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Abstract

We propose a technique to analyze the worst case exe-
cution times (WCETs) of optimized programs. Our work is
based on a hierarchical timing analysis technique called the
extended timing schema (ETS). A major hurdle in applying
the ETS to optimized programs is the lack of correspon-
dences in the control structure between the optimized ma-
chine code to be analyzed and the original source program
written in a high-level programming language. We suggest
a compiler-assisted approach where a timing analyzer relies
on an optimizing compiler for a consistent hierarchical rep-
resentation and an accurate source-level correspondence
that are essential for accurate WCET analysis for optimized
programs. In order to validate the proposed approach, we
implemented a proof-of-concept version of a timing analyzer
for a 256-bit VLIW processor and compared the analysis re-
sults with the simulation results. The experimental results
show that the proposed solution can accurately predict the
WCETs of highly-optimized VLIW programs.

1. Introduction

In building real-time systems, the worst case execution
times (WCETs) of tasks should be predicted in advance. The
prediction results should be both safe (i.e., the predicted
WCET should not be smaller than the real WCET) and
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accurate (i.e., the difference between the predicted WCET
and the real WCET should be small). Unsafe prediction may
cause catastrophic results by unexpected deadline misses
of the tasks whose WCETs are not safely predicted. On
the other hand, inaccurate prediction leads to a pessimistic
schedulability analysis that results in under-utilization of
system resources.

To obtain an accurate WCET for a target program, a tim-
ing prediction method should recognize the program struc-
ture (such as a conditional statement or a loop) of the tar-
get program and take into account the architectural features
(such as cache and pipelining) of a target hardware platform.
Previous studies on the WCET analysis, therefore, focused
on three factors: 1) the representation of the target program
structure that facilitates the WCET analysis, 2) the modeling
of the architectural features that affect the WCET analysis
results, and 3) the rules of composition that specify how to
calculate the WCET of the target program using the program
representation and architecture modeling [7, 6, 3]. One pop-
ular choice for representing the target program’s structure
is a hierarchical organization of program constructs using
program syntax trees [10, 7]. This representation nicely de-
picts the natural hierarchical structure of a high-level target
program and allows a simple and accurate timing analysis
by recursively applying a small number of timing formula
to each program construct.

For simple RISC processors, using the extended tim-
ing schema (ETS), we have shown that a timing prediction
method based on a hierarchical program representation can
accurately predict the WCET [7]. In the ETS, a set of timing
formulas is defined for computing the WCETs of high-level
program constructs. Each formula (corresponding to a par-
ticular program construct) defines a rule for computing the



WCET of the corresponding program construct. The ETS
accurately accounts for the timing effects of pipelined ex-
ecution and cache memory not only within but also across
program constructs. To compute the WCET of a program,
these formulas are recursively applied to the syntax tree
of the whole program. For predicting the WCETs of un-
bounded loop statements, loop iteration bounds are addition-
ally provided by user. For an accurate timing prediction, the
execution time for a basic block is directly computed from
the machine code generated by a compiler.

In order to apply the ETS to a target program, the pro-
gram syntax tree of the target program must match the con-
trol structure of the machine code to be analyzed. This was
the case for simple RISC processors when a target program
is well-structured (i.e., no goto statements). However, for
highly optimized processors such as VLIW processors, the
control structure of an optimized machine code is often dif-
ferent from that of a high-level target program. For example,
two nested loops may be collapsed into a single loop after
appropriate loop optimizations, resulting in a quite differ-
ent control structure in the optimized code, compared with
the original syntax tree from the high-level target program.
Moreover, in an optimized loop, the number of iterations
can be different from that of an original loop. This is of-
ten the case when a software pipelining is used. If a loop
is software-pipelined, a software-pipelined version of the
loop may have a different loop iteration bound [5]. If a
software-pipelined loop was unbounded, a user-provided it-
eration bound should be modified as well before the WCET
for the loop is computed. Therefore, to apply the ETS to
optimized programs, two requirements should be satisfied:
1) a program representation should match the control struc-
ture of an optimized code (consistent hierarchical represen-
tation), and 2) the loop correspondence relations between
high-level loops and optimized loops, and information on
modified loop iteration bounds should be known to a timing
analyzer (the loop correspondence requirement).

