
A Low-Power Implementation of 3D Graphics System for
Embedded Mobile Systems

Chanmin Park, Hyunhee Kim and Jihong Kim
School of Computer Science & Engineering, Seoul National University, Seoul, Korea

{cmpark, hh0726, jihong}@davinci.snu.ac.kr

Abstract

For mobile 3D graphics systems, even though
performance requirements are met, an efficient power
management is even more important for battery-powered
mobile devices since they require a large number of
arithmetic operations as well as a high frequency of
memory accesses.

According to the analysis of the power consumption of
mobile 3D graphics pipelines and the slacks across the
pipeline stages, we describe intra-frame and inter-frame
DVS low-power techniques reducing the power
consumption of mobile devices based on a variable
voltage processor.

Our implementation on a PDA development board
shows that the proposed DVS techniques achieve an
energy saving of up to 46% over a non-DVS
implementation.

1. Introduction

As mobile devices get more powerful, more desktop PC
applications including 3D graphics are moving into the
mobile domain. Even though performance requirements
are met, reducing power consumption is an important
design requirement for battery-powered mobile devices
such as PDA and cellular phones. For mobile 3D graphics
applications such as 3D games and 3D navigations, an
efficient power management is even more important since
they require a large number of arithmetic operations as
well as a high frequency of memory accesses, making
them power-hungry applications.

Previously, low-power 3D graphics have been
investigated at different abstraction levels including the
circuit level, architecture level and algorithm level. In this
paper, we analyze the power consumption of mobile 3D
graphics pipelines, and show that there exist imbalances,
i.e. slacks, across the pipeline stages based on the dynamic
3D graphics workloads for each 3D graphics application
and its characteristics. The slacks can occur in the
differences due to the 3D graphics features such as frame

rate, the number of primitives, lighting parameters, texture
mapping parameters, and the number of fragments, etc.

Based on this observation - energy consumption
analysis of typical mobile 3D graphics applications, we
propose intra-frame and inter-frame DVS (Dynamic
Voltage Scaling) power saving techniques for mobile 3D
graphics systems, which can be useful for mobile devices
based on variable voltage processors. The intra-frame
DVS technique estimates the required workload of each
frame based on the characteristics of scene description of a
given frame. If the required workload is less than the
expected workload, the supply voltage is accordingly
adjusted. While the intra-frame DVS technique exploits
the slack time within the current frame, the inter-frame
DVS technique takes advantages of unused idle intervals
from previous frames.

In order to design and implement our proposed DVS
techniques, we develop an energy-efficient software
implementation of a 3D graphics library, for mobile
devices based on a variable-voltage processor. As a
specific target platform, we use a prototype PDA system
running Linux on Intel's XScale PXA255. Our
implementation on the target PDA development board
shows that the proposed DVS techniques achieve an
energy saving of up to 46% over a power-unaware
implementation.

The rest of the paper is organized as follows. In Section
2, we introduce some background about 3D graphics
pipeline and Section 3 presents motivational examples and
the analysis of power consumption. In Section 4, we
describe the system model for DVS. Section 5 explains the
proposed DVS scheme. The implementation and
experimental results are discussed in Section 6 and Section
7 concludes the paper with future directions.

2. 3D Graphics Pipeline

There are several emerging standard APIs for mobile 3D
graphics such as OpenGL ES [3], Java mobile 3D
Graphics API (JSR-184), and Direct 3D Mobile, etc.

