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Abstract 
 

For mobile 3D graphics systems, even though 
performance requirements are met, an efficient power 
management is even more important for battery-powered 
mobile devices since they require a large number of 
arithmetic operations as well as a high frequency of 
memory accesses. 

According to the analysis of the power consumption of 
mobile 3D graphics pipelines and the slacks across the 
pipeline stages, we describe intra-frame and inter-frame 
DVS low-power techniques reducing the power 
consumption of mobile devices based on a variable 
voltage processor. 

Our implementation on a PDA development board 
shows that the proposed DVS techniques achieve an 
energy saving of up to 46% over a non-DVS 
implementation. 
 
1. Introduction 
 

As mobile devices get more powerful, more desktop PC 
applications including 3D graphics are moving into the 
mobile domain. Even though performance requirements 
are met, reducing power consumption is an important 
design requirement for battery-powered mobile devices 
such as PDA and cellular phones. For mobile 3D graphics 
applications such as 3D games and 3D navigations, an 
efficient power management is even more important since 
they require a large number of arithmetic operations as 
well as a high frequency of memory accesses, making 
them power-hungry applications. 

Previously, low-power 3D graphics have been 
investigated at different abstraction levels including the 
circuit level, architecture level and algorithm level. In this 
paper, we analyze the power consumption of mobile 3D 
graphics pipelines, and show that there exist imbalances, 
i.e. slacks, across the pipeline stages based on the dynamic 
3D graphics workloads for each 3D graphics application 
and its characteristics. The slacks can occur in the 
differences due to the 3D graphics features such as frame 

rate, the number of primitives, lighting parameters, texture 
mapping parameters, and the number of fragments, etc. 

Based on this observation - energy consumption 
analysis of typical mobile 3D graphics applications, we 
propose intra-frame and inter-frame DVS (Dynamic 
Voltage Scaling) power saving techniques for mobile 3D 
graphics systems, which can be useful for mobile devices 
based on variable voltage processors. The intra-frame 
DVS technique estimates the required workload of each 
frame based on the characteristics of scene description of a 
given frame. If the required workload is less than the 
expected workload, the supply voltage is accordingly 
adjusted. While the intra-frame DVS technique exploits 
the slack time within the current frame, the inter-frame 
DVS technique takes advantages of unused idle intervals 
from previous frames. 

In order to design and implement our proposed DVS 
techniques, we develop an energy-efficient software 
implementation of a 3D graphics library, for mobile 
devices based on a variable-voltage processor. As a 
specific target platform, we use a prototype PDA system 
running Linux on Intel's XScale PXA255. Our 
implementation on the target PDA development board 
shows that the proposed DVS techniques achieve an 
energy saving of up to 46% over a power-unaware 
implementation. 

The rest of the paper is organized as follows. In Section 
2, we introduce some background about 3D graphics 
pipeline and Section 3 presents motivational examples and 
the analysis of power consumption. In Section 4, we 
describe the system model for DVS. Section 5 explains the 
proposed DVS scheme. The implementation and 
experimental results are discussed in Section 6 and Section 
7 concludes the paper with future directions. 
 
2. 3D Graphics Pipeline 
 
There are several emerging standard APIs for mobile 3D 
graphics such as OpenGL ES [3], Java mobile 3D 
Graphics API (JSR-184), and Direct 3D Mobile, etc. 
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Figure 1: 3D graphics pipeline 

 
OpenGL ES defines a standardized cross-platform API for 
full-function 2D and 3D graphics on embedded systems, 
which is a well-defined subset of OpenGL. In this paper, 
we use several 3D graphics terms limited to OpenGL ES. 

The 3D graphics pipeline structure is shown in Figure 1. 
This pipeline can be broadly divided into two phases, 
Geometry and Rasterization. The pipeline stages 
in the Geometry phase require a large number of floating 
calculations per vertex while the pipeline stages in the 
Rasterization phase need a large number of memory 
accesses per fragment. The Triangle Setup stage 
comprises per-triangle floating-point operations for scan 
conversion which generate fragments. Texture 
mapping and Fragment operations fills the 
fragments with the appropriate color (via z-test, alpha test, 
etc.) and Framebuffer shows the created image to the 
display screen. 
 
