PERFORMANCE EVALUATION OF REGISTER ALLOCATOR
FOR THE ADVANCED DSP OF TMS320C80

Jihong Kim

Department of Computer Science
Seoul National University
Seoul, Korea 151-742
jihong@cs.snu.ac.kr

ABSTRACT

PPCA is an assembly language-level register allocator and
instruction compactor for the Advanced DSPs (ADSPs) of
the TMS320C80 digital signal processor. It was developed
to help the implementation of time-critical ADSP assembly
programs which heavily utilize powerful ADSP features op-
timized for multimedia and image computing applications
for maximum efficiency. PPCA takes as an input ADSP as-
sembly operations with symbolic variables. It then allocates
the ADSP’s physical registers to the symbolic variables and
rearranges the operations into a highly-parallelized compact
format. In this paper, we have evaluated the performance of
a register allocation capability of PPCA using an extensive
image computing library for the TMS320C80. We present
the basic algorithm of the PPCA’s register allocation mod-
ule and describe the performance evaluation approach used.
The result shows that PPCA essentially achieves optimal
register allocation for the test cases based on the image
computing library functions.

1. INTRODUCTION

High-performance DSPs have several unique architectural
features optimized for signal processing such as single-cycle
multiplication and addition, multiple operations per cycle
and zero-overhead looping. Many newer-generation DSPs
also include additional hardware features for supporting
multimedia and video compression applications such as bit-
field manipulation support or multiple-pixel parallel ma-
nipulation capability. The performance-enhancing features
of these DSPs, however, often make it more difficult for a
compiler to produce efficient codes. The realized perfor-
mance with high-level language implementations is often
just a small fraction of the maximum performance achiev-
able. For example, a 3x3 median filtering operation imple-
mented in C on a multimedia system [6] with a 512x512
8-bit image took 494 milliseconds while the hand-optimized
assembly-language implementation took only 10.7 millisec-
onds. Similar results were also reported for different DSPs
[9].

Currently, the only practical approach in getting high
performance is to program the DSPs at the assembly-language
level accessing the performance-enhancing features directly
from assembly-language instructions. Assembly-language

3077

Graham Short

Texas Instruments
800 Pavilion Drive
Northampton, NN4 7YL, England
Graham.Short@tiuk.ti.com

programming is, however, largely dependent on an individ-
ual programmer’s experience and familiarity with the in-
ternal architecture, instruction set, and peculiarities of a
specific processor without any systematic methodology. In
fact, there are few software tools available to support DSP-
based assembly-language programming. However, as more
processors are architected with many unique features to fa-
cilitate multimedia and image computing and they employ
a higher degree of instruction-level parallelism, writing an
efficient assembly program is becoming a major challenge.
The goal of assembly language-level tools is to automate the
time-consuming and error-prone parts of assembly program-
ming such as register allocation, instruction compaction and
instruction scheduling.

PPCA [8] is one of such assembly language-level tools
developed for the Advanced DSPs (ADSPs) of the TMS320-
C80 which is highly-optimized for multimedia, video com-
pression, image/signal processing and computer graphics
[3]. The main functions of PPCA are automatic register
allocation and instruction compaction. PPCA takes as an
input ADSP assembly operations with symbolic variables.
Using the symbolic variables (instead of the physical reg-
isters) allows faster development of an ADSP program. It
then allocates the ADSP’s physical registers to the sym-
bolic variables and rearranges the operations into a highly-
parallelized compact format. Considering that the major-
ity of TMS320C80 software development efforts are spent
programming the ADSP, PPCA significantly reduces the
overall time-to-market for the TMS320C80 software devel-
opment.

In this article, we evaluate the performance of a regis-
ter allocation capability of PPCA using an extensive image
computing library for the TMS320C80. Our goal is to un-
derstand the performance of PPCA compared to that of
an optimal register allocator. The performance evaluation
results should be available for programmers’ review before
such tools are adopted for application development.

The organization of the rest of the article is as follows.
Before PPCA is described, a brief description of the ADSP
of the TMS320C80 is presented in the next section. In
Section 3, PPCA is overviewed, and the algorithm used for
the register allocation module of PPCA is described. The
comparison results as well as the performance evaluation
approach are discussed in Section 4.

0-7803-4428-6/98 $10.00 © 1998 IEEE

Data Unit

| 1 ‘
Mask
Spiittable Generator
8 Data Regs ‘F‘_ > P
Detectors | |_Rotator
mf Reg.
Splittable ALU]
]
Address Units

5 Global Address Regs
3 Global Index Regs
Stack-pointer Reg.

5 Local Address Regs

Global Address
Unit Data Path

Local Address
Unit Data Path

3 Local Index Regs

Program Flow Control Unit

Program Counter (PC) and Instruction Control

Three Loop Controllers
32 32 ! 64

Locai Global Insiruction
Data Ports

Cache Controller

m }32 32

Instruction Local Global
Address Ports

Figure 1: Advanced DSP block diagram.

