√
δa(bj)3 · pj +δa(bk)3 · pk

∣∣∣∣ .
(27)

B. Edge-Optimal RAEP-IntraDVS

Another technique against the problem of optimal RAEP-
IntraDVS is to find the optimal VSP under the assumption that
only one of branching edges should be a VSP. On determining
a reference path, we have two choices in selecting one edge
among two out-edges of a branch node. The case that generates
lower energy consumption is optimal.

376 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

In general, we can represent the prediction rule of edge-
optimal RAEP-IntraDVS as follows:

δa(bi)

=c(bi)+
{
δa(bj), if h(bi, bj , bk, pj , pk)≤0
δa(bk), otherwise

(28)

h(bi, bj , bk, pj , pk)

=
(
c(bi)
δa(bj)

+1
)2(

pjδa(bj)3+pkδa(bk)3+c(bi)δa(bj)2
)

−
(

c(bi)
δa(bk)

+1
)2(

pjδa(bj)3+pkδa(bk)3+c(bi)δa(bk)2
)
.

(29)

C. Weighted Probability-Based RAEP-IntraDVS

In this approach, we use the weighted probability using the
following equation:

δa(bi) = c(bi) +
{
δa(bj), if δa(bj) · pj ≥ δa(bk) · pk

δa(bk), otherwise.
(30)

Using this equation, we can consider both the probability and
the execution cycles of the remaining paths. For a loop, we use
the same technique to the probability-based RAEP-IntraDVS,
i.e., the average-loop iteration number is used. Under this
technique, only one of two out edges is selected as a VSP. As
will be shown in the experimental results, the RAEP-IntraDVS
using weighted probability has similar energy performances to
the optimal RAEP-IntraDVS.

In addition, if γ < 2, other RAEP-IntraDVS techniques
should use more complex equations. However, the weighted-
probability-based approach does not depends on the saturation-
velocity index γ. Therefore, the weighted-probability-based
RAEP-IntraDVS is more advantageous than other RAEP-
IntraDVS techniques.

V. INTRADVS USING DATA-FLOW INFORMATION

A. Motivation

The original IntraDVS techniques select the VSPs using the
control-flow information (i.e., branch and loop) of a target
program. For example, in Fig. 4(a), the IntraDVS algorithm
inserts the voltage-scaling code, change_f_V (), at line 19. At
line 19, we can know that the RWEC is reduced because the
function func8 is not executed. However, we can decide the
direction of the branch of the line 16 at an earlier point, because
the values of x and y are not changed after the line 8 or the
line 11. Fig. 4(b) shows the modified program, which ad-
justs the clock speed and the supply voltage at line 10 or
line 15. The program in Fig. 4(b) consumes less energy than
the one in Fig. 4(a), because the clock speed is flat after
line 10 or line 15 if w > 0 and x+ y ≤ 0.

This example shows that we can improve the energy perfor-
mance of IntraDVS further if we can move VSPs to the earlier
instructions. To change the VSPs, we should identify the data

dependence using a data-flow-analysis technique. The data-
flow analysis provides the information about how a program
manipulates its data [20]. Using data-flow analysis, we can
decide program locations, where each variable is defined and
used. We call the proposed IntraDVS technique based on data-
flow information as the LaIntraDVS technique.

The LaIntraDVS finds earlier VSPs than Walsh’s paramet-
ric IntraDVS [10], because LaIntraDVS uses the multistep
approach. In addition, LaIntraDVS handles both the branch
structure and the loop structure while the parametric IntraDVS
considered only the loop structure. LaIntraDVS also considers
the overhead in moving a voltage-scaling code to an earlier
point.

B. Single-Step LaIntraDVS

For LaIntraDVS, we need following postprocessing steps
after the VSPs are selected by the original IntraDVS algorithm.

1) Given an original VSP s, we identify the branch condition
C(s), which is the necessary condition for s to be exe-
cuted at run time. Using the variables in the expression of
C(s), we compose a set of condition variables V (s). For
example, in Fig. 4(a), the branch condition for the VSP
at the line 19 is C(s) = (v > 0) ∧ (w > 0) ∧ ¬(x+ y >
0). The variables in C(s) are v, w, x, and y (i.e., V (s) =
{v, w, x, y}).

2) The data predecessor set P(s, vi) and the look-ahead
point set L(s, vi) are identified for each variable vi

in V (s) using a data-flow-analysis technique. The data
predecessors are the program points that directly affect
the variable vi. The look-ahead points are the earliest
program points, where we can get the value of vi, which
will not be changed until s. The data predecessor and the
look-ahead point are defined formally as follows.