3. Analysis of Power Consumption 
 

We analyze the power consumption of 3D graphics 
pipeline using three applications (Figure 2). Texsub is a 
simple texture mapping tutorial scene of OpenGL. Face 
model is a 3D character model, and Jelly fish is a 
3D shooting game [18]. In order to gather the statistics of 
applications, we implement a behavioral simulator for 
OpenGL ES and also its S/W implementation on our target 
board for physical measurements of energy consumption. 
The implementation is explained in Section 6. 
 

 
a. Texsub     b. Face model    c. Jelly fish 

Figure 2: Applications 
 

Table 1: The statistics of applications features 
Application Vertex Triangle Fragment Texel access Time(sec) Lighting

Texsub 8 4 24388 24388 0.161571 x

Face model 4281 1427 16562 16562 0.806431 o

Jellyfish
(average)

9187 3073 47070 47006 0.669926 x  

Figure 3 shows the relative proportions of performance 
(execution time) and energy consumption for each pipeline 
stage of those applications whose characteristics are 
summarized in Table 1.  
Texsub has a small number of vertices and large 

triangles, spends most its energy during the 
Rasterization phase. On the other hand, Face 
model, which has a relatively large number of vertices 
with lighting and small triangles, consumes about 52% of 
the CPU energy on Geometry phase. Jelly fish has a 
large number of vertices and a relatively large number of 
fragments. (However, we note that these analyzed patterns 
of energy consumption can be also changed depending on 
the optimization techniques for each pipeline stage.) 

Thus, we propose DVS methods for low-power 3D 
graphics by using these imbalances (slacks) dependent 
upon applications’ workloads. 
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a. Texsub 

 
Face model
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b. Face model 



Jelly  fish
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c. Jelly fish 

Figure 3: The distribution of energy consumption and 
performance of three applications 

 
4. System Model 
 

Considering general 3D graphics architecture with any 
possible optimizations, a pipeline is consist of n stages, 
which is represented as P = {pstage-1, …, pstage-n}. A 4-tuple 
{Si, Pth-i, Ci, Ni } is used to represent each pipeline stage 
Pstage-i, where Si is the state enabled or disabled by graphics 
feature, Pth-i is the throughput factor which is the 
parallelism determined in design time and Ci is the worst 
case execution time (WCET) of the pipeline stage at the 
maximum processor speed. The graphics features in 3D 
graphics are the global states determined by the 
parameters of glEnable (glDisable) command of OpenGL 
ES, shading model, lighting parameters, texture mapping 
parameters before the beginning of drawing each scene. Ni 
is the iteration factor based on the number of primitives, 
the number of fragments, and depth complexity. Hence, 
the execution path and execution time of each pipeline 
stage can be changed depending on these features. 
Parallelism is defined in design time for optimization and 
means that how many operations can be done in time, for 
example, parallel vector operations on SIMD architecture 
or several pixel-element processors which can process 
several fragments. Therefore, the execution time of jth 
frame can be stated as (1): 

 

∑
−

=
ith

iii
j P

NSCD ,   (1 ≤  i ≤  n)        (1) 

 
Since Ci and Pth-i are determined in design time, they are 

fixed values, and the frame deadline and bottleneck come 
from application’s workloads. Even though the pipeline is 
well optimized, there can exist slack times due to the 
imbalances occurred in differences from Si and Ni, 
depending on applications. 

When the execution time Bj of the bottleneck stage of 
whole pipeline in the frame is (2), the other stages can 
process more their inputs or have slack times. This means 
we can have chance to optimize the performance via load-

balancing, or slowdown the supply voltage by using these 
slack times in the system whose the frame rate is 
1/max(Dj). 
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Usually, while pixel fill-limited applications which have 

a small number of large triangles tend to be memory-
limited (i.e. rasterization-limited), geometry-limited 
applications which have a large number of small triangles 
are compute- (or interfacing buffer) limited. The designers 
of graphics architecture choose fill-rate and fix memory 
bandwidth based on cost-effective memory technology, 
and determine triangle rate - processor capability in the 
design phase. Therefore, in this design phase, the 
performance goal is selected and then the number of 
pipeline stages and the capability of each component are 
defined. 

