
PCDedup: I/O-Activity Centric Deduplication for
Improving the SSD Lifetime

Myoungjun Chun
Seoul National
University

mjchun@davinci.snu.ac.kr

Taejin Kim
Samsung Electronics

taejin.kim@samsung.com

Sungjin Lee
DGIST

sungjin.lee@dgist.ac.kr

Jihong Kim
Seoul National
University

jihong@davinci.snu.ac.kr

ABSTRACT
When data deduplication is used for extending the SSD life-
time inside an SSD, one of the key performance factors is how
to manage the fingerprint cache. Since the size of the finger-
print cache is limited, the fingerprint cache should be very
selective in choosing which fingerprints should be stored in
the cache. In this paper, we show that write program con-
texts, which are automatically extracted during run time, can
accurately capture their future data duplicability. Based on
this observation, we propose PCDedup for SSD-internal data
deduplication. PCDedup automatically filters out undesirable
fingerprints from the cache, thus improving the cache hit ra-
tio. Our experimental results show that PCDedup can improve
the SSD lifetime by up to 16.4% over the existing deduplica-
tion scheme while the fingerprint management overhead is
lowered on average by 68.6%.

1 INTRODUCTION
As the price-per-byte of NAND flash memory is rapidly de-
creasing by continuous innovations in the semiconductor
technology (e.g., 3D NAND flash [1]), NAND flash-based
solid-state drives (SSDs) have been positioned as primary
storage solutions for smartphones to large-scale data centers.
In spite of wide-reaching successes in various storage market
segments, managing the lifetime of SSDs remains to be one
of the key design challenges in SSDs [2]. A decreasing trend
in the number of P/E cycles of NAND flash memory seri-
ously limits the overall lifetime of flash-based SSDs, making
it difficult for SSDs to be used in write-intensive applications.
In order to extend the lifetime of flash-based SSDs, data

reduction techniques are commonly employed because they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’19, August 19–20, 2019, Hangzhou, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6893-3/19/08. . . $15.00
https://doi.org/10.1145/3343737.3343747

reduce the total amount of data written to an SSD, which di-
rectly affects the SSD lifetime. Data deduplication technqiues
are such examples by preventing duplicate data from being
written again [3, 4]. In an in-line deduplication schemeused
for SSDs, a cryptographic hash function h(x) such as SHA-1
or MD5 [3, 5] is used to test whether a duplicate data exist.
When a page p is written to an SSD, an SSD controller first
computes the hash value h(p) of the page p, which is called
as the fingerprint of p. If the same fingerprint h(p) is found
in the SSD, it indicates that the page p is a duplicate of the
page that was previously written. Since the same page p was
already stored in the flash memory, the SSD controller sim-
ply updates its L2P mapping table without writing the same
page again. In order to quickly decide if the fingerprint h(p)
matches with the existing page in the SSD, a fast memory
(e.g., SRAM) cache is used for storing fingerprints of pages in
the SSD. (In this paper, we call this cache a fingerprint cache
or a cache when no confusion arises.)
If the size of a fingerprint cache is sufficiently large so

that all the distinct fingerprints of written data can be stored,
the efficiency of a deduplication scheme solely depends on
how much future data writes are duplicates. However, when
the size of a fingerpint cache is limited, the efficiency of a
deduplication scheme is strongly affected by how the finger-
print cache is managed. For example, several groups have
recently proposed different management techniques for the
fingerprint cache by exploiting the workload’s spatial and
temporal locality [6–10].

In this paper, we argue that I/O activity-centric fingerprint
cachemanagement is needed formaximizing the efficiency of
a fingerprint cache so that more duplicates can be identified
by a deduplication technique. Unlike conventional content-
centric approach where no I/O context information is ex-
ploited, we show that the future data duplicability can be
reliably predicted at the I/O-activity level (e.g., logging and
compaction activities in RocksDB [11]). That is, by monitor-
ing data duplication characteristics at each I/O activity, we
can predict whether data written from the same I/O activity
will produce duplicate copies or not in the future.