Definition 1: Given a program location t, a definition point
dx of a variable x is called a data predecessor P t

x of the variable
x at t if there exists a path from dx to t such that the value of x
is not changed along the path. A data predecessor set P(t, x) of
the variable x at t is a set of all data predecessors of the variable
x at t.

Definition 2: Given a program location t and a variable x,
a program location p is called a look-ahead point Lt

x of the
variable x at t if the following two conditions are satisfied.

a) There exists one or more paths from p to t, but there is no
path from p to t such that the value of x is changed along
the path.

b) There is no other program location p′ between P t
x and p,

which satisfies the first condition.

A look-ahead point set L(t, x) is a set of all look-ahead points
of the variable x at t. If we represent a program point with
its line number, P(s, v) = {1}, L(s, v) = {2}, P(s, w) = {3},
L(s, w) = {4}, P(s, x) = {4, 8}, L(s, x) = {9, 11}, P(s, y) =
{5, 11}, and L(s, y) = {8, 12}.

3) The look-ahead VSPs LaVSP(s) are identified. It is the
earliest program point where we can identify the branch
direction of the original VSP s. We are to move the

SHIN AND KIM: OPTIMIZING INTRATASK VOLTAGE SCHEDULING USING PROFILE AND DATA-FLOW INFORMATION 377

Fig. 4. Example program for LaIntraDVS. (a) Original IntraDVS. (b) LaIntraDVS.

original VSP to the look-ahead VSPs. The look-ahead
VSP is defined formally as follows.

Definition 3: Given a VSP s and the set of condition
variables V (s) = {v1, . . . , vn} of s, a look-ahead point p ∈
L(s, v1) ∪ · · · ∪ L(s, vn) is a look-ahead VSP (LaVSP) of s
if there is no other look-ahead point p′ ∈ L(s, v1) ∪ · · · ∪
L(s, vn) along the path from p to s. The set of all look-ahead
VSPs is denoted by LaVSP(s).

From this information, we can know that LaVSP(s) =
{9, 12}.

4) We insert the voltage-scaling codes at the look-ahead
VSPs. Fig. 4(b) shows the modified program with
LaVSPs. At lines 9 and 14, control expressions are in-
serted to reflect the condition C(s) = (v > 0) ∧ (w > 0)
∧ ¬(x+ y > 0). Since the condition (v > 0) is always
true at lines 9 and 14, it is unnecessary to insert a control
expression for the condition.

With the LaVSPs, one needs to determine the speed-update
ratio. For example, if an original VSP (bi, bj) has the LaVSP p
in RWEP-IntraDVS, the speed-update ratio at p is

r(p) =
δw(p) − (δw(bi) − c(bi) − δw(bj))

δw(p)
(31)

assuming there is no voltage-transition overhead time. The
clock speed is adjusted as the amount of the reduced execution
cycles at the VSP (bi, bj) (i.e., δw(bi) − c(bi) − δw(bj)).

In Fig. 4(a), if the clock speed is f15 at line 15, the clock
speed at line 19, f19, will be

f19 = f15 × Cfunc9

Cfunc8 + Cfunc9

(when we consider only the execution cycles for functions),
where Cfunc8 and Cfunc9 are the worst case execution cycles
for the functions func8 and func9, respectively. However, in
Fig. 4(b), the clock speeds at line 10 and line 15 are

f10 = f9 × Cfunc7 + Cfunc9

Cfunc7 + Cfunc8 + Cfunc9

and

f15 = f14 × Cfunc6 + Cfunc7 + Cfunc9

Cfunc6 + Cfunc7 + Cfunc8 + Cfunc9

respectively.

C. Multistep Look-Ahead IntraDVS

Although the look-ahead approach in LaIntraDVS can im-
prove the energy performance of the IntraDVS technique, there
are many cases where the cycle distance between the origi-
nal VSP and the newly identified LaVSP is relatively short,
achieving a small energy gain only.6 This is the limitation
of the single-step LaIntraDVS approach, where a look-ahead
point is directly used as a VSP. To solve this problem, we
propose the multistep look-ahead IntraDVS technique, where
the look-ahead point is recursively processed to find earlier
scaling points.

Fig. 5 shows an example of the multistep LaIntraDVS
algorithm. For the program generated by the original
IntraDVS algorithm [shown in Fig. 5(a)], the single-step

6Since a variable is generally defined just before the variable is used, the
single-step look-ahead IntraDVS approach would show little enhancement in
the energy performance.

378 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Fig. 5. Example program for multistep LaIntraDVS. (a) Original IntraDVS. (b) Single-Step LaIntraDVS. (c) Multistep LaIntraDVS.

Fig. 6. Multistep LaVSP search algorithm.