Many researchers have focused on optimizations on the 
components of each pipeline stage by efficient s/w and 
h/w design [6-17]. The GPU described in [6, 7] can 
deactivate the unused components and [7] gives frequency 
scaling functionality. Texture mapping has been 
investigated for low-power using DVS based on a human 
visual perception model [8].  

Despite all optimizations, there can exist slack times due 
to the imbalances occurred in the non-bottleneck stages. 
They show the analysis of 3D graphics workload 
depending on several features and propose basic DVS 
scheme in [4]. However, their history based approach is 
naive and they do not consider frame-by-frame variations 
in dynamic workload. In this paper, we specifically focus 
on DVS techniques for mobile 3D graphics. 
 
5. Intra-Frame and Inter-Frame DVS 
 

Figure 4 shows two levels of DVS for 3D graphics 
applications. In inter-frame DVS, the voltage is adjusted 
by a frame granularity based on the slack times generated 
from the previous frame. On the other hand, in intra-frame 
DVS, the voltage is adjusted by an object granularity 
within a frame. 
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Figure 4: The Inter-frame vs. Intra-frame DVS 



In this paper, we assume a frame starts from glClear() 
call and ends with eglSwapBuffer() call, and each object 
of a scene is distinguished by glDrawArrays() or 
glDrawElements() from OpenGL ES applications. A frame 
deadline is the time period to display one scene with a 
given frame rate at the highest frequency. An object 
deadline is the time to finish whole pipeline processing for 
that object. Since a scene (a frame) can have several (m) 
objects, we restate the equation (1) as (3): 

 

 ∑∑
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NSCD ,  (1 ≤  i ≤  n, 1 ≤  o ≤  m)  (3) 

 
In intra-frame DVS, each object can have static slacks 

due to (2) or dynamic slacks between objects. The latter 
uses the slack from the previous object. We assume when 
the frequency is changed to fk, the voltage level is also 
proportionately set to Vk, where the range of scalable 
voltages and frequencies is 1 to s and 1≤ k ≤ s. When we 
use the slack times for adjusting the supply voltage in 
intra-frame DVS, the frequencies is determined for static 
(4) or dynamic distribution (5) of the slack. 
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where  means jth object has all enabled features. j
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The in (4) is determined by distributing slack 

time evenly to each pipeline stage for drawing an object. 
This static slack-distribution can avoid too frequent 
voltage scaling. However, it cannot be fair depending on 
the bottleneck stage (2). So, we also consider frequency 
for each pipeline stage in (6). Using dynamic distribution 
(5) of the slack can compensate the misprediction in the 
previous stage. 

static
oF

Since the execution time of each object can vary 
according to its dynamic characteristics frame by frame, 

we construct an object list as a preliminary workload 
estimator and store the object’s characteristics including 
number of vertices, triangles, fragments and execution 
time while drawing a scene. When the first frame is 
rendered, the object list is created and updated frame by 
frame. When updating the object list, the variations on the 
characteristics is also stored for the correct prediction of 
the slack times of the consecutive frames or objects. 

Furthermore, slack times can be made by the variation 
of the characteristics in a scene or the movement of 
objects. Since the intra-frame estimation is a conservative 
approach, it cannot find all the slack times in advance. 
Such unused dynamic slacks are added to the deadline for 
the next frame. We call this approach inter-frame DVS. In 
this paper, the slack from the previous frame is used by the 
first object in the next frame. In inter-frame DVS, we 
assume the frame deadline is a constant for each frame. 
Determining the frequency for inter-frame DVS is similar 
to (5). In this paper, we implement the proposed DVS 
techniques at a level of 3D graphics library. If the frame 
rate is controlled by an application itself, however, the 
inter-frame DVS has no effect on having slack time, since 
we cannot start processing the next scene earlier at a 
library. 

