
Look-ahead Intra-Task Voltage Scheduling
Using Data Flow Information

Dongkun Shin and Jihong Kim
School of Computer Science and Engineering

Seoul National University

ABSTRACT
Intra-task voltage scheduling (IntraDVS), which adjusts the supply
voltage within an individual task boundary, is an effective tech-
nique for developing low-power applications. In IntraDVS, slack
times are estimated by analyzing program’s control flow informa-
tion. In this paper, we propose an optimization technique for In-
traDVS using data flow information. The proposed algorithm im-
proves the energy efficiency by moving the voltage scaling points to
earlier instructions based on the analysis results of program’s data
flow. The experimental results using an MPEG-4 encoder program
show that the proposed algorithm reduces the energy consumption
by 40-45% over the original IntraDVS algorithm.

1. INTRODUCTION
Dynamic voltage scaling (DVS) is one of the most effective low-

power techniques for real-time systems. DVS techniques change
the clock speed and its corresponding supply voltage dynamically
to the lowest possible level while meeting the task’s performance
constraint.

For real-time systems, there exist two DVS approaches depend-
ing on the scaling granularity. Inter-task voltage scheduling (Inter-
DVS) [1, 2, 3] determines the supply voltage on task-by-task basis,
while intra-task voltage scheduling (IntraDVS) [4, 5] adjusts the
supply voltage within an individual task boundary. IntraDVS algo-
rithms exploit all the slack time from run-time variations of differ-
ent execution paths. Voltage scaling codes, which are inserted at
specific program points (called voltage scaling points) of the target
real-time program, adjust the clock speed depending on the execu-
tion path taken during run time.

In this paper, we propose two optimization techniques for In-
traDVS algorithms, which moves voltage scaling points to earlier
instructions. While the existing IntraDVS algorithms find the volt-
age scaling points of a program using the control flow information
of the program, the proposed technique identifies the earlier volt-
age scaling points using the data flow information of the program
as well as the control flow information.

We first briefly describe the original IntraDVS algorithm in Sec-
tion 2. Two proposed techniques are discussed in Section 3 and 4,
respectively. Experimental results are given in Section 5. Section 6
concludes with a summary.

2. ORIGINAL INTRA-TASK VOLTAGE
SCHEDULING ALGORITHM

Consider a hard real-time program P with the deadline of 2 µsec
shown in Figure 1(a). The control flow graph (CFG) GP of the

program P is shown in Figure 1(b). In GP, each node represents a
basic block of P and each edge indicates the control dependency
between basic blocks. The number within each node indicates
CEC�bi� which is the number of execution cycles of the correspond-
ing basic block. The back edge from b5 to bwh models the while
loop of the program P.

(b)

[160]

[120, 80, 40]
[130, 90, 50]

b

10

1

10

b3

10

b5

10

b4

10

b2

10

whb

bif

5

b6

5

7b

10

[30]

[20]

[15]

[10]

[150, 110, 70, 30]

[140, 100, 60]

loop iterations = 3

the maximum
number of

(a)

if
else

while
S3;
if
S5;

}
if
S7;

S1;

() S4;

() S6;cond4

() { cond2

() S2;cond1

cond3

Figure 1: An example program; (a) an example real-time pro-
gram P and (b) its CFG GP.

For the speed adjustment, intra-task voltage scheduling tech-
nique uses an adaptive approach with the help of a static program
analysis technique on worst case execution times. Assume that
CRWEC�bi� represents the remaining worst case execution cycles
among all the execution paths that start from bi. Using a modi-
fied WCET analysis tool, for each basic block bi, we can compute
CRWEC�bi� in compile time. In Figure 1(b), the symbol � � contains
the CRW EC�bi� values of each basic block. For the basic blocks
related to the while loop (i.e., bwh, b3�b4�b5), the corresponding
nodes are associated with multiple CRWEC�bi� values, reflecting the
maximum three iterations of the while loop.

