
Reward-Based Voltage Scheduling for Fixed-Priority Hard Real-Time Systems

Han-Saem Yun and Jihong Kim
School of Computer Science and Engineering

Seoul National University
Seoul, Korea 151-742

{hsyun, jihong}@davinci.snu.ac.kr

Abstract

We address the combined scheduling problem of maxi-
mizing the total reward of fixed-priority hard real-time sys-
tems with a given energy budget. We present a fully poly-
nomial time approximation scheme (FPTAS) for the off-line
job-level scheduling problem and an efficient heuristic for
the task-level scheduling problem. We also describe an on-
line algorithm which is effective in leveraging the execution
time variation.

1 Introduction
In the reward-based scheduling framework [2], the

workload of each task is divided into a mandatory part and
an optional part and a nondecreasing concave reward func-
tion is associated with each optional part; the more the op-
tional part is executed, the higher the reward is. The reward-
based framework can model various real-time flexible appli-
cations that allow approximate results such as image and
speech processing, multimedia, robot control/navigation
systems, real-time heuristic search [2].

As flexible applications are executed on variable voltage
processors, the combined problem of reward-based schedul-
ing and voltage scheduling, which we call the reward-based
voltage scheduling problem, has been recently investigated
[4, 5, 8]. The reward-based voltage scheduling involves
two-dimensional objectives, maximizing the total reward
scheduling) and minimizing the energy consumption and
can be defined as duals. Without loss of generality, in this
paper, we consider the problem of maximizing the total re-
ward subject to energy constraints.

Reward-based voltage scheduling was first addressed by
Rusu et al. [4, 5]. In [5], optimal off-line solutions for
frame-based task sets (where all the jobs have identical re-
lease times and deadlines) and periodic EDF task sets with
concave reward functions are considered. The reward-based
voltage scheduling problem for frame-based task sets with
0/1 reward functions was proved to be NP-hard and a heuris-

tic for the problem was presented in [4]. Recently, an opti-
mal off-line algorithm and an on-line algorithm for the job-
level EDF reward-based voltage scheduling problem have
been proposed [8].

In this paper, we consider reward-based voltage schedul-
ing for fixed-priority tasks. First, we describe an FP-
TAS for the off-line job-level scheduling problem. Second,
we present an efficient heuristic for the off-line task-level
scheduling problem. Finally, we present an on-line algo-
rithm which effectively leverage the workload variation to
increase the reward within energy budget.

2 Problem Formulation
We consider a set J = {J1,J2, · · · ,J|J |} of priority-

ordered jobs with J1 being the job with the highest priority.
A job J ∈ J is associated with the following attributes,
which are assumed to be known off-line:

• rJ and dJ : the release time and the deadline.

• mJ : the mandatory workload.

• uJ : the sum of mJ and the upper bound of the optional
workload.

• ρJ : the reward function.

We use pJ to denote the priority of the job J. In the rest
of the paper, we use i instead of Ji as a subscript of timing
parameters when no confusion arises.

For the on-line scheduling problem, mi and ui are the
worst-case values and the actual mandatory workload and
upper bound of the optional workload vary within (0,mi]
and (0,ui −mi] during runtime. The total workload of Ji
(i.e., the sum of the mandatory and optional workloads of
Ji) is denoted by oi and is selected between [mi,ui] , i.e.,
mi ≤ oi ≤ ui . Associated with each optional workload oi
is a reward function ρi(oi), which is assume to be non-
decreasing, concave, and continuously differentiable over
the interval [mi,ui] as in [2, 5]. Given a workload tuple
o = {o1,o2, · · · ,o|J |} , the total reward F , our optimization

goal, is given by F(o) = ∑|J |
i=1ρi(oi) .

1



From the fact that each job runs at the constant speed
under an energy-optimal voltage schedule [6, 7], the voltage
schedule can be defined as a tuple of the allowed execution
times A = (a1,a2, · · · ,a|J |). Given a voltage schedule A,
the response time of each job is uniquely determined, and
if every job finishes its execution by its deadline under A,
A is said to be feasible. The exact condition for a voltage
schedule A to be feasible is given as follows (See [7] for a
proof):

Condition I (Feasibility Condition).
There exists a |J |-tuple ( fJ1 , fJ2 , · · · , fJ|J |) ∈ T J such that

∀1 ≤ i ≤ |J | ∀r ∈ {t|t ∈ RJ ∧ t < fJi}

∑
Jk/pJk≤pJi∧rJk∈[r, fJi )

ak ≤ fJi − r .