Geometry Rasterization

T
ri
a
n
g
le

 S
e
tu

p

F
ra

g
m

e
n
t
O

p
e
ra

Display

ti
o
n
s

F
ra

m
e
b
u
ff

e
r

M
o
d
e
l
T
ra

n
s
fo

rm
a
ti
o
n

V
ie

w
p
o
rt

M
a
p
p
in

Scene
Description

g

V
ie

w
in

g
 T

ra
n
s
fo

rm
a
ti
o
n

V
e
rt
e
x

S
c
a
n
 C

o
n
ve

rs
io

n

P
e
rs

p
e
c
ti
ve

 C
o
rr
e
c
ti
o
n

L
O

D
 C

a
lc

u
la

ti
o
n

T
e
xt

u
re

 A
d
d
r
G

e
n
e
ra

ti
o
n

T
e
x
tu

re
 F

ilt
e
ri
n
g

T
e
xt

u
re

 B
le

n
d
in

g

P
e
rs

p
e
c
ti
ve

 D
iv

is
io

n

B
a
c
k

F
a
c
e
 C

u
lli

n
g

C
lip

p
in

g

P
ro

je
c
ti
o
n

L
ig

h
ti
n
g

Geometry Rasterization

T
ri
a
n
g
le

 S
e
tu

p

F
ra

g
m

e
n
t
O

p
e
ra

Display

ti
o
n
s

F
ra

m
e
b
u
ff

e
r

M
o
d
e
l
T
ra

n
s
fo

rm
a
ti
o
n

V
ie

w
p
o
rt

M
a
p
p
in

Scene
Description

g

V
ie

w
in

g
 T

ra
n
s
fo

rm
a
ti
o
n

V
e
rt
e
x

S
c
a
n
 C

o
n
ve

rs
io

n

P
e
rs

p
e
c
ti
ve

 C
o
rr
e
c
ti
o
n

L
O

D
 C

a
lc

u
la

ti
o
n

T
e
xt

u
re

 A
d
d
r
G

e
n
e
ra

ti
o
n

T
e
x
tu

re
 F

ilt
e
ri
n
g

T
e
xt

u
re

 B
le

n
d
in

g

P
e
rs

p
e
c
ti
ve

 D
iv

is
io

n

B
a
c
k

F
a
c
e
 C

u
lli

n
g

C
lip

p
in

g

P
ro

je
c
ti
o
n

L
ig

h
ti
n
g

Figure 1: 3D graphics pipeline

OpenGL ES defines a standardized cross-platform API for
full-function 2D and 3D graphics on embedded systems,
which is a well-defined subset of OpenGL. In this paper,
we use several 3D graphics terms limited to OpenGL ES.

The 3D graphics pipeline structure is shown in Figure 1.
This pipeline can be broadly divided into two phases,
Geometry and Rasterization. The pipeline stages
in the Geometry phase require a large number of floating
calculations per vertex while the pipeline stages in the
Rasterization phase need a large number of memory
accesses per fragment. The Triangle Setup stage
comprises per-triangle floating-point operations for scan
conversion which generate fragments. Texture
mapping and Fragment operations fills the
fragments with the appropriate color (via z-test, alpha test,
etc.) and Framebuffer shows the created image to the
display screen.

3. Analysis of Power Consumption

We analyze the power consumption of 3D graphics
pipeline using three applications (Figure 2). Texsub is a
simple texture mapping tutorial scene of OpenGL. Face
model is a 3D character model, and Jelly fish is a
3D shooting game [18]. In order to gather the statistics of
applications, we implement a behavioral simulator for
OpenGL ES and also its S/W implementation on our target
board for physical measurements of energy consumption.
The implementation is explained in Section 6.

a. Texsub b. Face model c. Jelly fish

Figure 2: Applications

Table 1: The statistics of applications features
Application Vertex Triangle Fragment Texel access Time(sec) Lighting

Texsub 8 4 24388 24388 0.161571 x

Face model 4281 1427 16562 16562 0.806431 o

Jellyfish
(average)

9187 3073 47070 47006 0.669926 x

Figure 3 shows the relative proportions of performance
(execution time) and energy consumption for each pipeline
stage of those applications whose characteristics are
summarized in Table 1.
Texsub has a small number of vertices and large

triangles, spends most its energy during the
Rasterization phase. On the other hand, Face
model, which has a relatively large number of vertices
with lighting and small triangles, consumes about 52% of
the CPU energy on Geometry phase. Jelly fish has a
large number of vertices and a relatively large number of
fragments. (However, we note that these analyzed patterns
of energy consumption can be also changed depending on
the optimization techniques for each pipeline stage.)

Thus, we propose DVS methods for low-power 3D
graphics by using these imbalances (slacks) dependent
upon applications’ workloads.