With the CRWEC�bi� values computed, we can statically iden-
tify an edge �bi�b j� (of a CFG G) where �CRWEC�bi��CEC�bi�� ��
CRWEC�b j�. For example, in Figure 1(b), we can identify four such
edges, i.e., �b1�b2�, �bwh�bi f �, �bi f �b7� and �b3�b5�, which are
marked by the symbol �. These marked edges form a set of candi-
date Voltage Scaling Points (VSPs): the VSPs from branch state-
ments such as �b1�b2� are called B-type VSPs, and the VSPs from
loop statements such as �bwh�bi f � are called L-type VSPs. If an
edge (bi�b j) is selected as a VSP, it means that the clock speed will
change when the thread of execution control branches to bj from bi.
For example, the clock speed will be lowered when the basic block
b2 is executed after b1 because the remaining work is reduced by
1/5 (i.e., the ratio of CRW EC�b2� to [CRWEC�b1��CEC�b1�]).

For each selected VSP, the clock speed is changed so that a new
speed is fast enough to complete the remaining work at the dead-
line. For example, when the thread of execution control meets a

VSP �bi�b j�, the clock speed can be lowered because the remain-
ing work is reduced by [CRWEC�bi��CEC�bi��CRW EC�b j�]. After
bi is executed at the clock speed S, the clock speed can be changed
to reflect the reduction in the remaining work. The new clock speed

for b j is set to S� CRWEC�bj�
CRWEC�bi��CEC�bi�

. We call CRWEC�bj�
CRWEC�bi��CEC�bi�

as the

speed update ratio (SUR) for the edge �bi�b j�.
Since there exists the transition overhead during speed changes,

not all the candidate VSPs are selected as VSPs. A candidate VSP
is selected as a VSP when the number of reduced cycles at the
candidate VSP is larger than a given threshold value. The threshold
value is determined by a VSP selection policy, which is a function
of the transition time overhead, the transition power overhead, and
the code size increase (by the added scaling code).

In designing IntraDVS algorithms, two key issues exist. The
first issue is how to predict the remaining execution cycles. De-
pending on the prediction method, the IntraDVS framework can be
implemented into different IntraDVS algorithms, one is to use the
remaining worst case execution path (RWEP) [4] and the other is
to use the remaining average case execution path (RAEP) [5].

The second one is how to determine the voltage scaling points in
the program code. The optimal points are the earliest points where
we can detect the changes of the remaining predicted execution
cycles. The previous works are all based on the control flow infor-
mation only. In this paper, we propose new IntraDVS techniques
which take advantage of program data flow analysis.

3. LOOK-AHEAD INTRA-TASK DVS

3.1 Motivation
The original IntraDVS techniques select the voltage scaling points

using the control flow information (i.e., branch and loop) of a target
program. For example, in Figure 2(a), the IntraDVS algorithm in-
serts the voltage scaling code, change f V ��, at the line 19. At the
line 19, we can know that the remaining worst-case execution cy-
cles are reduced because the function func8 is not executed. How-
ever, we can decide the direction of the branch at the line 16 earlier
because the values of x and y are not changed after the line 8 or the
line 11. Figure 2(b) shows the modified program which adjusts the
clock speed and the supply voltage at the line 10 or the line 15. The
program in Figure 2(b) consumes less energy than the one in Fig-
ure 2(a) because the functions func6 and func7 is executed with a
lower speed if w � 0 and x� y � 0.

This example shows that we can improve the energy performance
of IntraDVS further if we can move voltage scaling points to the
earlier instructions. To change the voltage scaling points, we should
identify the data dependency using a data flow analysis technique.
The data flow analysis provides the information about how a pro-
gram manipulates its data [6]. Using data flow analysis, we can
decide program locations where each variable is defined and used.
We call the proposed IntraDVS technique based on data flow infor-
mation as the look-ahead IntraDVS (LaIntraDVS) technique.

3.2 Single-Step Look-ahead IntraDVS
For LaIntraDVS, we need several post-processing steps after the

voltage scaling points are selected by the original IntraDVS algo-
rithm. To explain the post-processing steps, we define following
terms and notations.