LaIntraDVS algorithm moves the scaling location to the
line 6, as shown in Fig. 5(b). Since the variable z is defined
at line 4, LaIntraDVS inserted the voltage-scaling code at
lines 5 and 6. However, the variable z is the sum of x and y, and
the values of both x and y are known before the function func3.
If the number of execution cycles for func3 is large and the
addition operation requires small execution cycles, it is better to
insert the addition code and the voltage-scaling code just after

line 2. Fig. 5(c) shows the program modified using this idea.
Since the variable z could be used before the definition point at
line 7, we use the variable _z at the lines 3 and 4 (if the variable
z is not used before line 7, we do not need to use the variable
_z). If x+ y ≤ 0, the function func3 is executed with a lower
speed in Fig. 5(c) compared with Fig. 5(b).

Fig. 6 summarizes the detailed steps of the multistep
LaIntraDVS algorithm. The algorithm has two functions.

SHIN AND KIM: OPTIMIZING INTRATASK VOLTAGE SCHEDULING USING PROFILE AND DATA-FLOW INFORMATION 379

Fig. 7. Overhead in LaIntraDVS. (a) Original IntraDVS. (b) LaIntraDVS.

The function MS_LaVSP_Search does the same operations
with the single-step LaIntraDVS algorithm except that it calls
Find_MDP. The function Find_MDP finds the multistep data
predecessors. It first finds the predecessor set P for an input
variable. Each predecessor p in P is examined whether there
is an energy gain when the cycle distance between s and p is
Distance(p, s) and the overhead value is Coverhead. This is to
consider the overhead instructions required for the multistep
LaVSP technique such as the line 3 in Fig. 5(c).

If there is an energy gain in spite of the overhead cycles
Coverhead, we further examine the data predecessor p. In this
case, we call p the intermediate data predecessor. Then, the
variables in the data predecessor p are identified. For the data
predecessor at the line 4 in Fig. 5(a), it has the variables x and y.
We call the function Find_MDP with the variables recursively.
The function also has the number of overhead cycles for the
intermediate data predecessor p, Overhead(p), as an input. If
there is no energy gain due to a large Coverhead, the recursive
function call is terminated. With this algorithm, we can find
LaVSPs, which can reduce the energy consumption despite of
overhead instructions.

In transforming a program, we should use the intermediate
data predecessors as well as the conditions of the original
VSP. For a variable that is defined in the intermediate data
predecessors, the copy of the variable [e.g., _z in Fig. 5(c)]
should be used to preserve the program behavior.

Fig. 7 shows how to estimate whether there is an energy gain
when an LaVSP is used. In Fig. 7(a), the clock speed is changed
from S1 to S2 = S1 · C2/C3 at the original VSP, because the
remaining workload is changed from C3 to C2. In this case, the
energy consumption can be computed asEorg = C1S

2
1 + C2S

2
2

by (7).
In Fig. 7(b), LaIntraDVS found the look-ahead VSP, which

is executed C1 cycles earlier than the original VSP. Assuming
that we need C0 overhead cycles to adjust the clock speed at
the LaVSP, the energy consumption is given by ELa = C0S

2
1 +

(C1 + C2)S2
3 , where S3 is S1 · (C1 + C2)/(C1 + C3 − C0).

Fig. 8. Example program for L-type VSP. (a) Original IntraDVS.
(b) LaIntraDVS.

The condition for LaIntraDVS to be more energy efficient than
the original IntraDVS technique is Eorg > ELa

Eorg − ELa = C1S
2
1 + C2S

2
2 − C0S

2
1 − (C1 + C2)S2

3 > 0.

The function EnergyGain in Fig. 6 checks this condition to
decide whether there is an energy gain.

For L-type VSPs, it is not trivial to make the condition
for the VSPs. In Fig. 8(a), the while loop executes �(N −
i)/k� times. In the original IntraDVS technique, the variable
LoopIterNum is used to know the number of loop iteration.
The voltage-scaling code at line 12 reduces the clock speed
if �(N − i)/k� is smaller than the maximum number of loop
iterations M . Therefore, the condition for voltage scaling is
C(s) = �(N − i)/k� < M . If we know the values of i, k, and
N in advance, we can reduce the clock speed before the while
loop. However, it is not easy to derive the number of loop
iterations �(N − i)/k� from a program. Using a parametric
worst-case-execution-time-analysis technique, such as [21], we
can know the number of loop iterations. But, there is a simpler
technique. For L-type VSPs, the loop-termination condition and
the multistep LaIntraDVS technique are used.