Based on this observation, we propose a novel I/O-activity
centered deduplication technqiue, called PCDedup, that effi-
ciently improves the SSD lifetime. By exploiting the future

16

https://doi.org/10.1145/3343737.3343747

Mixed_2Mixed_1

Used

Unused
20%

40%

60%

80%

100%

0%

U
n

u
se

d
 f

in
g
er

p
ri

n
t

(%
)

RocksDB Graph

0.2

0.4

0.6

0.8

1.0

0.0
Kernel

N
o
rm

a
li

ze
d

 h
it

 r
a
ti

o
×1-LRU

×1-LFU

×2-LRU

×2-LFU

×4-LRU

×4-LFU

Mixed_2Mixed_1RocksDB GraphKernel

(a) Hit ratio variations under different cache sizes and re-
placement policies.

(b) Usage breakdown of fingerprints before their evictions.

Figure 1: Comparisons of existing fingerprint cache management techniques.

data duplicability at the I/O-activity level, PCDedup efficiently
manages a fingerprint cache. Unlike the existing scheme,
PCDedup employs an admission test for the fingerprint cache
and decides which fingerprints will be stored in the finger-
print cache based on the future data duplicability of the
I/O activity, thus preventing unnecessary fingerprints from
polluting the fingerprint cache. PCDedup automatically de-
tects I/O activities during runtime based on write program
contexts (PCs) [12]. In order to accurately reflect the time-
varying nature of in-line SSD deduplication, PCDedup peri-
odically monitors each PC’s future data duplicability and
updates a list of admissible PCs to the fingerprint cache.

In order to evaluate the effectiveness of PCDedup, we have
implemented PCDedup by extending an existing page-level
FTL using a flash emulation environment [13]. Our exprimen-
tal results using real-world applications show that PCDedup
can reduce the total amount of written data by up to 16.4%
over the existing deduplication scheme while the fingerprint
management overhead is lowered on average by 68.6%.

The rest of this paper is organized as follows. We explain
the key motivations behind PCDedup in Section 2. Section 3
describes the design and implementation of PCDedup. The
experimental results are shown in Section 4. Finally, we con-
clude with a summary and future work in Section 5.

2 BASIC IDEA
2.1 Inefficient Fingerprint Cache

Management
In order to understand how the fingerprint cache size affects
the overall efficiency of an in-line deduplication technique,
we quantitatively evaluated the performance of existing fin-
gerprint cache management techniques while varying the
fingerprint cache size. For each benchmark program Φ, we
first computed the total number NΦ of fingerprints that ap-
pear more than once in its execution. For our evaluation
using the benchmark program Φ, we used three different fin-
gerprint cache configurations: ×1, ×2 and ×4 configurations
where the size of a fingerprint cache is set by NΦ, 2× NΦ,
and 4× NΦ, respectively. For each cache configuration, we

tested two representative cache replacement policies, LRU
and LFU, used in most in-line deduplication techniques [8].
See Section 4.1 for a detailed description of benchmarks.
Fig. 1 summarizes the key findings from our evaluation

study. The values in Fig. 1 are normalized to the hit ratio with
an unlimited fingerprint cache. As shown in Fig. 1(a), the hit
ratio of existing fingerprint cache management techniques
is very low. For example, when the cache is managed under
LRU, which works better than LFU, only 31.1% of the total
duplicates can be successfully identified even though the
fingerprint cache is large enough to contain all the duplicate
fingerprints that appear more than once of a benchmark
program. Larger cache sizes, as shown in ×2-LRU and ×4-
LRU in Fig. 1(a), do not significantly improve the hit ratio
either. For example, in Graph, the hit ratio of ×4-LRU is
increased merely by 3.21% over that of ×1-LRU.
In order to find the root cause of the inefficiency in the