This paper proposes an approach that can provide a tim-
ing analyzer with a consistent hierarchical program rep-
resentation and an accurate loop correspondence between
a high-level program and its corresponding machine-level
program. In this approach, an optimizing compiler outputs
the intermediate information on how the original loops of the
high-level program are transformed by compiler optimiza-
tions performed. A timing analyzer then predicts the WCET
of the optimized program using the intermediate information
generated from an optimizing compiler. We call this type
of a timing tool a compiler-assisted timing analyzer. Un-
like the previous work [2], our method takes a minimalist’s
approach in defining the intermediate information.

In order to validate the proposed approach, we im-
plemented a proof-of-concept version of timing analyzer
for TMS320C6201 processor, a 256-bit wide VLIW dig-

ital signal processor (DSP) from Texas Instruments. We
chose TMS320C6201 as a target processor because opti-
mizing compilers for VLIW processors generally employ
the most aggressive compiler optimizations such as soft-
ware pipelining. To validate the analysis results, we com-
pared the timing analysis results with the simulation re-
sults measured on a TMS320C6201 simulator from Texas
Instruments. The preliminary results show that the pro-
posed approach can accurately predict the WCETs of highly-
optimized TMS320C6201 programs.

The rest of this paper is organized as follows: In Sec-
tion 2, we survey the related work. Section 3 briefly de-
scribes the ETS on which our work is based. Section 4
summarizes the issues in applying the ETS to optimized
programs and explains the design of a compiler-assisted
timing analyzer. In Section 5, we describe an initial im-
plementation of a timing analyzer for TMS320C6201 and
present the experimental results. The conclusion and future
work are given in Section 6.

2. Related Work

The effects of compiler optimizations on the WCET anal-
ysis have been recently studied by Vrchoticky [15] and En-
gblom, Ermedahl, and Altenbernd [2]. In order to main-
tain the source-level correspondence during the optimiza-
tion phases, Vrchoticky proposed an extension of a hier-
archical program representation called a timing tree. In
this approach, as the optimization phases proceed, an initial
timing tree is repeatedly modified to reflect optimizations
performed. Vrchoticky’s work focused on the standard op-
timization tasks such as constant propagation and dead code
elimination, and did not consider in detail more aggres-
sive optimization techniques that may change the program
structure significantly. For example, it is not clear how a
software pipelining can be supported using this technique.
The lack of efficient support for loop optimizations may
make a timing tree-based technique inapplicable to modern
high-performance processors (such as VLIW processors)
that depend on the loop optimizations for realizing their
potential high performance.

Engblom, Ermedahl, and Altenbernd proposed a similar
approach called co-transformation to reflect the effects of
compiler optimizations on the WCET analysis. This ap-
proach is different from the Vrchoticky’s work in that an
optimizing compiler is not fully responsible for maintaining
the source-level correspondence. Instead, the source-level
correspondence is maintained by cooperations between an
optimizing compiler and a separate timing tool. The authors
proposed a description language called the optimization de-
scription language (ODL) to specify the effect of an opti-
mization technique on the changes to the original program
structure. Using the ODL description of optimization tech-
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Figure 1. Overall processing steps in the ETS: (a) a sample high-level program, (b) the syntax tree,
(c) the assembly code, and (d) the steps for applying the ETS to the sample program.

niques performed for a high-level program, an optimizing
compiler produces optimization traces. The separate timing
tool then reasons about the source-level correspondence of
an optimized code based on the optimization traces and the
ODL description of optimization techniques.

While this approach provides the well-defined interface
for both compiler developers and timing tool developers to
maintain the source-level correspondence of an optimized
code, it imposes unnecessary additional burdens on them.
The compiler developers should describe all the optimiza-
tion techniques implemented in their compilers using the
ODL, and modify the compilers to understand the ODL de-
scription and to produce optimization traces. Likewise, the
timing tool developers should understand the ODL descrip-
tion and optimization traces to reconstruct the source-level
correspondence. However, for a hierarchical framework
such as the ETS, the detailed compiler optimizations pro-
vided by the ODL may not be all necessary. For example,
the ETS requires only the loop correspondence information,
not the exact specification of the optimization used. Our ap-
proach provides an ETS-based hierarchical framework with
only the minimal information necessary to maintain the loop
correspondence.