2. ADVANCED DSPS OF TMS320C80

The TMS320C80 can be described as a single-chip, hetero-
geneous, MIMD multiprocessor connected via a crossbar to
multiple on-chip shared memory modules. It combines a
RISC processor and four Advanced DSPs as well as an in-
telligent direct memory access (DMA) controller and two
video controllers into a single-chip device. (For the detailed
description, see a reference {3].)

Four ADSPs provide most of the TMS320C80’s raw per-
formance. Figure 1 shows a block diagram of the ADSP and
its four major functional units: the data unit, two address
units (LAU and GAU), and the program flow control unit.
The data unit consists of the data unit registers, the multi-
plier, and the ALU data path, and supports many powerful
features. New features not found in conventional DSPs in-
clude three-operand splittable 32-bit ALU (two 16-bit or
four 8-bit units), multiple flags register and expander for
multiple arithmetic, splittable 16-bit multiplier (two 8-bit
multipliers), and bit-detection logic. Because of four paral-
lel functional units, each ADSP can perform four different
operations in a single cycle: multiplication, ALU operation,
and two memory accesses.

Each ADSP has 44 programmer-visible registers, and
they can be classified into two categories: the general-purpose
registers and special-purpose registers. The data unit con-
tains eight general-purpose data registers (d0-d7). Each
address unit has five general-purpose address registers and
three general-purpose index registers: a0-a4 and x0-x2 for
the LAU, and a8-a12 and x8-x10 for the GAU, respec-
tively. The remaining registers, which belong to the special-
purpose category, are more specialized ones such as the mul-
tiple flags register and status register, or the registers used
for the zero-overhead loop control. The current version

Input p file

(Construction of Basic Block StructuresJ

(Creation of New Instances of Variables l

I Construction and Reduction of Interference Graph J

I Register Allocation T

I——_—>{ Output .ss ﬁgl

Figure 2: Overall processing steps of the PPCA’s register
allocation module.

l Output Construction

of PPCA supports the register allocation for the general-
purpose registers only.

Because of the limited number of operand bits avail-
able in specifying operands in an instruction, the ADSP
imposes the additional restrictions on the register usage.
For example, some operation classes allow both an input
operand and a destination operand to be derived from the
same operand bits, thus restricting allowable register pairs.
Such operand pair are called companion registers. For ex-
ample, if both operands are data registers, being compan-
ion registers means that they must be the same physical
register. For a conditional source selection {based on the
negative condition code), only successive odd-even pair of
data registers are allowed as input operands. PPCA un-
derstands these additional restrictions on the register usage
and handles them correctly.

3. PPCA: OVERVIEW AND BASIC
ALGORITHM

In order to help the register allocation and instruction com-
paction tasks, PPCA uses some extra assembly-language di-
rectives which are added into an ADSP assembly program
[8]. Symbolic variables are declared using the .reg directive.
Program’s control-flow information is specified using the
control-flow directives (.entry/.cjump/.ujump/.cexit/.u
exit/.entry). These directives are necessary for correct
register allocation but not available from an ADSP assem-
bly program. PPCA then allocates physical registers to
symbolic variables and (optionally) reorders the input ADSP
operations into a parallel format. The processed ADSP as-
sembly program is written to the output file. The output
program contains the legal ADSP assembly operations with
symbolic variables replaced by physical registers, and are
optionally in a more compact format. The result of reg-
ister allocation- is presented using the .set directive. This
output file is then assembled by a regular ADSP assembler.
The function of an input ADSP program is preserved while
the register allocation and instruction compaction tasks are
performed.

The overall processing steps taken by the PPCA’s reg-
ister allocation module are summarized in Figure 2. The
control-flow directives are used to split the list of instruc-
tions parsed into basic blocks as found in a conventional

3078

compiler design. A basic block is a straight line sequence of
instructions without any branches. For each variable x of a
basic block B, the lifetime information is computed for ba-
sic blocks. Once the lifetime information is computed, dif-
ferent variable names are assigned to different live ranges
of the same variable for more efficient register allocation.
Based on the updated lifetime information, an interference
graph is constructed. An interference graph nicely mod-
els register-conflict situations. Based on a coloring of the
interference graph, actual register allocation is made and
an output is saved to a file. The PPCA-related directives
are included as comments in the output file. In this paper,
we describe only two steps in detail, the construction and
reduction of the interference graph step and the register al-
location step. (For a complete description of the PPCA’s
register allocation module, see a reference [4].)