In order to generate more intra-frame slacks for our 
implementation, we add vertex caching technique to the 
object list. This technique can avoid repetitive 
transformations and lighting calculations of shared 
vertices, since triangles neighboring with each other 
usually share vertices in many 3D applications. We 
construct a vertex cache structure by a binary search tree 
before transformation stage. When a new vertex 
enters the transformation stage, we first search the 
vertex cache to check whether the same vertex has been 
processed before. If there is a match, we reuse the 
previous results for the vertex, thus skipping 
computationally expensive transformation and 
lighting stages. Especially for applications that need a 
sophisticated lighting model, the vertex cache can keeps 
away from very heavy lighting calculations many times, 
since shared vertices possibly have the same averaged 
normal vectors from neighboring triangles in many 
applications for smooth shape. 
 
6. Implementation and Experiment 
 

We have implemented the proposed techniques with a 
software implementation of a 3D graphics library on a 
prototype PDA system of which CPU and memory are 
power measurable separately. We have implemented an 
OpenGL ES 1.1 library running on Embedded Linux as a 
baseline and modified it to include our proposed DVS 
techniques. The infrastructure of measurements is shown 
in Figure 5.  



Our system environments are as follows: The main CPU 
is an Intel PXA255, which can change the clock frequency 
to one of 7 levels between 100 MHz and 400 MHz, and 
the target board has a programming core voltage regulator; 
supply voltage can scale to one of 3 levels between 1.0 V 
and 1.3 V. The LCD display has a color depth of 16 bits at 
a 320ⅹ240 screen resolution, and 3D graphics 
accelerations are not supported. 
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a. Physical measurements of power consumption 

 

 
b. Target board and DAQ 

Figure 5: Target PDA prototype system 
 
In our experiment, we have evaluated the efficiency of 

the proposed approach using three applications (Figure 2). 
Figure 6 shows the power consumption patterns of the 

results of applying DVS to Face model and Jelly 
fish along their 10 frames, where the measured powers 
are relative values. The values of power consumption are 
relative to watt (W) and the values of execution time to 
milliseconds (ms). The power consumption of original 
(non-DVS) executions has a pattern in Figure 5(b) and 
others result from DVS. 

In Face model, energy gain was 47% of CPU and 
43% of memory, 46% in the total energy consumption. 
The performance of Face model benefited from the 
vertex caching by 43% and thus the voltage was more 
effectively adjusted every frame. Since our target platform 
has discrete level of frequencies available, more 
fragmented slacks generated in the geometry can be 
added and used in the rasterization phase. 
Jellyfish has 40 or more moving objects each frame, 
and the number of objects varies frame by frame.  
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a. Face model: DVS 

 
Jelly  fish (10 frames)
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b. Jelly fish: non-DVS 
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c. Jelly fish: DVS with performance overhead 
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d. Jelly fish: DVS without performance overhead 

Figure 6: The results of applying DVS 
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Figure 7: The experimental results 

 
The workload can vary depending on the number of 
objects and in the experiment, the object list (estimator) 
has a threshold to validate the estimation of dynamic 
variations and control the error tolerance of it. Depending 
on the threshold values, we saved 12% total energy with 
5% performance overhead and 8% without performance 
overhead in Jellyfish (Figure 7). 
 
7. Conclusions 
 

We described DVS scheme for general 3D graphics and 
introduced low-power intra-frame and inter-frame DVS 
techniques into 3D graphics pipeline stages based on the 
statistics of applications’ features. And we implemented 
an energy-efficient software implementation of the 
OpenGL ES 1.1 API, for mobile devices based on a 
variable-voltage processor.  

In our implementation, the object list with vertex cache 
was useful to make more slacks and manage variations for 
both intra-frame and inter-frame DVS. Our 
implementation on a PDA development board shows that 
the proposed DVS techniques achieve an energy saving of 
up to 46% over a power-unaware implementation.  

Even though our software-only implementation has 
performance limitations as usual in 3D graphics, we give 
the feasibility of efficient power-saving DVS schemes 
applicable to 3D graphics system. And our platform can 
help flexible simulation to design low-power mobile 3D 
graphics system. We are evaluating several optimization 
techniques suitable for low-power mobile 3D graphics. In 
addition to the DVS techniques, DPM techniques need to 
be considered when implementing 3D accelerators, since 
the leakage power is increasing with the CMOS 
technology generation. 
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