3. Extended Timing Schema

Figure 1 shows the overall processing steps in the orig-
inal ETS approach. Figure 1(a) is a high-level program
fragment for the binary search algorithm and Figure 1(b)
is the corresponding syntax tree generated from the front-
end of a compiler. Figure 1(c) is the assembly code using
the instruction set of MIPS R3000 processor which is the

hardware platform of our previous work [7]. As shown in
Figure 1(a), the example program consists of a while loop
and two nested conditional statements are within the loop.
The syntax tree in Figure 1(b) correctly represents the struc-
ture of the sample program. Moreover, the basic blocks in
the assembly code in Figure 1(c) are well mapped to the
nodes in the syntax tree, which provides the correct source-
level correspondence. For each node in the syntax tree, the
timing-related information called the Worst Case Timing
Abstraction (WCTA) is associated. The WCTA encodes the
architectural features that may cause the timing variation of
the program construct. The encoding of WCTAs is done in
such a way that allows for refinement of the execution path’s
WCET when the detailed information about the surrounding
execution paths becomes available.

Figure 1(d) illustrates the processing steps in applying the
ETS to the sample program. In the figure, the boxes with
dotted lines are the timing information for basic blocks. On
the other hand, the larger boxes with solid lines represent
nested structure of the program, where predefined timing
formulas1 are recursively applied. For example, for the
branch node, the timing formula ����������� 18  "!#���$�����%� 19  
is applied. On the other hand, for the if node, the timing for-
mula ���$������� 16  '&(������������� 18  ! ���������%� 19  ) is applied
[7].

As shown in Figure 1, in the original ETS work [7], the
syntax tree was generated from the front-end of a modi-
fied RISC compiler. Although there exist various types of
compiler optimizations that can improve the performance of

1In the formulas, & denotes the concatenation of two blocks, which
models sequential execution of the two blocks. On the other hand, by ! ,
all the possible execution paths in a program construct are considered.



RISC processors, we assumed that most of these optimiza-
tions maintain the structure of the program syntax tree after
the optimization transformations. However, as explained
in Section 1, for aggressively optimized programs, it is no
longer a safe assumption that an optimized machine code
has the same control structure as an original program syn-
tax tree. In predicting the WCETs of optimized programs
under the ETS framework, the consistent hierarchical rep-
resentation and loop correspondence requirements can be
best satisfied if an optimizing compiler can generate both
a hierarchical representation of an optimized program and
information to make the correspondence between high-level
loops and machine-level loops.

4. Compiler-Assisted Timing Analyzer

We propose a framework where a timing analyzer is as-
sisted by an optimizing compiler to satisfy the consistent hi-
erarchical representation and loop correspondence require-
ments. The overview of the framework is shown in Figure 2.
In the figure, the timing analyzer uses several outputs from
the optimizing compiler: the hierarchical representation, the
machine code and the intermediate information. The hier-
archical representation is generated at the last stage of the
code generation phase while, in the original ETS, the syn-
tax tree from the front-end phase was used. Therefore, the
hierarchical representation would correctly reflect the effect
of the optimization transformations applied to the original
high-level program during the optimization phases. In order
to link the loops of high-level code to the loops of machine
code, special labels are attached to the loops in the high-level
source program by the compiler and maintained until the ma-
chine code is generated. This allows a user to interact with
a timing tool at the original source program level for each
loop. The intermediate information produced by the com-
piler contains the following information: 1) special labels
for loops that were attached by the compiler and included
in the machine code, and 2) an expression to recompute the
loop iteration bounds for optimized loops. Using the loop-
bound recomputing expression, the iteration bound transfor-
mation module translates a user-provided loop bound to a
new loop bound reflecting the optimizations performed for
a loop. In case that a loop is optimized by multiple stages of
compiler optimizations, the intermediate information from
each stage of compilation is read to the succeeding stage for
the subsequent update.

As an example of compiler-assisted timing analysis in-
formation, consider a high-level source code shown in Fig-
ure 3(a). In order to maintain the loop correspondence
after optimizations, two special labels are attached to the
optimized source code as shown in Figure 3(b). Two la-
bels indicate that the subsequent statements are loops. Af-
ter the compiler optimizations, the modified source code is
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Figure 2. Overview of a compiler-assisted tim-
ing analyzer.

compiled to the assembly code shown in Figure 3(d). The
original nested loops are transformed into the single loop
by software pipelining. (The assembly instructions shown
in Figure 3(d) are TMS320C6201 assembly instructions2.)
In the intermediate information file shown in Figure 3(c),
the formula for computing a modified iteration bound is
specified next to the attached special labels LOOP 1 ! and
LOOP 2 !. Two labels shown in the same line mean that
two original loops are transformed to a single loop. In this
optimization, the iteration bound of the optimized loop was
changed to SIZE-2 from SIZE in the original loops. As
another example, consider a loop which is unrolled by *
times. In this case, the loop iteration bound formula will
be + SIZE/U , . The special labels attached to the loops and
the expression for the number of loop iterations in the opti-
mized loop allows the ETS to satisfy two requirements for
analyzing the WCETs of the optimized program.