Definition 1. An instruction I is called a definition dx of a
variable x if the instruction I assigns, or may assign, a value to
x.

Definition 2. Given a program location t, a definition dx of a
variable x is called a data predecessor Pt

x of the variable x at

 1: v = func1();
 2: if (v > 0) {
 3: w = func2();
 4: x = 3;
 5: y = -3;
 6: z = func3();
 7: if (z > 0) {
 8: x = func4();
 9: }
10: else {
11: y = func5();
12: func6();
13: }
14: func7();
15: if (w > 0) {
16: if (x+y > 0)
17: func8();
18: else
19: change_f_V();
20: func9();
21: }
22: }

(a) Original IntraDVS

 1: v = func1();
 2: if (v > 0) {
 3: w = func2();
 4: x = 3;
 5: y = -3;
 6: z = func3();
 7: if (z > 0) {
 8: x = func4();
 9: if (w>0 && !(x+y>0))
10: change_f_V();
11: }
12: else {
13: y = func5();
14: if (w>0 && !(x+y>0))
15: change_f_V();
16: func6();
17: }
18: func7();
19: if (w > 0) {
20: if (x+y > 0)
21: func8();
22: func9();
23: }
24: }

(b) Look-ahead IntraDVS

Figure 2: An example program for look-ahead IntraDVS.

t if there exists a path from dx to t such that the value of x is
not changed along the path. A data predecessor set ��t�x� of the
variable x at t is a set of all data predecessors of the variable x at
t.

Definition 3. Given a program location t and a variable x, a
program location p is called a look-ahead point Lt

x of the variable
x at t if the following two conditions are satisfied:

� There exists one or more paths from p to t but there is no
path from p to t such that the value of x is changed along
the path.

� There is no other program location p� between Pt
x and p,

which satisfies the first condition.

A look-ahead point set ��t�x� is a set of all look-ahead points of
the variable x at t.

Definition 4. Given a voltage scaling point s, a variable v is
a condition variable of s if the value of the variable v determines
whether s is executed or not at run time.

Definition 5. Given a voltage scaling point s and the set of
condition variables V �s� � �v1� � � � �vn� of s, a look-ahead point
p 	 ��s�v1 �
 �� �
��s�vn� is a look-ahead voltage scaling point
(LaVSP) of s if there is no other look-ahead point p� 	 ��s�v1 �

�� �
��s�vn� along the path from p to s. The set of all look-ahead
voltage scaling points is denoted by LaV SP�s�.

Given an original voltage scaling point s, we first identify the
branch condition C�s� which is the necessary condition for s to be
executed at run time. Second, using the variables in the expression
of C�s�, we compose a set of condition variables V �s�. Third, the
data predecessor set ��s�vi� and the look-ahead point set ��s�vi �
are identified for each variable vi in V �s� using a data flow analy-
sis technique. Fourth, we identify the look-ahead voltage scaling
points LaV SP�s�. Lastly, we insert the voltage scaling codes at the
look-ahead voltage scaling points.

For example, in Figure 2(a), the branch condition for the voltage
scaling point at line 19 is C�s� � �v � 0�� �w � 0����x� y � 0�.
The variables in C�s� are v�w�x� and y (i.e., V �s� � �v�w�x�y�).
If we represent a program point with its line number, ��s�v� �
�1�, ��s�v� � �2�, ��s�w�� �3�, ��s�w� � �4�, ��s�x� � �4�8�,

��s�x� � �9�11�, ��s�y� � �5�11�, and ��s�y� � �8�12�. From
this information, we can know that LaVSP�s�� �9�12�. Figure 2(b)
shows the modified program with LaVSPs. At the lines 9 and 14,
control expressions are inserted to reflect the condition C�s� � �v�
0�� �w � 0����x� y � 0�. Since the condition �v � 0� is always
true at the lines 9 and 14, it is unnecessary to insert a control ex-
pression for the condition.