A job set J is said to be an EDF job set if for any J,J ′ ∈ J
(where pJ < pJ′), dJ ≤ dJ′ or dJ′ ≤ rJ . When the priority
assignment follows the EDF policy, that Condition I is sim-
plified as follows (See [7] for a proof.):

Condition II (EDF Feasibility Condition).

For any ri < d j (1 ≤ i , j ≤ |J |) , ∑
k/[rk ,dk ]⊆[ri,d j ]

ak ≤ d j − ri .

The energy consumption of the voltage schedule in terms of
A is given by E(A) = ∑|J |

i=1 ai ·P(oi/ai) . For a fixed work-
load tuple o, the energy-optimal voltage scheduling prob-
lem is stated as maximizing E(A) subject to Condition I
(or Condition II for EDF job sets). Now, the reward-based
voltage scheduling problem is formulated as follows:

Find a workload tuple o = {o1,o2, · · · ,o|J |} such that
the total reward F(o) is maximized while the corre-
sponding energy-optimal voltage schedule does not
consume more than Ebudget .

3 Off-Line Job-Level Scheduling
The Job-level Reward-based Voltage Scheduling for

Fixed-priority (J-RVSF) problem is a generalized version of
the Job-level Energy-optimal Voltage Scheduling for Fixed-
priority (J-EVSF) problem [7] of which the complexity was
proved to be NP-hard (in the ordinary sense) [7], and can be
easily shown to be NP-hard by reduction from the J-EVSF
problem. (See [1] for a proof.) The main source of dif-
ficulty comes from the complicated solution space of job-
level fixed-priority scheduling; it is not obvious how to di-
rectly explore the solution space given by Condition I. How-
ever, it is worthwhile to note that Condition I also represents
the solution space of the J-EVSF problem and can be ade-
quately handled by dynamic programming formulation as
in [7].

We briefly review useful observations related to the fea-
sibility condition which are shown in [7]. The feasibility
condition for a fixed-priority job set (i.e., Condition I) is

(a)

J1

J2

2d2r 1r1 d

1J /

(b)

2d2r 1r1 d

2J /

2J / /

1J / /

(c)

2d2r 1r1 d

Figure 1. An example of EDF-equivalent job sets.

complicated and, consequently, inadequate for the efficient
exploration of the solution space. On the contrary, the fea-
sibility condition for an EDF job set (i.e., Condition II) is
quite simple. The following key property establishes a link
between Conditions I and II.
Property 1 [7] Given a |J |-tuple f = ( fJ1 , fJ2 , · · · , fJ|J |),
let J f represent the job set {J′1,J

′
2, · · · ,J

′
|J |} where pJ′i

=

pJi ,cJ′i
= cJi ,rJ′i

= rJi and dJ′i
= fJi for all 1 ≤ i ≤ |J |. J f

is said to be EDF-equivalent to J if J f is an EDF job set.
Then, the set of all feasible schedule of J is equal to the set
of all feasible schedules of J ’s EDF-equivalent job sets.

From Property 1, there is a one-to-one correspondence
between feasible schedules of a fixed-priority job set J and
feasible schedules of J ’s EDF-equivalent job sets. Figure
1 shows an example of EDF-equivalent job sets. Figure
1.(a) shows the original job set J = {J1,J2}. In this ex-
ample, J2 has a lower priority but earlier deadline than J1,
so J is not an EDF job set. In Figures 1.(b) and 1.(c), two
job sets are shown, which are EDF-equivalent to J . The job
sets {J′1,J

′
2} and {J′′1 ,J′′2 } are obtained by choosing (rJ1 ,dJ1)

and (dJ2 ,dJ2) as deadlines, respectively. Both job sets fol-
low the EDF priority assignment and the maximum-reward
schedule (resp. the energy-optimal voltage schedule) for
each job set can be computed by the polynomial-time opti-
mal algorithm for the J-RVSE problem [8] (resp. Yao’s op-
timal algorithm [6] for the J-EVSE problem). The optimal
schedule of J is equal to that of {J′1,J

′
2} or {J′′1 ,J′′2 } depend-

ing on the workload of J1 and J2. For a given fixed-priority
job set J , the problem of finding a maximum-reward (resp.
minimum-energy) schedule of J is reduced to the problem
of finding an EDF-equivalent job set of J that maximizes
the total reward (resp. minimizes the energy consumption).

