Improving I/O Performance of Large-Page Flash Storage Systems Using Subpage-Parallel Reads

Jisung Park, Myungsuk Kim, Youngsun Song, Sungjin Lee[†] and Jihong Kim

Department of Computer Science and Engineering, Seoul National University [†]Department of Information and Communication Engineering, DGIST

Page Size Trend in NAND Flash Memory

- Page size has increased with the NAND capacity.
 - 256 B in 300-nm SLC \rightarrow 16 KB in recent NAND devices
- Advantages of a larger page size

Large Page Problem: Amplified Reads

- A large portion of data is unnecessarily read.
 - When requested data are smaller than the page size
 - Increasing the read amplification factor (RAF)
- Less peripheral circuits for addressing pages: high density

- More cells read/written at the same time: high bandwidth

Page Size	4 KB	16 KB	
t _R	40 us	100 us	
t _{PROG}	1300 us		
Read Bandwidth	100 MB/s	160 MB/s	
Write Bandwidth	3 MB/s	12 MB/s	

Performance Impact of Amplified Reads

- Frequent amplified reads in large-page NAND storages
 - Workloads dominated by small random reads
 - **Data fragmentation from small updates**

Supporting Size-Proportional Reads

• Key observation: Shorter latencies can be provided for smaller read sizes.

> **Pre-charging** Reading Discharging *Transferring*

Data 0	Data 1	Data 2	Data 3					
Updating Data 1, 2, and 3								
Data 0	Data 1	Data 2	Data 3					
Data 4	Data 5	Data 1	Data 6					
Data 7	Data 3	Data 8	Data 9					
Data 10	Data 11	Data 12	Data 2					
NAND device w/ 16-KB pages								
Data fragmentation								

5

• Read bandwidth can be significantly wasted.

workload	KV1	KV2	GRP1	SU	Ideal
Norm. bandwidth	0.031	0.034	0.035	0.64	1
RAF	31.8	29.2	28.7	1.56	1

Subpage-Parallel Reads (SPREAD)

- **Supports optimal latencies for small reads**
 - By selectively sensing and transferring only demanded data

bit lines bit lines bit values a page t_{PRE} ^{*l*}DISCH ι_{DMA} ι_{READ}

Proportional to # of related bit lines

- Design requirements of subpage reads
 - Subpage size = ECC encoding unit (e.g., 2 KB for LDPC)
 - High flexibility for various subpage patterns

Experimental Results

- IOPS increased by up to 122% (52.3% on average) - With low RAF values closed to 1
- With a high flexibility to choose subpages to read

- High benefits even under many writes (USR and STG)
 - Reducing GC overheads by 13% and 7% on average

SPREAD-Enabled NAND Device