fingerprint cache, we monitored how each entry in the fin-
gerprint cache is referenced from its insertion to the cache
to its eviction from the cache. For simplicity, we divided fin-
gerprints into two sets, Used and Unused. If a fingerprint is
referenced at least once before its eviction from the cache, it
is added to Used. On the other hand, a fingerprint is evicted
with no reference, it is added to Unused. Fig. 1(b) shows a
breakdown of two sets under the ×1 configuration. As shown
in Fig. 1(b), at least 84.2% of all the fingerprints belong to Un-
used. That is, most fingerprints are added to the fingerprint
cache but they polluted the fingerprint cache only by evict-
ing the useful fingerprints which belong to Used. In order
to improve the hit ratio of the fingerprint cache, it is impor-
tant to decide in advance whether a fingerprint is in Used
or Unused. Unfortunately, existing management techniques
cannot effectively predict a priori that a fingerprint will be a
member of Used or a member of Unused.

17

0.00

0.10

0.20

0.30

0.40 1.0

R
a
ti

o
 o

f
to

ta
l

w
ri

tt
en

 d
a
ta

D
a
ta

 d
u

p
li

ca
b

il
it

y

0.00

0.04

0.06

0.08

0.12

D
a
ta

 d
u

p
li

ca
b

il
it

y

0.02

0.10

11

2 3 4 5 6 7 8 9 10 11

10

8

9

7

6

5

4

3

2

1

1

Consumer PC

P
ro

d
u

ce
r

 P
C

RocksDB Kernel

0.8

0.6

0.4

0.2

0.0

1.0

R
a
ti

o
 o

f
to

ta
l

w
ri

tt
en

 d
a
ta

0.8

0.6

0.4

0.2

0.0

Written dataData duplicabilityWritten dataData duplicability

1.0

0.0

(a) Per-PC patterns in RocksDB. (b) Per-PC patterns in Kernel. (c) Inter-PC patterns.

Figure 2: Data duplication patterns under different workloads.

2.2 Program Contexts as Duplication
Predictors

In order to improve the hit ratio of a fingerprint cache, our
main insight was that the fingerprint cache should be man-
aged at a higher abstraction level than the logical block address
(LBA) so that cache pollutions from fingerprints in Unused
can be avoided. Since I/O activities are known to be effective
in representing the application’s I/O context [12], we focused
on developing I/O activity-centric management technique.
An I/O activity is captured by a program context (PC), which
represents an execution phase of an application [14]. In this
work, since we are interested in writes, a program context
is defined as an execution path of an application which in-
vokoes write-related system functions such as write() and
writev() in the Linux kernel. We represent a PC by sum-
ming program counter values of all the functions along the
execution path which leads to a write system call [12].
The key motivation behind PCDedup is that if we monitor

data duplication characteristics of each PC, we may be able
to predict the future data duplicability of the same PC. In
order to validate that PCs are useful abstraction units in
managing the fingerprint cache, we evaluated if different
PCs exhibit distinct characteristics in their data duplication
patterns. Fig. 2 shows the evaluation results in RocksDB
and Kernel where four PCs and seven PCs were identified,
respectively. In Figs. 2(a) and 2(b), PCs are compared by
their data duplicability and the amount of written data. For
a PC, PCi , of a program Φ, we define the data duplicabil-
ity dd(PCi) of PCi as the probability that data written by
PCi will be duplicates of later writes from the program Φ.
For example, in Fig. 2(a), dd(PC3) is 0.34 while dd(PC1) is
0.03. In RocksDB, about 34.1% of data written by PC3 (which
represents the compaction activity) are duplicates of later
writes. On the other hand, only 3.2% and 0.1% of data written
by PC1 (for write-ahead logging in RocksDB) and PC4 (for
human-readable logging in RocksDB) are duplicates of later
writes, respectively. Furthermore, Fig. 2(a) shows that PC3 is
responsible for about 66.8% of the total amount of writes in
RocksDB. With its high data duplicability ratio, it is logical
for fingerprints from PC3 to be inserted to the cache. On the

other hand, it would be not effective to store fingerprints
from PC4 into the cache with its very low data duplicability.
We observed similar per-PC data duplication patterns in