5. Preliminary Results

In this section, we describe a proof-of-concept version
of a compiler-assisted timing analyzer for a VLIW digital
signal processor from Texas Instruments, TMS320C6201,
and compare the analysis results with the simulation results
for a validation purpose. Before the timing analyzer is
explained, we briefly describe TMS320C6201.

5.1 TMS320C6201 VLIW DSP

2The assembly instruction format contains several special features: 1)
the parallel bars ( -�- ) represent that the instruction is simultaneously exe-
cuted with the immediately preceding instruction, 2) the brackets indicate
the conditional execution of the corresponding instructions, and 3) the
functional unit where the instruction is executed is explicitly shown as a
field starting from a dot (e.g., .L1). For a more detailed description on the
instruction format, see the reference [13].
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LOOP_2_!:

LOOP_1_!:

for (j=1;j<=SIZE;j++)

for (j=1;j<=SIZE;j++)

c[i][j] = 0;

c[i][j] = 0;

LOOP_1_!: LOOP_2_!:

for (i=1;i<=SIZE;i++)

for (i=1;i<=SIZE;i++)

       STW    .D1    A0,*A3++
       STW    .D1    A0,*A3++
       STW    .D1    A0,*A3++
       STW    .D1    A0,*A3++

;pipe loop epilogL4:

[B0]   B      .S1    L3
       STW    .D1    A0,*A3++(8)

||

[B0]   SUB    .L2    B0,1,B0
       STW    .D1    A0,*A3++

||

       STW    .D1    A0,*A3++
       STW    .D1    A0,*A3++
       STW    .D1    A0,*A3++

;pipe loop kernelL3:

[B0]   B      .S1    L3
[B0]   SUB    .L2    B0,1,B0

;pipe loop prologL2:

LOOP_2_!:
LOOP_1_!:

       STW    .D1    A0,*A3++(8)
SIZE-2

Figure 3. Compiler-assisted timing analysis
information: (a) a high-level source code, (b)
the source code with two special labels at-
tached for loop correspondence, (c) the in-
termediate information on the optimizations
performed, and (d) the optimized assembly
code with the special labels.

TMS320C6201 is a fixed-point DSP processor based on
the VelociTI .0/ VLIW architecture [14]. Figure 4 shows
a high-level block diagram of the major functional blocks
of TMS320C6201. It has eight functional units and can
execute up to eight instructions in a single cycle using a
256-bit wide instruction format. Eight functional units are
grouped into two sets of functional units, A and B. Each
set of functional units consists of a 40-bit integer ALU (.L1
and .L2), a 40-bit shifter (.S1 and .S2), a 16-bit multiplier
(.M1 and .M2), and a 32-bit adder/address generator (.D1
and .D2). TMS320C6201 fetches a 256-bit eight-instruction
group (called a fetch packet) at once. A single fetch packet is
further divided into multiple execution packets, depending
on how many instructions (out of eight instructions) can be
executed in parallel. All instructions in an execution packet
are dispatched together [11].

As with other VLIW processors, TMS320C6201 heav-
ily depends on the optimizing compiler for high per-
formance. The optimizing compiler performs various
aggressive optimizations to fully take advantage of the
TMS320C6201’s performance-enhancing features such as
the 8-way instruction-level parallelism, 11-stage pipelined
organization and conditional instructions [12].

5.2. Proof-of-Concept Implementation of TMS-
320C6201 Timing Analyzer

The compiler-assisted approach explained in Section 4
requires some efforts to build a timing analyzer because
an optimizing compiler should be modified to produce a
hierarchical representation and loop optimization informa-
tion. Furthermore, for our target processor, TMS320C6201,

Functional Units BFunctional Units A

Fetch Packets

Dispatch Unit

Register File BRegister File A

Data Memory

.S2.D2.M1.S1 .D1 .M2 .L2.L1

Execution Packet

Figure 4. TMS320C6201 architecture.

hierarchical 
representation
construction

hierarchical 
representation

user iteration bounds

code
source

WCET

calculation
WCET 

analyzertiming

inter-list
information

compiler
machine code

Figure 5. Overview of the proof-of-concept
implementation of timing analyzer.

no public domain optimizing compiler is currently avail-
able. Because of these difficulties, in order to validate the
proposed approach, we decided to build a proof-of-concept
timing analyzer instead of a complete compiler-assisted tim-
ing analyzer for TMS320C6201.