For a job set with N jobs, there are O(N!) EDF-
equivalent job sets in the worst case. However, using dy-
namic programming formulation, the EDF-equivalent job
sets can be enumerated intelligently without actually enu-
merating all of them [7]. We first identify appropriate “over-
lapping” (or reusable) substructure to which dynamic pro-
gramming can be applied iteratively. We note that the “op-
timal substructure” is naturally reflected by blocking tuples,
which are just sequences of time points in TJ = {rJ ,dJ |J ∈
J } in strictly increasing order. That is, any solution (satis-
fying Condition I) for the whole interval can be obtained by
merging solutions of the sub-intervals defined by a blocking
tuple.

Figure 2 shows an example job set and its corresponding
EDF-equivalent job set whose time interval is partitioned

2



JN

JN−1

JN−2

JN−3

J2

J1

N−1d N−2d 2r 1r 2d 1dNdNr rN−1 rN−2 rN−3

f N−2

f N−1

f N

f N−3

f 1

f 2

N−1d N−2d 2r 1r 2d 1dNdNr rN−1 rN−2 rN−3

(a)

(b)

Figure 2. An example illustrating the dynamic program-
ming formulation. (a) An original job set and (b) an
EDF-equivalent job set defined by a blocking tuple
(rN ,rN−3,dN−1, · · · ,r2,d2,d1).

by a blocking tuple (rN ,rN−3,dN−1, · · · ,r2,d2), which is de-
picted by a set of the dashed thick lines in Figure 2.(b). Note
that jobs in each sub-interval follow the EDF-priority as-
signment and that the maximum-reward schedule for each
partitioned sub-interval within a given energy budget can be
found in polynomial time by the algorithm for the J-RVSE
problem [8]. The following property makes it possible to
explore the solution space efficiently by using dynamic pro-
gramming formulation.
Property 2 [7] For an interval [t, t ′] (t, t ′ ∈ TJ ), let J[t,t ′]
represent the job set that consists of jobs in J whose release
times are within the interval [t, t ′) with their deadlines, if
later than t ′, adjusted to t ′. If J[t,t ′] follows the EDF prior-
ity, it is said to be atomic. For any EDF-equivalent job set
J ′ of a fixed-priority job set J , there always exists a block-
ing tuple (b1,b2, · · · ,bl) such that J ′ ≡ ∪l−1

k=1J[bk,bk+1] where
[bk,bk+1] is atomic for all 1 ≤ k < k.
Note that {J[b1,b2],J[b2,b3], · · · ,J[bl−1,bl ]} is a partition of J ′

and the execution intervals of the partitioned job sets do
not overlap one another. Property 2 establishes a one-to-
one correspondence between EDF-equivalent job sets and
blocking tuples. Since the each partitioned job set (i.e.,
J[bk,bk+1]) follows the EDF priority, it can be handled by the
polynomial-time optimal algorithm for the J-RVSE problem
[8], comprising the “optimal substructure” of the dynamic
programming formulation.

By exploting the partitionable structure of the J-RVSF
problem (i.e., Property 2), dynamic programming formula-
tion for the J-RVSE problem can be constructed. For two
time-instants t, t ′ ∈ TJ (t < t ′), let F[t,t ′]〈e〉 represent the

maximum achievable total reward for the job set J[t,t ′] with
the energy budget of e. (It can be computed by the algorithm
for the J-RVSE problem [8].) Then, from the Property 2, the
maximum achievable total reward for the job set J with the
energy budget of Ebudget (i.e., F[0,H]〈Ebudget〉) is given by

max
{

∑l−1
k=1F[bk ,bk+1]〈ek〉

∣

∣

∣
0 = b1 < b2 < · · · < bl = H ∧ (1)

1 ≤ k < l , [bk,bk+1] is atomic. ∧ ∑l−1
k=1ek ≤ Ebudget

}

.