Kernel as shown in Fig. 2(b). PC5, PC7, and PC10, which corre-
spond to write activities that produce executable files during
a kernel compilation process, are likely to be duplicated later
by succeeding compilation steps. On the other hand, PC6,
PC8, and PC9, which create temporary files that are quickly
deleted, are less likely to be deduplicated later.
In our evaluation, we also observed that not all PCs are

equally duplicable each other. Instead, for a given PC PCi ,
there exist one or two dominant PCs, PCj or PCk , whose
writes are duplicates of the previous writes from PCi . We
call PCi a producer PC and PCj and PCk consumer PCs.
Fig. 2(c) illustrates that strong producer-consumer PC rela-
tionships exist inMixed_1 using a heat map representation.
For each producer PC shown along the y-axis, each row
shows its consumer PCs with their proportions of duplica-
bility withe the producer PC. For example, for the producer
PC PC2 (which represents the flushing activity in RocksDB),
46.3% of its writes are duplicates with PC2 itself while PC3
(which represents the compaction activity) are responsible
for the remaining 53.7% of duplicates with PC2. The strong
producer-consumer PC relationship provides a useful direc-
tion for reducing the search overhead of the fingerprint cache.
If the consumer PCs of a given PC were known, fingerprint
search steps could be limited to its consumer PCs, thus dra-
matically reducing the overall fingerprint search overhead.

3 DESIGN AND IMPLEMENTATION OF
PCDEDUP

As we have observed in Section 2.2, PC provides useful hints
to predict future duplication patterns. Using PC information,
PCDedup is able to make a better decision in three main stages
of the deduplication process, cache insertion, victim selection,
and fingerprint search.

Fig. 3 shows an overall write procedure of PCDedup. It first
collects PC information from incoming I/O requests (a PC
extractor) and computes fingerprints (a hash engine). A PC-
based admission controller decides whether or not to cache

18

PC Extractor
Host writes

Hash engine (MD5)

NAND Flash Memory

(LBA, data, PC)

(LBA, data, PC, fingerprint)

PC-based Admission Controller

Skipped

for Blacklist PC

Deduplication Engine

PC Monitor

PC Table
Entries

for PC 0
…

Dedup Table

Entries

for PC 1

Write unique page

PC-based

fingerprint

eviction

Application

PC-based fingerprint searching

Figure 3: An overall write procedure of PCDedup.

given fingerprints for deduplication, depending on their pop-
ularity. A deduplication engine maintains promising finger-
prints with their PC values, collecting the correlation be-
tween PCs as well as their duplicate patterns. Extracting PCs
from I/O requests and computing fingerprints are explained
very well by many prior studies [4, 6, 12, 14]. Thus, in the
rest of this section, we focus on explaining how PCDedup’s
deduplication engine operates to collect popular fingerprints
and estimate the correlation between PCs. We then explain
how PCDedup uses the collected information to better manage
a fingerprint cache.

3.1 PC Monitor
PCDedup internally maintains two tables, a PC table and a
Dedup table. The PC table contains PC-related information,
while the Dedup table has the information for dedpulica-
tion, such as fingerprints, source LBAs, and so on. Each
entry of the PC table keeps several fields to derive four pa-
rameters: 1) Dedup_Ratio, 2) Cumulative_Dedup_Ratio, 3)
Relation_Bitmap, and 4) Blacklist .

Dedup_Ratio is a deduplication ratio of a specific PC,
which can be expressed as Dedup_Count

Req_Count , where Req_Count
is the number of write requests to a PC and Dedup_Count is
the number of requests deduplicated. When the SSD receives
a write request, the PC monitor first locates a table entry
corresponding to a given PC and updates Req_Count in the
table. Then, it looks up the Dedup table to figure out the de-
sired PC exists. If does, Dedup_Count in the PC increases by
one. The PC monitor resets Dedup_Count and Req_Count
of each PC after a predefined time window. To capture a
long-term characteristic of PCs, PCDedup updates a moving-
average value, Cumulative_Dedup_Ratio, of each entry us-
ing Dedup_Count and previous Cumulative_Dedup_Ratio.
Relation_Bitmap maintains the correlation between two

PCs that have a producer-consumer relationship. For ex-
ample, if the same data that were previously written by
PC1 are rewritten by PC2, it means the two PCs, PC1 and
PC2, are strongly correlated with each other. Blacklist rep-
resents PCs that have had little deduplication ratios in the
past and are less likely to remove future duplicate writes.