Tex sub

0

0.1

0.2

0.3

0.4

0.5

T
ra

n
sf

o
rm

a
tio

n
&

 P
ro

je
c
tio

n

L
ig

h
ti
n
g

C
u
lli
n
g
 &

C
lip

p
in

g

W
 d

iv
is

io
n
 &

vi
e
w

p
o
rt

S
e
tu

p
 &

 S
c
a
n

C
o
n
v
e
rs

io
n

T
e
xt

u
re

M
a
p
p
in

g

F
ra

g
m

e
n
t

o
p
e
ra

tio
n
s

F
ra

m
e
b
u
ff

e
r

Pipeline Stages

R
e
la

tiv
e
 P

ro
p
o
rt
io

n

Performance CPU Energy Memory Energy

a. Texsub

Face model

0

0.1

0.2

0.3

0.4

0.5

T
ra

n
sf

o
rm

a
tio

n
&

 P
ro

je
c
tio

n

L
ig

h
tin

g

C
u
lli
n
g
 &

C
lip

p
in

g

W
 d

iv
is

io
n
 &

vi
e
w

p
o
rt

S
e
tu

p
 &

 S
c
a
n

C
o
n
ve

rs
io

n

T
e
xt

u
re

M
a
p
p
in

g

F
ra

g
m

e
n
t

o
p
e
ra

tio
n
s

F
ra

m
e
b
u
ff

e
r

Pipeline Stages

R
e
la

tiv
e
 P

ro
p
o
rt
io

n

Performance CPU Energy Memory Energy

b. Face model

Jelly fish

0

0.1

0.2

0.3

0.4

0.5
T
ra

n
s
fo

rm
a
tio

n
&

 P
ro

je
c
tio

n

L
ig

h
tin

g

C
u
lli
n
g
 &

C
lip

p
in

g

W
 d

iv
is

io
n
 &

v
ie

w
p
o
rt

S
e
tu

p
 &

 S
c
a
n

C
o
n
v
e
rs

io
n

T
e
xt

u
re

M
a
p
p
in

g

F
ra

g
m

e
n
t

o
p
e
ra

tio
n
s

F
ra

m
e
b
u
ff

e
r

Pipeline Stages

R
e
la

tiv
e
 P

ro
p
o
rt
io

n

Performance CPU Energy Memory Energy

c. Jelly fish

Figure 3: The distribution of energy consumption and
performance of three applications

4. System Model

Considering general 3D graphics architecture with any
possible optimizations, a pipeline is consist of n stages,
which is represented as P = {pstage-1, …, pstage-n}. A 4-tuple
{Si, Pth-i, Ci, Ni } is used to represent each pipeline stage
Pstage-i, where Si is the state enabled or disabled by graphics
feature, Pth-i is the throughput factor which is the
parallelism determined in design time and Ci is the worst
case execution time (WCET) of the pipeline stage at the
maximum processor speed. The graphics features in 3D
graphics are the global states determined by the
parameters of glEnable (glDisable) command of OpenGL
ES, shading model, lighting parameters, texture mapping
parameters before the beginning of drawing each scene. Ni
is the iteration factor based on the number of primitives,
the number of fragments, and depth complexity. Hence,
the execution path and execution time of each pipeline
stage can be changed depending on these features.
Parallelism is defined in design time for optimization and
means that how many operations can be done in time, for
example, parallel vector operations on SIMD architecture
or several pixel-element processors which can process
several fragments. Therefore, the execution time of jth
frame can be stated as (1):

∑
−

=
ith

iii
j P

NSCD , (1 ≤ i ≤ n) (1)

Since Ci and Pth-i are determined in design time, they are

fixed values, and the frame deadline and bottleneck come
from application’s workloads. Even though the pipeline is
well optimized, there can exist slack times due to the
imbalances occurred in differences from Si and Ni,
depending on applications.

When the execution time Bj of the bottleneck stage of
whole pipeline in the frame is (2), the other stages can
process more their inputs or have slack times. This means
we can have chance to optimize the performance via load-

balancing, or slowdown the supply voltage by using these
slack times in the system whose the frame rate is
1/max(Dj).

⎭
⎬
⎫

⎩
⎨
⎧

=
−ith

iii
j P

NSCB max , (1 ≤ i ≤ n) (2)

Usually, while pixel fill-limited applications which have

a small number of large triangles tend to be memory-
limited (i.e. rasterization-limited), geometry-limited
applications which have a large number of small triangles
are compute- (or interfacing buffer) limited. The designers
of graphics architecture choose fill-rate and fix memory
bandwidth based on cost-effective memory technology,
and determine triangle rate - processor capability in the
design phase. Therefore, in this design phase, the
performance goal is selected and then the number of
pipeline stages and the capability of each component are
defined.

Many researchers have focused on optimizations on the
components of each pipeline stage by efficient s/w and
h/w design [6-17]. The GPU described in [6, 7] can
deactivate the unused components and [7] gives frequency
scaling functionality. Texture mapping has been
investigated for low-power using DVS based on a human
visual perception model [8].

Despite all optimizations, there can exist slack times due
to the imbalances occurred in the non-bottleneck stages.
They show the analysis of 3D graphics workload
depending on several features and propose basic DVS
scheme in [4]. However, their history based approach is
naive and they do not consider frame-by-frame variations
in dynamic workload. In this paper, we specifically focus
on DVS techniques for mobile 3D graphics.