With the LaVSPs, the next step is to determine the speed update
ratio. For example, if a original VSP �bi�b j� has the LaVSP p, the
speed update ratio at p is

r�p� �
CRW EC�p�� �CRWEC�bi��CEC�bi��CRWEC�bj��

CRW EC�p�

because the reduced cycles at the VSP �bi�b j� is CRW EC�bi��
CEC�bi��CRW EC�b j�.

In Figure 2(a), if the clock speed is f15 at the line 15, the clock
speed at the line 19, f19, will be f19 � f15�

Cf unc9
Cf unc8�Cf unc9

(when we
consider only the execution cycles for functions), where Cf unc8 and
Cf unc9 are the worst-case execution cycles for the functions func8
and func9 respectively. However, in Figure 2(b), the clock speed
at the line 10 and the line 15 are

f10 � f9 �
Cf unc7 �Cf unc9

Cf unc7 �Cf unc8 �Cf unc9

and

f15 � f14 �
Cf unc6 �Cf unc7 �Cf unc9

Cf unc6 �Cf unc7 �Cf unc8 �Cf unc9

respectively.

4. MULTI-STEP LOOK-AHEAD INTRADVS
Although the look-ahead approach in LaIntraDVS can improve

the energy performance of the IntraDVS technique, there are many
cases where the cycle distance between the original VSP and the
newly identified LaVSP is relatively short, achieving a small energy
gain only1. This is the limitation of the single-step LaIntraDVS
approach, where an look-ahead point is directly used as a voltage
scaling point. To solve this problem, we propose the multi-step
look-ahead IntraDVS technique, where the look-ahead point is re-
cursively processed to find earlier scaling points.

Figure 3 shows an example of the multi-step look-ahead IntraDVS
algorithm. For the program generated by the original IntraDVS
algorithm (shown in Figure 3(a)), the single-step LaIntraDVS al-
gorithm moves the scaling location to the line 6 as shown in Fig-
ure 3(b). Since the variable z is defined at the line 4, LaIntraDVS
inserted the voltage scaling code at the lines 5 and 6. However,
the variable z is the sum of x and y, and the values of both x and y
are known before the function func3. If the number of execution
cycles for func3 is large and the addition operation requires small
execution cycles, it is better to insert the addition code and the volt-
age scaling code just after the line 2. Figure 3(c) shows the program
modified using this idea. Since the variable z could be used before
the definition point at the line 7, we use the variable z at the lines 3
and 4. (If the variable z is not used before the line 7, we do not need
to use the variable z.) If x� y � 0, the function func3 is executed
with a lower speed in Figure 3(c) compared with in Figure 3(b).

Figure 4 summarizes the detailed steps of the multi-step LaIn-
traDVS algorithm. The algorithm has two functions. The function
MS LaVSP Search does the same operations with the single-step
LaIntraDVS algorithm except that it calls Find MDP. The function
Find MDP finds the multi-step data predecessors. It first finds the

1Since a variable is generally defined just before the variable is used, the look-ahead
IntraDVS approach would show little enhancement in the energy performance.

 1: x = func1();
 2: y = func2();
 3: func3();
 4: z = x + y;
 5: func4();
 6: if (z > 0)
 7: func5();
 8: else
 9: change_f_V();
10: func6();

(a) Original IntraDVS

 1: x = func1();
 2: y = func2();
 3: func3();
 4: z = x + y;
 5: if (!(z>0))
 6: change_f_V();
 7: func4();
 8: if (z > 0)
 9: func5();
10: func6();

(b) Single-Step

LaIntraDVS

 1: x = func1();
 2: y = func2();
 3: _z = x + y;
 4: if (!(_z>0))
 5: change_f_V();
 6: func3();
 7: z = x + y;
 8: func4();
 9: if (z > 0)
10: func5();
11: func6();

(c) Multi-Step LaIntraDVS

Figure 3: An example program for multi-step look-ahead In-
traDVS.