For example, in Fig. 8(a), the loop-termination condition is
C(s) = ¬(i < N) (note that the expression does not have the
variable k). By analyzing data predecessors for the variables in
C(s), we can get P(s, i) = {3, 9} and P(s,N) = {1}. If we
handle the data predecessor at the line 9 as an intermediate
data predecessor, P(s, i) is changed into {2, 3}. Using P(s, i)
and P(s,N), we can get the look-ahead VSP LaVSP(s) = {3}.
Therefore, we can insert the voltage-scaling codes after line 3.
Fig. 8(b) shows the modified program by the multistep
LaIntraDVS. To reflect the condition C(s) = ¬(i < N), the
while statement is inserted at the line 6. An assignment state-
ment is also inserted at the line 8, because the statement is
related to an intermediate data predecessor. All the variables

380 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Fig. 9. Code transformation (loop splitting). (a) Original program. (b) Trans-
formed program. (c) Speed-change graph.

defined at intermediate data predecessors are cloned like the
variable _i at the line 4.

D. Further Enhancements

The LaIntraDVS is to move VSPs to the LaVSPs, where
we can predict the direction of a control flow. The energy
reduction by LaIntraDVS is significant when the distance be-
tween the original VSP and the LaVSP is long. Therefore, it
is better to schedule the look-ahead VSPs as early as possible
at the compiler level. We call this instruction scheduling as an
LaIntraDVS-aware instruction scheduling.

In the algorithm level, the loop-splitting technique can be
useful for LaIntraDVS. When a loop body has both the original
VSP and the corresponding LaVSP, we split the loop into
two separated loops, which have the VSP and the LaVSP,
respectively. By the loop splitting, we can change the distance
between the original VSP and the LaVSP.

Fig. 9 shows the code transformation by loop splitting. In
Fig. 9(a), we assume that the execution cycles of functions
funcA, funcB, and funcC are 10, 10, and 20, respectively. When
N is 10, the worst case execution cycles of this loop is 300
(when we consider only the execution cycles for functions).
Whenever the function funcA returns to one, the VSP at line 6
reduces the clock speed. If the clock speed at line 5 is f5, the
clock speed is changed to

f5 · CfuncB + (CfuncA + CfuncC) · (9 − i)
CfuncC + (CfuncA + CfuncC) · (9 − i)

= f5 · 10 + 30 · (9 − i)
20 + 30 · (9 − i)

Fig. 10. Code transformation (function inlining). (a) Original program.
(b) Transformed program.

at line 6 (assuming the voltage-transition overhead is zero).
Since the look-ahead VSP (line 5) is the same as the original
VSP, we cannot use the LaIntraDVS technique.

However, if we transform the program using loop splitting, as
shown in Fig. 9(b), we can take full advantage of LaIntraDVS.
While the original VSP is located in the second loop, the
LaVSP is in the first loop. Whenever the value of each a[i] is
determined to be one at the first loop, we can reduce the clock
speed at the LaVSP at line 6. If the clock speed at line 4 is f4,
the clock speed is changed to

f4 · 10 · (i+ 1) + 20 · (9 − i)
10 · i+ 20 · (10 − i)

by the LaVSP. Fig. 9(c) shows the speed-change graphs of
two programs when all a[i]s are one. The clock speed of the
program transformed by the loop splitting is reduced more
quickly and does not change during the execution of the second
loop. If we assume that the energy consumption is proportional
to the square of clock speed, the LaIntraDVS technique with
loop splitting reduces the energy consumption by 15% in this
example.

Another enhancement technique for LaIntraDVS is the func-
tion inlining. For the program in Fig. 10(a), there is a VSP
in line 12 because the function funcC is not executed when
i > 0. The data predecessor of the variable i is the line 2
in the function funcA. But, line 2 is not a look-ahead point
of i, because the function funcA is called at line 8 with the
input variable j. Therefore, we cannot move the VSP to line 3.
If we inline the function funcA to the line 6 as shown
in Fig. 10(b), the line 6 becomes a look-ahead point of the va-
riable i. LaIntraDVS inserted the LaVSP to lines 7 and 8.

VI. EXPERIMENTS

A. RAEP-IntraDVS

To compare the RAEP-IntraDVS with the RWEP-IntraDVS
in the energy performance, we have experimented with ran-
domly generated control-flow graphs (cfg1–cfg10). To make
the random control-flow graph with a behavior similar to a
real program’s CFG, they were generated as follows. First, a
sequential graph is generated, which has an Ninit number of

SHIN AND KIM: OPTIMIZING INTRATASK VOLTAGE SCHEDULING USING PROFILE AND DATA-FLOW INFORMATION 381

Fig. 11. Predicted execution cycles of programs under IntraDVS algorithms.