5. Intra-Frame and Inter-Frame DVS

Figure 4 shows two levels of DVS for 3D graphics
applications. In inter-frame DVS, the voltage is adjusted
by a frame granularity based on the slack times generated
from the previous frame. On the other hand, in intra-frame
DVS, the voltage is adjusted by an object granularity
within a frame.

RasterizationGeometry Framebuffer

Object 1

Frame 1 Frame 2 Frame N
…

Object 2 Object M…

…
RasterizationGeometry

glClear()

eglSwapBuffer()

glDrawArrays() or
glDrawElements()

Inter-frame
DVS

Intra-frame
DVS

RasterizationGeometry Framebuffer

Object 1

Frame 1 Frame 2 Frame N
…

Object 2 Object M…

…
RasterizationGeometry

glClear()

eglSwapBuffer()

glDrawArrays() or
glDrawElements()

Inter-frame
DVS

Intra-frame
DVS

Figure 4: The Inter-frame vs. Intra-frame DVS

In this paper, we assume a frame starts from glClear()
call and ends with eglSwapBuffer() call, and each object
of a scene is distinguished by glDrawArrays() or
glDrawElements() from OpenGL ES applications. A frame
deadline is the time period to display one scene with a
given frame rate at the highest frequency. An object
deadline is the time to finish whole pipeline processing for
that object. Since a scene (a frame) can have several (m)
objects, we restate the equation (1) as (3):

 ∑∑
−

=
o i ith

o
i

o
ii

j P
NSCD , (1 ≤ i ≤ n, 1 ≤ o ≤ m) (3)

In intra-frame DVS, each object can have static slacks

due to (2) or dynamic slacks between objects. The latter
uses the slack from the previous object. We assume when
the frequency is changed to fk, the voltage level is also
proportionately set to Vk, where the range of scalable
voltages and frequencies is 1 to s and 1≤ k ≤ s. When we
use the slack times for adjusting the supply voltage in
intra-frame DVS, the frequencies is determined for static
(4) or dynamic distribution (5) of the slack.

∑

∑

= −

= −=
n

i ith

o
i

o
alli

n

i ith

o
i

o
ii

static
o

P
NSC

P
NSC

F

1

1 , (4)

where means all features are enabled. o
allS o

iS

∑∑∑∑

∑ ∑

= = −= = −

+= = −
+

−
= o

j

n

i ith

j
i

j
ii

m

j

n

i ith

j
i

j
alli

m

oj

n

i ith

j
i

j
ii

dynamic
o

P
NSC

P
NSC

P
NSC

F

1 11 1

1 1
1

 , (5)

where means jth object has all enabled features. j
allS

j

ith

iii

static
o

o
i B

P
NSC

FF
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅= − (6)

The in (4) is determined by distributing slack

time evenly to each pipeline stage for drawing an object.
This static slack-distribution can avoid too frequent
voltage scaling. However, it cannot be fair depending on
the bottleneck stage (2). So, we also consider frequency
for each pipeline stage in (6). Using dynamic distribution
(5) of the slack can compensate the misprediction in the
previous stage.

static
oF

Since the execution time of each object can vary
according to its dynamic characteristics frame by frame,

we construct an object list as a preliminary workload
estimator and store the object’s characteristics including
number of vertices, triangles, fragments and execution
time while drawing a scene. When the first frame is
rendered, the object list is created and updated frame by
frame. When updating the object list, the variations on the
characteristics is also stored for the correct prediction of
the slack times of the consecutive frames or objects.

Furthermore, slack times can be made by the variation
of the characteristics in a scene or the movement of
objects. Since the intra-frame estimation is a conservative
approach, it cannot find all the slack times in advance.
Such unused dynamic slacks are added to the deadline for
the next frame. We call this approach inter-frame DVS. In
this paper, the slack from the previous frame is used by the
first object in the next frame. In inter-frame DVS, we
assume the frame deadline is a constant for each frame.
Determining the frequency for inter-frame DVS is similar
to (5). In this paper, we implement the proposed DVS
techniques at a level of 3D graphics library. If the frame
rate is controlled by an application itself, however, the
inter-frame DVS has no effect on having slack time, since
we cannot start processing the next scene earlier at a
library.

