
ABC: Dynamic Configuration Management
for MicroBrick-based Cloud Computing Systems
Junghi Min, Hyungwoo Ryu, Kwanghyun La

SW R&D Center, Device Solutions, Samsung Electronics Co., Ltd.

{junghi.min, hyungwoo.ryu, nala.la}@samsung.com

Jihong Kim
Dept. of CSE, Seoul National University,

jihong@davinci.snu.ac.kr

ABSTRACT
In designing a high-performance cloud computing platform, it is
important to support diverse system resource requirements of
various cloud computing services/applications in a scalable
fashion. In this poster, we propose an intelligent middleware for
our prototype cloud computing system which automatically
changes configurations of modules for high performance under
varying cloud service/application workload. Our initial evaluation
results show that efficient resource management during run time is
a key enabling technique for developing high-performance cloud
computing systems.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]; C.5.5 [Servers]

General TermsManagement, Performance

Keywords
Middleware, Cloud System, Optimization

1. INTRODUCTION
In order for a cloud computing platform to support different types
of applications efficiently, a cloud computing platform should be
able to change quickly its configurations (possibly at multiple
system abstraction levels) over changing resource requirements of
various applications. As an initial attempt to build such a highly-
flexible cloud computing platform, we have proposed MicroBrick
[1], a basic building node for constructing a cloud computing
platform, and built a prototype cloud computing platform, called
MiBiP (MicrobBrick-based Big Data Platform). In this poster, we
describe our early experience of optimizing MiBiP, focusing on
the automatic resource configuration aspect of MiBiP. In
particular, we propose an intelligent middleware for our
MicroBrick-based cloud computing systems, called
AutoBrickChanger (or, in short, ABC), which automatically
changes configurations of MicroBricks for high performance
under varying cloud service/application workload.

2. OVERVIEW of MiBiP
Figure 1 shows an overview of our prototype MiBiP. The current

version of MiBiP consists of three boards within its chassis and
each board has three MicroBricks. Three boards within MiBiP are
connected via an Ethernet network. Each MicroBrick (as indicated
by a red box within the board picture) has sixteen PCIe ports
which are connected to the common PCIe switch. Each PCIe can
be connected to a computing module or a storage module.1 Since
all modules are connected to each other via the common PCIe
switch, very flexible intra-MicroBrick communications can be
supported.
By changing the number of computing modules and storage
modules for MicroBricks, different types of MicroBricks can
better match to diverse resource requirements of cloud services.
Furthermore, by dynamically changing groupings of computing
modules and storage modules using a high-performance scalable
PCIe switch, a MicroBrick achieves a high degree of the
flexibility required by cloud storage systems. Although MiBiP can
adapt to changing resource requirements, it is a key challenge in
MiBiP to decide when and how to change configurations of each
MicroBrick. A support for flexible dynamic configuration and
resource management is the main responsibility of ABC.

3. RESOURCE MANAGEMENT in MiBiP
In order to realize the maximum performance potential of MiBiP,
our proposed ABC layer needs to make two key decisions on a
given cloud workload. First, ABC must understand the key
requirements of the current cloud workload so that it can quickly
decide the best configuration for each MicroBrick in MiBiP.
Second, for a given configuration of a MicroBrick, ABC should
decide how local resource (of the given MicroBrick) can be best
utilized. In order to satisfy two key requirements of ABC, the
proposed ABC was implemented in a hierarchical fashion. Figure
2 shows an overview of the proposed ABC for MiBiP. The ABC
layer is divided into two sub-layers, Global ABC (G-ABC) and
Local ABC (L-ABC). The G-ABC sub-layer is responsible for
managing each MicroBrick’s configuration while the L-ABC sub-

Network card
Computing
module

Storage
module

PCIe switch

PCIe port

A Board with three MicroBricks

Chassis

MiBiP

A MicroBrick

Figure 1: An Overview of MiBiP.