basic blocks. Each basic block was assigned a random value be-
tween BBmin and BBmax for the execution cycles. The average
number of execution cycles is BBavg. For the experiments, we
used the values of 30, 5, and 100 for Ninit, BBmin, and BBmax,
respectively. Second, two adjacent basic blocks bi and bj , which
are directly connected by an edge are randomly selected and
other two basic blocks are inserted between them to make bi as
a branching node. This step is repeated until the number of basic
blocks becomes the maximum number of basic blocks Nmax.
The value of 600 is used for Nmax in the experiments. Third,
two separated basic blocks bi and bj , which are not connected
directly, are randomly selected and a back edge from bj to bi
is inserted to make bi a header node of a loop. Fourth, we
assign all branching edges the probabilities to be selected at run
time. The maximum number and the average number of loop
iteration are also assigned to all loops. Using this information,
we make the profile information of the control-flow graph. For
the run-time simulation, an execution path is generated accord-
ing to the profile information. The simulation was performed
100 times generating 100 execution paths based on the given
profile information. We assumed that the deadline of each task
graph is 1.5 times of the worst case execution time.

Fig. 11 shows the numbers of predicted execution cy-
cles of the control-flow graphs under the various IntraDVS
techniques. The average-case execution cycles ACEC−P,
ACEC−O, ACEC−NO, ACEC−EO, and ACEC−WP are
estimated by the probability-based, optimal, near-optimal,
edge-optimal, and weighted probability-based RAEP-IntraDVS
algorithms, respectively. All of these ACECs are between the
WCEC and the best case execution. The average-case execution
cycles have a similar value for a control-flow graph.

Fig. 12 shows the energy consumptions under various
RAEP-IntraDVS techniques normalized by the energy under
the RWEP-IntraDVS. For all RAEP-IntraDVS algorithms, the
safeness-guarantee process proposed in Section III-B was ap-
plied. We have experimented varying the voltage-transition
time ∆t. Fig. 12(a)–(d) are the results when ∆t are zero,
BBmin, BBavg, and BBmax, respectively. The energy consump-
tions include the power overhead ∆p. We assumed that the
power overhead ∆p is the same to the power dissipated during
the time ∆t at the full speed. For all IntraDVS techniques,

the Down-VSPs are selected considering the voltage-transition
overhead as shown in (10).

Generally, the energy consumptions in the RAEP-IntraDVS
techniques are smaller than the RWEP-IntraDVS technique.
When the voltage-transition time and power overhead are
ignored (∆t = 0), the optimal RAEP-IntraDVS technique
(RAEP-O) shows the best results. However, the energy perfor-
mance of RAEP-O becomes worse as the value of ∆t increases.
This is because the optimal RAEP-IntraDVS technique involves
many voltage transitions as commented in Section III.

Other RAEP-IntraDVS techniques (RAEP-NO, RAEP-EO,
and RAEP-WP) show better results than the RWEP-IntraDVS
irrespective of the voltage-transition overhead. Even when
∆t = 0, they show little differences in the energy reduction
with the optimal RAEP-IntraDVS technique, which shows the
best results.

From the graph, we can know that the probability-based
RAEP-IntraDVS (RAEP-P) can generate a worse energy per-
formance than the RWEP-IntraDVS for some control-flow
graphs (cfg8). This is because the probability-based RAEP-
IntraDVS considers only the probability but not the execution
cycles of an execution path.

Fig. 13 shows the normalized voltage-transition numbers of
various RAEP-IntraDVS algorithms over the RWEP-IntraDVS.
This result confirms the problem of the optimal RAEP-
IntraDVS. The number of voltage transitions in the optimal
RAEP-IntraDVS technique is two times the numbers in the
RWEP-IntraDVS technique and three times the numbers in the
other RAEP-IntraDVS techniques on average. The number of
voltage transition is smallest in the probability-based RAEP-
IntraDVS (RAEP-P), because the technique considers only
the probability. Therefore, we can conclude that the weighted
probability-based RAEP-IntraDVS is the most suitable, be-
cause it is the simplest but has a similar energy performance
to the optimal RAEP-IntraDVS technique.

We also experimented the performance of proposed
IntraDVS algorithms using a real processor model. Although
we assumed that we could use any speed (and voltage) between
the minimum speed and the maximum speed, real variable-
voltage processors provide only finite number of speed levels.
Fig. 14 shows the experimental results under four kinds of

382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Fig. 12. Normalized energy consumptions of various RAEP-IntraDVS algorithms over the RWEP-IntraDVS: (a) ∆t = 0, (b) ∆t = BBmin, (c) ∆t = BBavg ,
and (d) ∆t = BBmax.

Fig. 13. Normalized voltage-transition numbers of various RAEP-IntraDVS
algorithms over the RWEP-IntraDVS.

processor models, which provide 100, 50, 10, and 4 voltage
levels, respectively. The processor with four levels of voltage is
the PowerPC 405LP [22]. Under these real processor models,
the target clock speed is first calculated as if the processor
provides continuous speed levels. Then, the clock speed is
changed to the value, which is smallest among the speed values
larger than the target speed.