1: MS LaVSP Search(s) �
2: C�s� := Find Conditions(s);
3: V �s� := /0;
4: for ci � C�s�
5: V �s� := V �s� � Find Variables(ci);
6: for vj � V �s� �
7: ��s�vj� := Find MDP(s�vj �0);
8: ��s�vj � := Look-ahead(��s�vj�);
9: �

10: LaVSP�s� := Merge(��s�v1 �� � � � ���s�vn �);
11: Transform(LaVSP�s�,C�s�);
12: �
13:
14: Find MDP(s�vj �Coverhead) �
15: P := Find Data Predecessor(s�vj);
16: for p � P �
17: if (EnergyGain(Distance�p�s�, Coverhead)) return �s�;
18: V ��p� := Find Variables(p);
19: P := P � �p�;
20: for vk � V ��p�
21: P : = P � Find MDP(p�vk �Overhead�p�);
22: �
23: return P;
24: �

Figure 4: Multi-step LaVSP search algorithm.

predecessor set, P, for an input variable. Each predecessor p in P
is examined whether there is an energy gain when the cycle dis-
tance between s and p is Distance�p�s� and the overhead value is
Coverhead . This is to consider the overhead instructions required for
the multi-step LaVSP technique such as the line 3 in Figure 3(c).

If there is an energy gain in spite of the overhead cycles Coverhead ,
we further examine the data predecessor p. In this case, we call p as
the intermediate data predecessor. Then, the variables in the data
predecessor p are identified. For the data predecessor at the line
4 in Figure 3(a), it has the variables x and y. We call the function
Find MDP with the variables recursively. The function also has the
number of overhead cycles for the intermediate data predecessor
p, Overhead�p�, as an input. If there is no energy gain due to
a large Coverhead , the recursive function call is terminated. With
this algorithm, we can find LaVSPs which can reduce the energy
consumption despite of overhead instructions.

In transforming a program, the intermediate data predecessors
are used as well as the conditions of the original voltage scaling
point. For the variable which is defined in the intermediate data
predecessors, we should use a copy of the variable (e.g., z in Fig-
ure 3(c)) to preserve the program behavior.

Figure 5 shows how to estimate whether there is an energy gain
when a LaVSP is used. In Figure 5(a), the clock speed is changed

C3

original VSP

time

speed

C1
C2

S1

S2

(a) Original IntraDVS
LaVSP

time

speed

C0 C1+C2

S3

overhead code

S1

(b) LaIntraDVS

Figure 5: Overhead in LaIntraDVS.

from S1 to S2 � S1 �
C2
C3

at the original voltage scaling point because
the remaining workload is changed from C3 to C2. In this case,
the energy consumption can be computed by Eorg � C1S2

1 �C2S2
2

assuming that supply voltage is proportional to clock speed.
In Figure 5(b), LaIntraDVS found the look-ahead VSP which is

executed C1 cycles earlier than the original VSP. Assuming that we
need C0 overhead cycles to adjust the clock speed at the LaVSP,
the energy consumption is given by ELa � C0S2

1 � �C1 �C2�S2
3

where S3 is S1
C1�C2

C1�C3�C0
. The condition for LaIntraDVS to be more

energy-efficient than the original IntraDVS technique is Eorg �ELa.
The function EnergyGain in Figure 4 checks this condition to de-
cide whether there is an energy gain.

For L-type VSPs, it is not trivial to make the condition for the
VSPs. In Figure 6(a), the while loop executes
�N � i��k� times.
In the original IntraDVS technique, the variable LoopIterNum is
used to know the number of loop iteration. The voltage scaling
code at the line 12 reduces the clock speed if
�N� i��k� is smaller
than the maximum number of loop iterations, M. Therefore, the
condition for voltage scaling is C�s� �
�N � i��k� � M. If we
know the values of i�k� and N in advance, we can reduce the clock
speed before the while loop. However, it is not trivial to derive
the number of loop iterations
�N� i��k� from a program. So, we
use a loop termination condition and the multi-step LaIntraDVS
technique.