PC no. Dedup_

Count

Req_

Count

Dedup_

Ratio

Relation_

Bitmap

Blacklist Cumulative_

Dedup_Ratio

1 0 0 0.40 N 0.40

2 0 0 0.05 Y 0.05

3 0 0 0.00 Y 0.00

4 0 0 0.10 N 0.10

Total deduplication ratio = 0.26

Blacklist threshold parameter = 0.2

Blacklist threshold = 0.26 × 0.2 = 0.052

time window 0

PC no. Dedup_

Count

Req_

Count

Dedup_

Ratio

Relation_

Bitmap

Blacklist Cumulative_

Dedup_Ratio

1 40 100 0.00 N 0.00

2 1 20 0.00 N 0.00

3 0 10 0.00 N 0.00

4 5 50 0.00 N 0.00

time window 1

Figure 4: An illustrative example of updating PC table.

When Dedup_Ratio is being calculated, PC monitor sees if
each PC should belong to the blacklist. PCDedup compares
Dedup_Ratio of each PC with the average deduplication ra-
tio of all the PCs. If it is lower than 20% of the average, the
corresponding PC is put into the black list. The 20% thresh-
old value is empirically decided based on our experiments.
Once a certain PC becomes a member of the Blacklist , all the
requests belonging to that PC are filtered out and are not con-
sidered to be candidates for deduplication. Since fingerprints
for black-listed PCs are not cached in the fingerprint cache,
PCDedup can better use the cache only for popular data.
Fig. 4 shows an illustrative example when the PC mon-

itor updates the PC table. Since the time window has not
yet passed, the Dedup_Ratio of each PC has not yet been
calculated. After a time window, the PC monitor updates
the Dedup_Ratio of each PC. The PC monitor calculates the
blacklist threshold value of 0.052 by multiplying the total
cache’s Dedup_Ratio of 0.26 by the Blacklist threshold pa-
rameter of 0.2. In the example, PC2 and PC3 showed poor
deduplication efficiency (0.05 and 0.00, respectively). There-
fore, PC2 and PC3, which have lower efficiency than the
blacklist threshold, are updated to blacklist. Dedup_Count
and Req_Count are then initialized for calculation of the
next time window. For the example in Fig. 4, we assume that
writes from PC2 and PC3 are duplicated only with the pages
previously written by oneself, while the duplication caused
by PC1 and PC4 occurs also on the pages written by each
other. Therefore, the Relation_Bitmap values of PC2 and PC3
are updated only in the second index and the third index,
respectively, while those of PC1 and PC4 are updated with
the first and fourth indices.

3.2 PC-based Selective Deduplication
The admission controller is responsible for performing se-
lective deduplication, and, as pointed out before, it is simply
done by referring to a blacklist field in the PC table. More
specifically, when a newwrite request comes, PCDedup checks

19

if its PC is blacklisted or not and then inserts the new finger-
print to the Dedup table only if it is not.

The selective deduplication can be controlled by dynami-
cally adjusting two parameters, the blacklist threshold and
the time window length. When the fingerprint cache size is
small, a high blacklist threshold is preferred so as to aggres-
sively prevent unnecessary fingerprints from being cached.
Conversely, when the cache is large enough for the work-
load size, it is necessary to decrease the threshold to perform
as much deduplication as possible. It is also important to
properly tune the length of the time window for high dedu-
plication efficiency. If the length of the time window is too
long, fingerprints from PCs that should be blacklisted are
unnecessarily inserted into the cache until time window is
over. On the other hand, if we use too short time window
to prevent this, the PC table update process becomes fre-
quent and its overhead increases. Therefore, it is necessary
to match the unit of time window with the minimum unit
that can catch the duplication characteristic of the workload.