In order to generate more intra-frame slacks for our
implementation, we add vertex caching technique to the
object list. This technique can avoid repetitive
transformations and lighting calculations of shared
vertices, since triangles neighboring with each other
usually share vertices in many 3D applications. We
construct a vertex cache structure by a binary search tree
before transformation stage. When a new vertex
enters the transformation stage, we first search the
vertex cache to check whether the same vertex has been
processed before. If there is a match, we reuse the
previous results for the vertex, thus skipping
computationally expensive transformation and
lighting stages. Especially for applications that need a
sophisticated lighting model, the vertex cache can keeps
away from very heavy lighting calculations many times,
since shared vertices possibly have the same averaged
normal vectors from neighboring triangles in many
applications for smooth shape.

6. Implementation and Experiment

We have implemented the proposed techniques with a
software implementation of a 3D graphics library on a
prototype PDA system of which CPU and memory are
power measurable separately. We have implemented an
OpenGL ES 1.1 library running on Embedded Linux as a
baseline and modified it to include our proposed DVS
techniques. The infrastructure of measurements is shown
in Figure 5.

Our system environments are as follows: The main CPU
is an Intel PXA255, which can change the clock frequency
to one of 7 levels between 100 MHz and 400 MHz, and
the target board has a programming core voltage regulator;
supply voltage can scale to one of 3 levels between 1.0 V
and 1.3 V. The LCD display has a color depth of 16 bits at
a 320ⅹ240 screen resolution, and 3D graphics
accelerations are not supported.

Voltage
Power data

DAQ
Host PC

Execution
Command

Voltage
Power data

Target board

DAQ
Host PC

Execution
Command

Voltage
Power data

DAQ
Host PC

Execution
Command

Voltage
Power data

Target board

DAQ
Host PC

Execution
Command

a. Physical measurements of power consumption

b. Target board and DAQ

Figure 5: Target PDA prototype system

In our experiment, we have evaluated the efficiency of

the proposed approach using three applications (Figure 2).
Figure 6 shows the power consumption patterns of the

results of applying DVS to Face model and Jelly
fish along their 10 frames, where the measured powers
are relative values. The values of power consumption are
relative to watt (W) and the values of execution time to
milliseconds (ms). The power consumption of original
(non-DVS) executions has a pattern in Figure 5(b) and
others result from DVS.

In Face model, energy gain was 47% of CPU and
43% of memory, 46% in the total energy consumption.
The performance of Face model benefited from the
vertex caching by 43% and thus the voltage was more
effectively adjusted every frame. Since our target platform
has discrete level of frequencies available, more
fragmented slacks generated in the geometry can be
added and used in the rasterization phase.
Jellyfish has 40 or more moving objects each frame,
and the number of objects varies frame by frame.

Face model (10 frames)

0

0.01

0.02

0.03

0.04

0.05

1 1001 2001 3001 4001 5001 6001

Execution Time

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n

CPU Power

a. Face model: DVS

Jelly fish (10 frames)

0

0.01

0.02

0.03

0.04

0.05

1 1001 2001 3001 4001 5001 6001 7001

Execution Time
P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n

CPU Power

b. Jelly fish: non-DVS

Jelly fish (10 frames)

0

0.01

0.02

0.03

0.04

0.05

1 1001 2001 3001 4001 5001 6001 7001

Execution Time

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n

CPU Power

c. Jelly fish: DVS with performance overhead

Jelly fish (10 frames)

0

0.01

0.02

0.03

0.04

0.05

1 1001 2001 3001 4001 5001 6001

Execution Time

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n

CPU Power

d. Jelly fish: DVS without performance overhead

Figure 6: The results of applying DVS

Measurement of Energy & Perfo rmance

0

0.2

0.4

0.6

0.8

1

1.2

Face model Jelly fish w/ overhead Jelly fish w/o overhead

Applications

N
o
rm

a
liz

e
d
 E

n
e
rg

y
C

o
n
s
u
m

p
tio

n
 &

P
e
rf

o
rm

a
n
c
e

CPU Energy Memory Energy Total Energy Performance

Figure 7: The experimental results

The workload can vary depending on the number of
objects and in the experiment, the object list (estimator)
has a threshold to validate the estimation of dynamic
variations and control the error tolerance of it. Depending
on the threshold values, we saved 12% total energy with
5% performance overhead and 8% without performance
overhead in Jellyfish (Figure 7).

7. Conclusions

We described DVS scheme for general 3D graphics and
introduced low-power intra-frame and inter-frame DVS
techniques into 3D graphics pipeline stages based on the
statistics of applications’ features. And we implemented
an energy-efficient software implementation of the
OpenGL ES 1.1 API, for mobile devices based on a
variable-voltage processor.