For example, in Figure 6(a), the loop termination condition is
C�s� � ��i � N�. (Note that the expression does not have the vari-
able k.) By analyzing data predecessors for the variables in C�s�,
we can get ��s� i� � �3�9� and ��s�N� � �1�. If we handle the
data predecessor at the line 9 as an intermediate data predecessor,
��s� i� is changed into �2�3�. Using ��s� i� and ��s�N�, we can get
the look-ahead voltage scaling point LaVSP�s� � �3�. Therefore,
we can insert the voltage scaling codes after the line 3. Figure 6(b)
shows the modified program by the multi-step LaIntraDVS. To re-
flect the condition C�s� ���i � N�, the while statement is inserted
at the line 6. An assignment statement is also inserted at the line 8
because the statement is related to an intermediate data predecessor.

5. EXPERIMENTS
In order to evaluate the energy efficiency of LaIntraDVS tech-

niques, we have experimented with an MPEG-4 video encoder.
Figure 7 shows the energy consumption of three kinds of MPEG-4
encoder programs, which employ the original IntraDVS, the single-
step LaIntraDVS and the multi-step LaIntraDVS, respectively. The
figure also compares the results for the RWEP-based techniques
and the RAEP-based techniques. The energy consumption is nor-
malized by the result of the RWEP-based IntraDVS technique. As

 1: N = func1();

 2: k = func2();

 3: i = func3();

 4: func4();

 5: LoopIterNum=0;

 6: while (i < N) {

 7: LoopIterNum++;

 8: func5();

 9: i = i + k;

10: }

11: if (LoopIterNum < M)

12: change_f_V();

13: func6();

(a) Original IntraDVS

 1: N = func1();

 2: k = func2();

 3: i = func3();

 4: _i = i;

 5: LoopIterNum = 0;

 6: while(_ i < N) {

 7: LoopIterNum++;

 8: _i = _i + k;

 9: }

10: if (LoopIterNum < M)

11: change_f_V();

12: func4();

13: while (i < N) {

14: func5();

15: i = i + k;

16: }

17: func6();

(b) Look-ahead IntraDVS

Figure 6: An example program for L-type VSP.

0

0.2

0.4

0.6

0.8

1

RWEP-based RAEP-based

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Original IntraDVS Single-Step LaIntraDVS Multiple-Step LaIntraDVS

Figure 7: Experimental results of look-ahead IntraDVS.

shown in Figure 7, the single-step LaIntraDVS reduced the energy
consumption only by 4�6%. This is because most of look-ahead
points are located closely to the original VSPs. However, the multi-
step LaIntraDVS shows significant energy reductions of 40�45%.

6. CONCLUSIONS
We proposed novel intra-task voltage scheduling algorithms called

look-ahead IntraDVS, which exploit data flow information as well
as control flow information of a program. The look-ahead IntraDVS
optimizes the voltage scaling points such that we can adjust the
clock speed based on the workload as early as possible. The ex-
perimental results using an MPEG-4 encoder showed that the look-
ahead IntraDVS can reduce the energy consumption by 40�45%
over the original IntraDVS algorithm.

7. REFERENCES
[1] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for Hard

Real-Time Systems. In Proc. of Design Automation Conf., pp. 134–139, 1999.
[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic and Aggressive

Scheduling Techniques for Power-Aware Real-Time Systems. In Proc. of IEEE
Real-Time Systems Symp., 2001.

[3] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems. In Proc. of the 18th ACM Symp. on Operating
Systems Principles (SOSP’01), 2001.

[4] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for Low-Energy
Hard Real-Time Applications. IEEE Design and Test of Computers,
18(2):20–30, 2001.

[5] D. Shin and J. Kim. A Profile-Based Energy-Efficient Intra-Task Voltage
Scheduling Algorithm for Hard Real-Time Applications. In Proc. of Int. Symp.
on Low Power Electronics and Design, pp. 271–274, 2001.

[6] S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