1 Each computing module consists of a Quad Cortex A15 1.7-GHz

ARM processor and a 256-GB mSATA SSD. A 400-GB NVMe
SSD is used as a main shared storage module. A computing
module of a MicroBrick runs Linux kernel v3.10.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

Middleware'14: Demos and Poster, December 08 – December 12 2014,
Bordeaux, France
ACM 978-1-4503-3220-0/14/12.
http://dx.doi.org/10.1145/2678508.2678521

25

MicroBrick MicroBrick
MicroBrick

Board

MicroBrick MicroBrick
MicroBrick

Board

service request

SW control

CLOUD

Network
switch

Board

Global ABC (G-ABC)

MicroBrick MicroBrick

Local ABC
(L-ABC)

Local ABC
(L-ABC)

Local ABC
(L-ABC)

MicroBrick

HW control

Figure 2: An organizational overview of ABC for MiBiP.
layer focuses on supervising resource managements within a given
MicroBrick.

3.1 Global Configuration Management
One of the key resource management issues of MiBiP is how to
configure each MicroBrick with computing modules and storage
modules to meet diverse resource requirements of cloud
services/applications. Since we are currently developing a specific
configuration management policy of G-ABC, which takes into
account of various workload characteristics, in this section, we
present our early evaluation results on the impact of MicroBrick
configurations on the system performance.
In our preliminary evaluation of MiBiP, we used HiBench
benchmark [2] and the YCSB benchmark [3] with Cassandra
(Distributed DBMS). The workloads of YCSB are described in
Table 1. As shown in Figure 3, for Wordcount, configuration
C1_H, C1, C2 show the lowest elapsed time, however, for Sort,
the configuration C2 shows the best. Likewise, for Workload A,
the configuration C1 shows the best throughput, however, for
Workload B, the configuration C3 works the best. System
performances for the same test case vary according to
configurations. From this preliminary experimental result, we can
see that there is no single best MicroBrick configuration for all
test cases, and it is critical for G-ABC to change the configuration
of each MicroBrick in an automatic fashion over varying resource
requirements of cloud applications.

3.2 Local Resource Management
Once a MicroBrick’s configuration is fixed by G-ABC, each
MicroBrick needs to be optimized for a given configuration for
high performance. For example, we observed that, for Cassandra,
a default work distribution policy of Linux works so poor that no
meaningful work progress is ever made after a short initial active
interval. As shown in Figure 4 (a), four CPU cores are all actively
utilized in the initial execution interval. However, in the second
interval, only CPU core 1 is actively working while the rest of
CPU cores are virtually idle. This specific case illustrates a strong
need for local resource management within a MicroBrick. The
main function of L-ABC is to fine-tune various performance
impacting local parameters (such as a work distribution policy)
within a given MicroBrick. Dynamic resource allocation is a well
known problem [4]. As an optimization case, we developed a new
work distribution policy which works considerably better than the

Table 1: Workloads of YCSB.

Figure 3: Performance variations under different
configurations.

Well-distributedWell-distributed Pending & blocked

(a) Linux (v3.10) (b) L-ABC
Figure 4: A comparison of the CPU utilization.

Figure 5: A comparison of the system throughput.
default policy when there are a large number of works that need to
be distributed. Our new work distribution policy considers more
system status information in distributing tasks among multiple
cores. When an interrupt comes in, for example, our new policy
checks the numbers of waiting works in the work queue, the
number of active CPU cores, and the average per-CPU load.
Figure 4 illustrates that the per-core CPU utilization is
significantly improved under our new policy over the default work
distribution of Linux. For our YCSB cloud workloads (described
in Table 1), our new policy alone improves the system throughput
by up to 38% as shown in Figure 5.

4. CONCLUSION
From our initial evaluation results of a MicroBrick-based cloud
computing system, we strongly believe that efficient resource
management during run time is a key enabling technique for
developing a high-performance cloud computing systems. We are
currently focusing on developing a more intelligent middleware
including G-ABC and L-ABC.

5. REFERENCES
[1] Min, J., Min, J., La, K., Roh K., and Kim, J., MicroBrick: A

Flexible Storage Building Block for Cloud Storage Systems,
in Proc. of the USENIX Conference on File and Storage
Technologies, Poster, 2014.

[2] HiBench. https://github.com/hibench.
[3] YCSB. https://github.com/brianfrankcooper/YCSB.
[4] Zhang, Y., and West, R., Process-Aware Interrupt

Scheduling and Accounting, in Proc. of the IEEE
International Real-Time Systems Symposium, 2006.

26