3.0.1. Construction and Reduction of Interference Graph

As described by Chaitin [2] and Briggs [1], the problem of
register allocation is nicely abstracted to that of graph col-
oring. Based on the lifetime information of a basic block as
well as a basic block itself, exact lifetime information for all
the variables (including new instances) can be determined.
Using this information, an interference graph is constructed.
An interference graph G of n variables is represented by a
bit matrix of nxn. The Glz,y] element is set to 1 if the
lifetimes of two variables z and y can be overlapped. In
this case, z and y cannot be allocated to the same physical
register. If the lifetimes of two variables z and y do not
overlap, the G[z, y] is set to 0.

Once the interference graph is built, the reduction step
is started. For the reduction step, the degree d(v) of each
vertex v (i.e., variable) is first computed. This is the number
of variables that interfere with a variable v. Then, vertices
are grouped into an interference array D where D[i] points
to a list of vertices whose degree is ¢, as done with in Briggs
[1].

This interference array is successively reduced by search-
ing for the first non-empty list from the beginning. The
head of the selected list is removed from the interference
array and all its interfering nodes are moved down one po-
sition in the list. The variable representing the vertex is
pushed into the coloring stack. This process iterates until
all vertices are removed.

3.0.2. Register Allocation

Once all the vertices are pushed into the coloring stack, ac-
tual register allocation is started by deleting the top element
of the coloring stack at a time. For each deleted variable, it
is checked whether a free register (which was not taken by
interfering variables) is available or not. During this test,
the interference between a variable and pre-allocated regis-
ters are also considered. If no physical register is available,
an extra physical register is allocated instead of inserting
spill code as typically done in a high-level language com-
piler. When an extra physical register is allocated, an error
message 1s printed to a programmer requesting to restruc-
ture the program. The rational behind this approach was
that (1) PPCA would be mainly used for time-critical ap-
plications where extra spill code should be avoided as much

as possible, and (2) assembly programmers would do a bet-
ter job of restructuring their programs to avoid unnecessary
spill code.

4. RESULTS

In order to evaluate how well the PPCA’s register allocation
module performs for image computing applications, we have
compared the PPCA’s performance with that of an opti-
mal register allocator. As described in the previous section,
the PPCA’s register allocator is based on a graph coloring,
and its performance is determined by the performance of a
graph coloring algorithm used. The method used in PPCA
is commonly called a smallest-last coloring method because
the nodes of the smallest degree are removed first from an
interference graph and they are colored last [7].

For performance evaluation, PPCA was modified to pro-
duce an interference graph of an input .p file as an interme-
diate result. This interference graph is fed into an optimal
graph coloring program which we have developed. The reg-
ister allocation results are compared to the graph coloring
results from an optimal graph coloring program.

In order to focus on image computing applications, we
have used as test cases the hand-optimized ADSP assembly
routines from an image computing library for the TMS320C
80, the University of Washington Image Computing Library
(UWICL)[5]. ADSP assembly programs were all manually
converted into the PPCA’s input format by inserting ap-
propriate directives. Manual conversion was inevitable be-
cause the control-flow directives required the understanding
of overall program execution.

An interference graph generated from PPCA included
interference information among symbolic variables only,
missing several interference relations existing in an input
ADSP program. For example, the interference between
pre-allocated registers and symbolic variables are not repre-
sented in an interference graph. In addition, the special re-
strictions such as companion registers and a pair of registers
are not expressed as well. The special restrictions were not
considered because of the difficulties in representing them
in an interference graph. (In PPCA, these restrictions are
represented separately from an interference graph and extra
tests are performed to satisfy them.)

An optimal coloring program is based on two heuristics
and a direct enumeration algorithm as shown in Figure 3.
The main difference of this algorithm from other optimal
graph coloring algorithms (based on a direct enumeration
method) is in how to compute a lower bound I,y on the
smallest number v(G) of colors necessary for a graph G. A
lower bound is computed using the fact that the vertices
colored with the same color in a complementary graph G
form a clique in G. Since a clique of n vertices in G re-
quires n colors, the maximum clique provides a lower bound
on 7(G). The complementary graph G is colored using a
largest-last coloring method and the maximum number of
vertices sharing the same color in this coloring is set to I, (g)-
(In a largest-last coloring method, the nodes of the largest
degree are removed first from a graph and they are colored
last.) An upper bound L,s) on 7(G) is computed using a
smallest-last coloring method as done in PPCA. Once both
bounds are computed, a recursive enumeration algorithm

3079

Input: an undirected graph G
Output: the smallest number v(G) of colors necessary
for G.

Step 1: Set u,g to be the number of colors neces-
sary when the graph G is colored using a smallest-last
coloring method. .

Step 2: Construct a complementary graph G and color
G using a largest-last coloring method. Set L (g to be
the largest number of vertices which were assigned to the
same color.