The energy consumptions decrease when the number of
speed levels is larger than ten but increase when the available
levels are smaller than ten. This is because the number of
voltage transitions, which gives bad effects on the energy per-
formance, decreases as the number of speed levels decreases.
From this result, we can also know that it is not necessary to
provide too many clock and voltage levels because a processor

with many speed levels does not always give a good energy per-
formance. As shown in Fig. 14(b), the number of voltage transi-
tions sharply decreases as the number of speed levels decreases.

We also compared the energy reductions due to the RWEP-
IntraDVS, the RAEP-IntraDVS, and the optimal DVS algo-
rithms. The optimal DVS algorithm is to adjust the clock speed
based on the actual execution time of a task at the start of
the task. For the execution times of a task, we used artificial
workloads, which are drawn from a random Gaussian distri-
bution. Fig. 15 shows the normalized energy consumptions
under the three kinds of DVS techniques. The energy gain
of the RAEP-IntraDVS over the RWEP-IntraDVS increases as
the B/W ratio (=BCET/WCET) decreases.7 This is because
the difference between ACEC and WCEC becomes larger as the
B/W ratio decreases. When the B/W ratio is 0.1, the RAEP-
IntraDVS reduces the energy consumption by 21% over the
RWEP-IntraDVS.

For a real application, we have experimented with an
MPEG-4 SP@L1 video decoder and encoder used in [23]. In
the RAEP-IntraDVS, the probabilities of branch edges and the
average numbers of loop iterations in the control-flow graph
of MPEG-4 video programs are estimated using the profiled
information. A probability of 0.5 is assigned to the branch edges
for which we cannot collect the execution profiles with sample
test bit streams. For the deadlines of MPEG-4 programs, we
used the worst case execution times.

7BCET = best-case execution time.

SHIN AND KIM: OPTIMIZING INTRATASK VOLTAGE SCHEDULING USING PROFILE AND DATA-FLOW INFORMATION 383

Fig. 14. Experimental results under finite-voltage levels.

Fig. 15. Comparison among the RWEP-IntraDVS, the RAEP-IntraDVS, and
the optimal DVS.

Fig. 16. Normalized energy consumption of the RWEP-IntraDVS and the
RAEP-IntraDVS versus the slack factor.

Fig. 16 compares the energy consumption of two IntraDVS-
scheduling algorithms, varying the slack factor. The slack fac-
tor, defined by (deadline − WCET/deadline), represents the
fraction of time that a processor becomes idle after WCET. All
the results were normalized over the energy consumption of the
original program running on a DVS-unaware system. As the
slack factor increases, the worst case slack time increases. To
utilize the worst case slack time, we used WCET/deadline for
the start speed of MPEG-4 programs.

Fig. 17. Framework for LaIntraDVS.

As the slack factor increases, the energy-consumption gap
decreases because supply voltages of both IntraDVS algorithms
get lower. Since the energy consumption is proportional to V 2

dd,
the lower voltage value results in a smaller difference in the
energy consumption. We can also know that there is no need
to use an aggressive IntraDVS technique when the worst case
slack time is significantly large because most of energy gains
are generated from the worst case slack time.

Note that there is a large gap between energy consumptions
of RWEP-IntraDVS and RAEP-IntraDVS algorithms, even
when the slack factor is zero (i.e., deadline = WCET). This
is because, although ACEC is same to WCEC, there are many
execution paths that can still take advantage of the RAEP-based
speed settings. That is, although the blocks in WCEP should
use the RSEC in order to meet the timing constraint, other
blocks may use the RAEC taking advantage of the RAEP-based
speed settings.

B. LaIntraDVS

In order to evaluate the energy efficiency of LaIntraDVS
techniques, we have experimented with MPEG-4 video pro-
grams. We first made a framework for LaIntraDVS, as shown in
Fig. 17. We used the automatic voltage scaler (AVS) introduced
in a previous paper [5]. The original AVS takes a target program
as an input, finds the VSP information using the original
IntraDVS algorithm, and generates the modified DVS-aware
program. We added the Look−ahead VSPAnalyzer, which gen-
erates the look-ahead VSPs for each VSP using the algorithm

384 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2007

Fig. 18. Experimental results of LaIntraDVS.

in Fig. 6. The Data−Flow Analyzer finds the data prede-
cessors for each VSP using the data-flow-analysis technique.
The Data−Flow Analyzer corresponds to the function Find_
Data_Predecessor in Fig. 6. Using the look-ahead VSP infor-
mation, AVS generates the DVS-aware program.