In our implementation, the object list with vertex cache
was useful to make more slacks and manage variations for
both intra-frame and inter-frame DVS. Our
implementation on a PDA development board shows that
the proposed DVS techniques achieve an energy saving of
up to 46% over a power-unaware implementation.

Even though our software-only implementation has
performance limitations as usual in 3D graphics, we give
the feasibility of efficient power-saving DVS schemes
applicable to 3D graphics system. And our platform can
help flexible simulation to design low-power mobile 3D
graphics system. We are evaluating several optimization
techniques suitable for low-power mobile 3D graphics. In
addition to the DVS techniques, DPM techniques need to
be considered when implementing 3D accelerators, since
the leakage power is increasing with the CMOS
technology generation.

References

[1] Tomas Akenine-Moller, Eric Haines, "Realtime rendering
second edition", AK PETERS, 2002.
[2] Dave Shreiner, Jackie Neider, Mason Woo, Tom Davis,
"OpenGL Programming Guide 4th edition", Addison-Wesley,
2004.

[3] The Khronos Group, "OpenGL ES Overview", Available at
http://www.khronos.org/opengles/index.html.
[4] B.C. Mochocki, K. Lahiri, and S. Cadambi, "Power Analysis
of Mobile 3D Graphics", Proceedings of the Design Automation
and Test in Europe Conference - DATE '06 pp. 502-508, 2006.
[5] T. Mitra and T. Chiueh. "Dynamic 3D Graphics Workload
Characterization and the Architectural Implications", In
Proceedings of the 32nd Annual ACM/IEEE International
Symposium on icroarchitecture (MICRO), pages 62–71,
November 1999.
[6] Masatoshi Kameyama, et al, "3D Graphics LSI Core for Mobile
Phone Z3D", Graphics Hardware, The Eurographics Association, 2003.
[7] R. Woo, et al., "A 210mW Graphics LSI Implementing Full
3D Pipeline With 264MTexels/s Texturing for Mobile
Multimedia Applications", in Proceedings, IEEE International
Solid-State Circuits Conference, February 2003.
[8] J. Euh, J. Chittamuru, and W. Burleson, "A Low-Power
Content-Adaptive Texture Mapping Architecture for Real-Time
3D Graphics", 2002 Workshop on Power-Aware Computer
Systems (PACS'02).
[9] J. Chittamuru, J. Euh, and W. Burleson, "Dynamic Word
length Variation for Low-Power 3D Graphics Texture Mapping",
IEEE Workshop on Signal Processing Systems 2003.
[10] Tomas Akenine-Moller, Jacob Strom, "Graphics for the Masses: A
Hardware Rasterization Architecture for Mobile Phones", in Proceeding
of ACM SIGGRAPH, ACM Transaction on Graphics 2003.
[11] W. Park, K. Lee, I. Kim, T. Han, S. Yang, "An Effective
Pixel Rasterization Pipeline Architecture for 3D Rendering
Processors", IEEE Transaction on Computers, Vol. 52, No. 11,
pp. 1501-1508, Nov. 2003.
[12] Z.S. Hakura and A. Gupta, "The Design and Analysis of a
Cache Architecture for Texture Mapping", Proceedings of the
24th International Symposium on Computer Architecture, pp.
108-120, June 1997.
[13] H. Igehy, M. Eldridge, and K. Proudfoot, "Prefetching in a
Texture Cache Architecture", Proceedings of
SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp.
133-142, Aug. 1998.
[14] M. Cox, N. Bhandary, and M. Shantz, "Multi-Level Texture
Caching for 3D Graphics Hardware", Proceedings of ACM/IEEE
International Symposium on Computer Architecture (ISCA),
1998.
[15] N. Greene, M. Kass, and G. Miller, "Hierarchical z-Buffer
Visibility", Proc. SIGGRAPH'93, pp. 231-238, Aug. 1998.
[16] J. Bae, et al., "An 11M-Triangles/sec 3D Graphics Clipping
Engine for Trianlge Primitives", IEEE international Symposium
on Circuits and Systmes, pp. 4570-4573, 2005.
[17] D. Kim, L. S. Kim, "Division-free rasterizer for perspective-
correct texture filtering", in Proc. IEEE Int. Circuits and Systems
Sump., vol.2, pp 153-15, May, 2004.
[18] The OpenGL ES 1.1 Coding Challenge,

http://www.khronos.org/devu/opengles_challenge/

http://www.khronos.org/devu/opengles_challenge/