Step 3: Starting from ly(@), find a minimum n (I,(g) <
n < uqy) such that G can be colored using n colors. A
(recursive) direct implicit enumeration algorithm is used
to check n-colorability.

Figure 3: An optimal register coloring algorithm.

is used sequentially, starting from l,(g) colors until a legal
coloring is found.

Using a largest-last coloring method with G produced
a very tight lower bound for both our test cases and other
interference graphs based on real programs. For example,
for the contributed interference graphs, lower bounds based
on a largest-last coloring method consistently outperformed
ones based on a smallest-last coloring method by a large
margin {up to 19 colors for 30- to 65-colorable graphs).
Furthermore, for 12 out of 14 graphs, a largest-last method
found an optimal value as a lower bound, making the step
3 of Figure 3, the most time consuming step of an opti-
mal coloring algorithm, unnecessary. A smallest-last based
method did not find a single lower bound which is equal to
an optimal value.

We have tested 125 ADSP assembly routines from the
UWICL library. Each routine contains up to five different
interference graphs corresponding to five different register
types (d, 1la, ga, 1x and gx). The total number of interfer-
ence graphs tested were 193, excluding trivial cases involv-
ing one or two symbolic variables. Out of 193 test cases,
PPCA achieved optimal register allocation for 164 cases.
Among the remaining 29 cases, the PPCA’s results were
off by one for 22 cases, by two for 6 cases, and by three
for 1 case, from optimal numbers. All of non-optimal test
cases were related to unaccounted restrictions of ADSP pro-
grams. For example, many non-optimal PPCA allocations
occurred when pre-allocated registers were used in ADSP
assembly routines such as the use of d0 register for EALU
operations [3]. Since our optimal graph coloring program
did not consider the extra restrictions, its coloring results
were less than the PPCA’s results by one or two. When
an input ADSP program involved only symbolic variables
without these extra restrictions (164 cases), PPCA essen-
tially achieved optimal performance.

5. CONCLUSION

‘We have described the assembly language-level register allo-
cator and instruction compactor, PPCA, for the Advanced

DSPs of the TMS320C80, and evaluated the performance of
its register allocation module using image computing library
routines for the TMS320C80. Our goal has been to under-
stand how well PPCA (which is based on a simple heuris-
tic, a smallest-last coloring method) performs the register
allocation task for image computing applications. We com-
pared the result from PPCA to that of an optimal register
allocator. For our test cases, the PPCA’s register allocation
module essentially achieved optimal performance.

We believe that assembly language-level tools such as
PPCA will be more and more important to achieve poten-
tial maximum eficiency from high-performance DSPs and
multimedia chips as they incorporate more sophisticated
special hardware features in their architectures. As pre-
sented in this paper, the performance evaluation results of
such tools, particularly ones based on the commonly-used
functions in the intended application areas of DSPs/chips,
would provide a useful guideline for application program-
mers in selecting the most appropriate tools for developing
time-critical applications.

6. REFERENCES

[1] P. Briggs, K. D. Cooper, K. Kennedy and L. Torczon,
“Coloring heuristics for register allocation,” in Proc.
SIGPLAN ’89 Conference on Programming Language
Design and Implementation, June 1989, pp. 275-284.

[2] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J.
Cocke, M. E. Hopkins and P. W. Markstein, “Register
allocation via coloring,” Computer Languages, vol. 6,
pp. 47-57, 1981.

[3] K. Guttag, R. J. Gove, and J. R. Van Aken, “A single-
chip multiprocessor for multimedia: The MVP,” IEEE
Computer Graphics & Applications, vol. 12, no. 6, pp.
53-64, 1992.

[4] J. Kim and G. Short, “Performance evaluation of
assembly-level register allocator for advanced DSP of
TMS320C80,” Texas Instruments Technical Journal,
vol. 14, no. 3, pp. 76-89, May-June 1997.

[5] J. Kim and Y. Kim, “UWICL: a multi-layered image
computing library for single-chip multiprocessor-based
time-critical systems,” Real-Time Imaging, vol. 2, no.

3, pp. 187-199, 1996.

6] W. Lee, Y. Kim, R. J. Gove and C. J. Read, “Me-
diaStation 5000: integrating video and audio,” IFEE
MultiMedia, vol. 1, no. 2, pp. 50-61, 1994.

[7] D. W. Matula and L. L. Beck, “Smallest-last ordering
and clustering and graph coloring algorithms,” Journal
of ACM, vol. 30, no. 3, pp. 417-427, 1983.

[8] Texas Instruments, PPCA User’s Guide, 1995.

[9] V. Zivojnovié, “Compilers for digital signal processors:
the hard way from marketing- to production-tool,”
DSP & Multimedia Technology Magazine, vol. 4, no.
5, pp. 27-45, 1995.

3080