Fig. 18 shows the energy consumption of three kinds
of MPEG-4 encoder programs, which employ the original
IntraDVS, the single-step LaIntraDVS, and the multistep
LaIntraDVS, respectively. The figure also compares the results
for the RWEP-based techniques and the RAEP-based tech-
niques. The energy consumption is normalized by the result
of the RWEP-IntraDVS technique. As shown in Fig. 18, the
single-step LaIntraDVS reduced the energy consumption by
only 4%–6%. This is because most of look-ahead points are
located closely to the original VSPs. However, the multistep
LaIntraDVS shows significant energy reductions of 40%–45%.
The energy performance of LaIntraDVS is dependent on the
application characteristic. For an MPEG-4 decoder program,
even the multistep LaIntraDVS showed little energy reductions.

The energy performance of the multistep LaIntraDVS is
closely related to the application’s slice size. Weiser [24] in-
troduced the concept of program slice, which allows the user to
focus on the portion of the program responsible for a particular
phenomenon. There are two kinds of slices, i.e., the backward
slice and forward slice. While a backward slice consists of all
program points that affect a given point in a program, a forward
slice consists of all program points that are affected by a given
point in a program. When we use the multistep LaIntraDVS
technique, a portion of a backward slice of a VSP should be
copied before the LaVSP. Therefore, if the size of the backward
slice is large, the overhead cycles for LaVSPs become large,
limiting the energy gain of LaIntraDVS.

The slice size is dependent on the target program point.
However, average slice size is considerably smaller com-
pared with the original code size [24], [25]. The multistep
LaIntraDVS applied to MPEG-4 encoder program copied only
four C-statements for LaVSPs.

VII. CONCLUSION

The IntraDVS algorithm has two implementation issues, i.e.,
how to predict the remaining execution cycles and how to detect
the change of the remaining execution cycles. There have been

three kinds of IntraDVS algorithms, i.e., RWEP-IntraDVS,
RAEP-IntraDVS, and ROEP-IntraDVS. These techniques ex-
ploited the control-flow information only to detect the workload
change. In this paper, we proposed novel techniques for the two
implementation issues to optimize the energy performance of
IntraDVS.

First, we proposed a novel RAEP-IntraDVS algorithm that
uses weighted-probability to consider both the energy perfor-
mance and the voltage-scaling overhead. We also presented
how we can get the safe average-case execution cycle, which
guarantees the deadline constraint. In experiments using ran-
domly generated control-flow graphs, we compared the pro-
posed RAEP-IntraDVS with the ROEP-IntraDVS algorithm,
which uses the optimal remaining execution cycles but in-
creases the number of voltage transitions, as well as the
RWEP-IntraDVS. The proposed RAEP-IntraDVS needed small
voltage-transition overheads and showed better energy perfor-
mances than the RWEP-IntraDVS and the ROEP-IntraDVS.

Second, we proposed the LaIntraDVS algorithm that exploits
data-flow information as well as control-flow information of a
program. The LaIntraDVS optimizes the VSPs such that we can
adjust the clock speed as early as possible. The experimental
results using an MPEG-4 encoder showed that the LaIntraDVS
can reduce the energy consumption by 40%–45% over the
original IntraDVS algorithm.

Although we have focused on the dynamic-power consump-
tion assuming that the static part can be ignored, the static
power will become a significant portion of the total power
at future processors. As reported in [26], the leakage power
currently accounts for about 15%–20% of the total power for
high-speed processors. Recently, several techniques have been
proposed that minimize the leakage power. Generally, these
techniques shut the system down at the idle interval. This means
that we may increase the leakage energy consumption using
DVS techniques, because idle times are reduced by stretching
the execution times of tasks. We have a plan to consider the
leakage power as well as the dynamic power in dynamic-
voltage scaling as a future work.

REFERENCES

[1] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for hard
real-time systems,” in Proc. Des. Autom. Conf., 1999, pp. 134–139.

[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez, “Dynamic and
aggressive scheduling techniques for power-aware real-time systems,” in
Proc. IEEE Real-Time Syst. Symp., 2001, pp. 95–105.

[3] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in Proc. 18th ACM SOSP, 2001,
pp. 89–102.

[4] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power real-time
systems,” in Proc. Des. Autom. Conf., 2000, pp. 806–809.

[5] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low-energy
hard real-time applications,” IEEE Des. Test Comput., vol. 18, no. 2,
pp. 20–30, Mar./Apr. 2001.

[6] D. Shin and J. Kim, “A profile-based energy-efficient intra-task voltage
scheduling algorithm for hard real-time applications,” in Proc. Int. Symp.
Low Power Electron. and Des., 2001, pp. 271–274.

[7] D. Mossé, H. Aydin, B. Childers, and R. Melhem, “Compiler-assisted
dynamic power-aware scheduling for real-time applications,” in Proc.
Workshop Compilers and Operating Syst. Low-Power, 2000, pp. 28–39.