Because of several shortcut solutions used, we were able
to build a proof-of-concept timing analyzer quickly. As
shown in Figure 5, a proof-of-concept timing analyzer ac-
cepts as an input the same machine code as a complete ver-
sion, but differs in three aspects. First, the hierarchical rep-
resentation is extracted from the machine code produced by
the optimizing compiler because the TMS320C6201 com-
piler does not generate the required hierarchical represen-
tation. In constructing the hierarchical representation from
the machine code, we adapted a structuring algorithm from
Cifuentes’ decompilation work [1]. Second, in order to
maintain the loop correspondence, instead of the interme-



Benchmark Description
Programs

MatMul multiplies two 5 1 5 integer matrices
JFDCTINT performs the forward Discrete Cosine Transform

used in JPEG
FIR performs a 32-taps Finite Impulse Response (FIR)

filtering operation
FFT performs the Fast Fourier Transform (FFT) on

256 floating point numbers

Table 1. The benchmarks used for the experi-
ments.

Benchmark Simulation Analysis
Programs Results Results

MatMul 1673 1739
JFDCTINT 4456 4780

FIR 30940 32218
FFT 2879360 4567872

Table 2. Predicted and measured execution
cycles of the benchmark programs.

diate information shown in Figure 2, we use the inter-list
information that is optionally generated by the optimizing
compiler. The inter-list information includes the line num-
bers of a high-level source program that correspond to as-
sembly code fragments. The timing analyzer can reconstruct
the loop correspondence information using the inter-list in-
formation. Third, the loop iteration bound transformation is
done manually. Without the help of an optimizing compiler,
it is very difficult to guess how an original loop was trans-
formed. In the current implementation, for an optimized
loop, a new loop bound is manually computed by analyzing
an original high-level loop code and its optimized assembly
code.

5.3. Experimental Results

In order to validate the timing analyzer for TMS320-
C6201, we compared the analysis results from the timing
analyzer with the simulation results. The simulation re-
sults are based on the measurements from a cycle-accurate
TMS320C6201 simulator available from Texas Instruments.
The benchmark programs used for the experiments are given
in Table 1. Table 2 compares the analysis results and the
simulation results for the benchmark programs. Among
the benchmark programs, the MatMul, JFDCTINT and FIR
show accurate analysis results with the less than 5% overes-
timation. These programs have a single program execution

path, thus do not suffer from the infeasible path problem
[8]. On the contrary, the FFT shows much larger overesti-
mation than the results for the other benchmark programs.
This is because the FFT benchmark program has multiple
program execution paths and some of them (including the
worst case execution path computed by the timing analyzer)
are the infeasible paths by the program logic. The static
timing analysis technique such as ours cannot identify the
infeasible paths during the analysis. We consider the elim-
ination of infeasible paths using dynamic path analysis is
an issue orthogonal to our approach. Existing techniques
for eliminating infeasible paths of a program such as ones
described in [8, 9] can be easily integrated with the approach
proposed in this paper.

6. Conclusion

We described a compiler-assisted approach that can ex-
tend an ETS-based timing prediction technique for aggres-
sively optimized programs. In our hierarchical framework,
a compiler-assisted timing analyzer relies on an optimiz-
ing compiler for a consistent hierarchical representation and
information for the loop correspondence that are essential
for accurate WCET analysis for optimized programs. In
our approach, the minimal information is passed to a tim-
ing analyzer from an optimizing compiler, thus requiring
less implementation burdens from compiler developers and
timing tool developers. For a validation purpose, we built
a proof-of-concept timing analyzer for Texas Instruments’
new VLIW DSP, TMS320C6201. Preliminary experimen-
tal results suggest that the proposed approach can accurately
predict the WCETs of highly-optimized programs.

Our next task is to build a complete compiler-assisted
timing analyzer interfacing directly with intermediate infor-
mation and a hierarchical program representation generated
by an optimizing compiler. We plan to implement a tim-
ing tool using the Stanford University Intermediate Form
(SUIF) compiler system [4].
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