To consider a tabular method for the problem, for the time
being, let us assume that infinite columns that represent the
continuous energy values are available. Each row represents
an interval [0, tk] (tk ∈ TJ ) (i.e., the number of rows is |TJ |.).
The procedure to fill in the table entries proceeds row by
row. For the top row (i.e., the empty interval [0,0]), every
entry is filled with 0. Each subsequent row is filled with the
maximum achievable total reward for J[0,t] with the energy
budget e (i.e., F[0,tk]〈e〉), which can be computed by using
the entries in the previous row:

F[0,tk]〈e〉 = max
h

{

max
∆e

{

F[0,th]〈e−∆e〉+F[th,tk]〈∆e〉
∣

∣0 < ∆e < e
}

∣

∣ [th, tk] is atomic.
}

.

Note that F[0,th]〈e−∆e〉 has been already stored in the previ-
ous row and that F[th,tk]〈∆e〉 can be directly computed by the
J-RVSE algorithm [8] since J[th,tk] is an EDF job set. Finally,
once the entire table is filled in, the maximum achievable to-
tal reward (i.e., F[0,H]〈Ebudget〉) is stored in the last row and
the blocking tuple and the energy budget for each atomic
interval (i.e., (b1,b2, · · · ,bl) and ek in Eq.(1), respectively)
can be found by tracking the filling procedure.

We can transform the tabular method into an FPTAS
by considering discrete energy values that represent suffi-
ciently close continuous energy values. The relative error
of the FPTAS depends on how the closeness is defined; the
smaller the threshhold for the closeness, the smaller the rel-
ative error at the cost of increasing computation time. For
complete description of the algorithm and proofs, refer to
[1].

4 Off-Line Task-Level Scheduling
In this section, we describe an off-line algorithm for

the Task-level Reward-based Voltage Scheduling for Fixed-
priority (T-RVSF) problem which is based on Gruian’s al-
gorithm for the Task-level Energy-optimal Voltage Schedul-
ing for Fixed-priority (T-EVSF) problem [3]. We can eas-
ily reduce the T-EVSF problem to the T-RVSF problem in
polynomial time. Furthermore, the T-EVSF problem can be
proved to be NP-hard in the ordinary sense (refer to [1] for
the proof.), implying that the T-RVSF problem is also NP-
hard. Furthermore, the inherent complexity of fixed-priority
schedulability analysis is not involed in the NP-hardness
proof, i.e., the periods of transformed instances are deter-
mined such that the schedulability can always be checked in

3



polynomial-time. Therefore, we believe that the complexity
of the T-EVSF problem (as well as the T-RVSF problem) is
beyond the ordinary NP-hardness and, consequently, these
problems are not likely to admit an FPTAS.

As with the algorithms for the J-EVSE and J-EVSF prob-
lems, the algorithm for the T-EVSF problem uses a voltage
scheduling algorithm as a subroutine. In this paper, we con-
sider Gruian’s algorithms for the T-EVSF problem [3]. In
devising the algorithm for T-RVSE problem, we adopt use-
ful insights from the J-EVSE problem. The algorithm for
the J-EVSE problem starts with the whole optional work-
loads and iteratively decreases the optional workloads un-
til the energy consumption of the corresponding energy-
optimal voltage schedule, which can be directly computed
by Yao’s algorithm [6], reaches the energy budget. The
amount of optional workload of each job is determined
such that the gradients of jobs are as uniform as possible.
The gradient gi of a job Ji is defined to be the decrease in
the power dissipation per unit decrease in the reward, i.e.,
gi

def
= P′(si)/ρ′

i(oi) [8].
The procedure of our iterative algorithm for the task-

level RVSF problem is very similar to that of the algo-
rithm for the J-RVSE problem. The algorithm starts with
the whole optional workloads and iteratively decreases the
optional workload of each task such that the gradient of
each task is as flat as possible. When computing the voltage
schedule at each iteration, the algorithm uses Gruian’s algo-
rithm. (For complete description of our algorithm, refer to
[1].) Although the heuristic is very simple, its performance
is comparable to that of the FPTAS for the J-RVSF problem
for real-world applications as shown in Section 6.