[8] N. AbouGhazaleh, B. Childers, D. Mosse, R. Melhem, and M. Craven,
“Energy management for real-time embedded applications with compiler
support,” in Proc. Conf. Language, Compiler, and Tool Support Embedded
Syst., 2002, pp. 284–293.

SHIN AND KIM: OPTIMIZING INTRATASK VOLTAGE SCHEDULING USING PROFILE AND DATA-FLOW INFORMATION 385

[9] J. Seo, T. Kim, and K.-S. Chung, “Profile-based optimal intra-task voltage
scheduling for hard real-time applications,” in Proc. 41st Des. Autom.
Conf., 2004, pp. 87–92.

[10] B. Walsh, R. van Engelen, K. Gallivan, J. Birch, and Y. Shou, “Parametric
intra-task dynamic voltage scheduling,” in Proc. Workshop Compilers
Operating Syst. Low Power, 2003, pp. 38–45.

[11] C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation of
a compiler algorithm for CPU energy reduction,” in Proc. ACM SIGPLAN
Conf. Program. Languages, Des., Implementation, 2003, pp. 38–48.

[12] A. Weissel and F. Bellosa, “Process cruise control: Event-driven clock
scaling for dynamic power management,” in Proc. Int. Conf. Compilers,
Architecture, Synthesis Embedded Syst., 2002, pp. 238–246.

[13] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance trade-off based on
the ratio of off-chip access to on-chip computation times,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 24, no. 1, pp. 18–28,
Jan. 2005.

[14] F. Gruian, “Hard real-time scheduling using stochastic data and
DVS processors,” in Proc. Int. Symp. Low Power Electron. Des., 2001,
pp. 46–51.

[15] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling algo-
rithms with PACE,” in Proc. ACM SIGMETRICS Conf., 2001, pp. 50–61.

[16] T. Sakurai and A. Newton, “Alpha-power law MOSFET model and its
application to CMOS inverter delay and other formulas,” IEEE J. Solid-
State Circuits, vol. 25, no. 2, pp. 584–594, Apr. 1990.

[17] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park,
H. Shin, K. Park, and C. S. Kim, “An accurate worst case timing
analysis for RISC processors,” IEEE Trans. Softw. Eng., vol. 21, no. 7,
pp. 593–604, Jul. 1995.

[18] T. Ball and J. R. Larus, “Using paths to measure, explain, and enhance
program behavior,” Computer, vol. 33, no. 7, pp. 57–65, Jul. 2000.

[19] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically
variable voltage processors,” in Proc. Int. Symp. Low Power Electron. and
Des., 1998, pp. 197–202.

[20] S. Muchnick, Advanced Compiler Design and Implementation. San
Mateo, CA: Morgan Kaufmann, 1997.

[21] B. Lisper, “Fully automatic, parametric worst-case execution time analy-
sis,” in Proc. Int. Workshop Worst-Case Execution Time Anal., 2003,
pp. 85–88.

[22] C. Rusu, R. Melhem, and D. Mosse, “Maximizing the system value while
satisfying time and energy constraints,” IBM J. Res. Develop., vol. 47,
no. 5/6, pp. 689–702, 2003.

[23] S. Lee and T. Sakurai, “Run-time power control scheme using software
feedback loop for low-power real-time application,” in Proc. Conf. Asia
South Pacific Des. Autom., 2000, pp. 381–386.

[24] M. Weiser, “Program slicing,” IEEE Trans. Softw. Eng., vol. SE-10, no. 4,
pp. 352–357, Jul. 1984.

[25] L. Bent, D. C. Atkinson, and W. G. Griswold, “A comparative study of two
whole program slicers for C,” Dept. Comput. Sci. Eng., Univ. California,
San Diego, CA, Tech. Rep. CS2001-0668, 2001.

[26] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: Simple techniques for reducing leakage power,” in Proc. 29th Int.
Symp. Comput. Architecture, 2002, pp. 148–157.

Dongkun Shin received the B.S. degree in computer
science and statistics, the M.S. degree in computer
science, and the Ph.D. degree in computer science
and engineering from Seoul National University,
Seoul, Korea.

He is currently a Senior Engineer with Samsung
Electronics Company, Seoul. His research interests
include low-power systems, computer architecture,
and embedded and real-time systems.

Jihong Kim (M’00) received the B.S. degree in
computer science and statistics from Seoul National
University, Seoul, Korea, and the M.S. and Ph.D.
degrees in computer science and engineering from
the University of Washington, Seattle.

He is currently an Associate Professor with
the School of Computer Science and Engineering,
Seoul National University. His research interests
include embedded systems, computer architecture,
Java computing, and multimedia and real-time
systems.

Dr. Kim is a member of the Association for Computing Machinery.