5 On-Line Algorithm
The on-line algorithm for fixed-priority tasks slightly

differs from the previously proposed on-line algorithm for
EDF tasks [8]. The existing on-line algorithm for EDF tasks
consists of the following parts: slack estimation and slack
distribution. The goal of the slack estimation part is to iden-
tify as much slack time as possible and records the residual
energy reserved by an unexpected lower speed or idle time.
The goal of the slack distribution part is to distribute the
slack time and the energy slack so that the gradient of the
resultant schedule is as uniform as possible. Among these,
only slack-time estimation part is changed because other
parts are not dependent on the priority assingment policy.
For the slack-time estimation, we adopt the existing method
developed by Gruian [3], which is based on the priority-
based slack stealing method.

6 Experimental Results
In order to evaluate the performance of the proposed al-

gorithms, we performed experiments with test job sets con-
structed from periodic task sets of three real-world applica-

tions: MPEG4 Videophone, CNC and Avionics. We used
logarithmic reward functions of the type αi · log(βi ·oi +1).
First, we compared the FPTAS for the J-RVSF problem in
Section 3 and the heuristic for the T-RVSF problem in Sec-
tion 4. the quality of solution (the total reward) computed
by the heuristic was very close to that of the provably close
to optimal solution obtained by the FPTAS with ε = 1.0%;
within 0.7% for MPEG4 Videophone application, and only
about 2 ∼ 3% worse than the FPTAS. Next, we evaluated
the performance of the on-line algorithm in Section 5. For
a comparison, the FPTAS computes the near-optimal solu-
tion (within 1.0%) with the complete execution trace infor-
mation. The result obtained by on-line algorithm was only
5 ∼ 12% worse than the base schedule.

7 Conclusion
We investigated the problem of reward-based voltage

scheduling for fixed-priority hard real-time systems. First,
we present an FPTAS for the off-line job-level scheduling
problem. Second, we propose an heuristic for the off-line
task-level scheduling problem whose performance is com-
parable to the FPTAS. Finally, an efficient low-overhead on-
line algorithm was presented. The proposed algorithms can
be further extended in several directions. As our immediate
future work, we are interested in a more realistic processor
model with a limited number of voltage levels and transi-
tion overheads in time and energy. In addition, we plan to
develop off-line and on-line algorithms for 0/1 reward func-
tions.

References

[1] −. Reward-Based Voltage Scheduling for Fixed-Priority
Hard Real-Time Systems. Technical report. Available at
http://davinci.snu.ac.kr/Download/parc04 techrep.pdf.

[2] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez. Opti-
mal Reward-Based Scheduling for Periodic Real-Time Tasks.
IEEE Transactions on Computers, 50(2):111–130, 2001.

[3] F. Gruian. Hard Real-Time Scheduling for Low-Energy Using
Stochastic Data and DVS Processors. In Proc. of International
Symposium on Low Power Electronics and Design, pages 46–
51, 2001.

[4] C. Rusu, R. Melhem, and D. Mossé. Maximizing the System
Value While Satisfying Time and Energy Constraints. In Proc.
of Real-Time Systems Symposium, pages 246–255, 2002.

[5] C. Rusu, R. Melhem, and D. Mossé. Maximizing Rewards
for Real-Time Applications with Energy Constraints. ACM
Transactions on Embedded Computing Systems, 2(4):537–
559, 2003.

[6] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for
Reduced CPU Energy. In Proc. of IEEE Annual Foundations
of Computer Science, pages 374–382, 1995.

[7] H.-S. Yun and J. Kim. On Energy-Optimal Voltage Schedul-
ing for Fixed-Priority Hard Real-Time Systems. ACM Trans-
actions on Embedded Computing Systems, 2(3):393–430,
2003.

[8] H.-S. Yun and J. Kim. Reward-Based Voltage Schedul-
ing for Hard Real-Time Systems with Energy Con-
straints. In Proc. of RTCSA’04, to appear. Available at
http://davinci.snu.ac.kr/Download/rtcsa04.pdf.

4