3.3 PC-based Eviction Policy
In most cases, the size of the fingerprint cache cannot contain
all of the fingerprints in the workload, so some fingerprints
have to be evicted from the cache to insert new fingerprint.
PCDedup uses an enhanced LRU policy that is combined with
PC-based prediction, which performs better than a naive LRU
policy considering only the recency of fingerprint references.
The eviction process of PCDedup is done in the following

order. First, PCDedup checks whether there is a cached fin-
gerprint from a blacklisted PC. Since blacklisted PCs are ex-
pected to scarcely cause deduplication, PCDedup immediately
remove all such fingerprints to reclaim the cache space for
new fingerprints. This is a uncommon case, but it can happen
in the eviction immediately after some PCs are blacklisted. If
such fingerprints do not exist, PCDedup retrieves the PC table
to figure out which PC has the smallest Dedup_Count in the
current time window among non-blacklisted PCs. Then, it
selects the least recently used fingerprint from the PC as a
victim, and evicts it from the cache.

The proposed PC-based LRU policy can solve the dupli-
cation priority inversion problem that can occur when us-
ing the naive LRU. For example, as shown in Fig. 2(a), in
RocksDB, data duplication occurs mainly in the flushing con-
text and the compaction context. Due to the nature of the
LSM tree, the flushing context at the higher level is more
frequent than compaction at the lower level. However, the
data duplicability of the compaction context is higher than
the flushing context because the data used in the compaction
is less likely to change. When the naive LRU is used as an
eviction policy, fingerprints created by the compaction con-
text are frequently evicted by flushing, which means that

a fingerprint with high data duplicability becomes a victim
in order to insert a fingerprint with low data duplicability.
The proposed PC-based LRU policy solves this problem by
preventing the fingerprint of a PC showing high data dupli-
cability from becoming a victim even if it is least recently
entry.

3.4 Selective Fingerprint Searching
PCDedup reduces fingerprint search overheads by separately
managing the fingerprint cache on a PC-by-PC basis. That is,
PCDedup maintains multiple buckets in the Dedup table and
puts entries with an identical PC in the same bucket. This
makes it possible for us to look up only a single bucket with
a smaller number of fingerprints, thereby reducing overall
search latency. As illustrated in Fig. 2(c), however, there
is a possibility that a fingerprint we look for are kept in
another bucket with a different PC number. This problem
can be addressed by seeing Relation_Bitmap. If PCDedup does
not find a matched fingerprint in the designated bucket, it
refers to Relation_Bitmap and figures out what a correlated
PC is. Then, it looks up the bucket with the correlated PC.
The PC-based selective fingerprint search effectively reduces
the number of comparisons over the existing deduplication
schemes that need to search for a matched one in a large
fingerprint cache.

4 EXPERIMENTAL RESULTS
4.1 Experimental Settings
In order to evaluate the effectiveness of the proposed tech-
niques, we have implemented PCDedup by extending page-
level FTL using a flash emulation environment [13]. Our
evaluation platform can support up to the 512-GB capacity,
but for fast evaluation, the storage capacity was set to 16 GB.
We have compared PCDedup with two different existing dedu-
plication schemes: Dedup-LFU and Dedup-LRU. Dedup-LFU
performs existing page-based deduplication and uses LFU as
fingerprint cache eviction policy. Dedup-LRU also performs
page-based deduplication the same, but uses LRU as finger-
print cache eviction policy.
For our evaluations, we used five workloads, RocksDB

(a key value database application [11]), Graph (Graphchi,
a graph analysis application [15]), Kernel (a Linux kernel
development workload),Mixed_1 (RocksDB + Kernel), and
Mixed_2 (RocksDB +Graph). ForRocksDB, fillrandom bench-
mark in db_bench tool was used to generate write-intensive
workload. For Graph, PageRank algorithm was repeated 5
iterations with stack overflow network graph [16] as an in-
put data. For Kernel, a Linux kernel was built 3 times by
GCC. Two mixed workloads, Mixed_1 and Mixed_2, were
used to mimic more realistic environments where multiple
applications are sharing a single SSD. For the fingerprint

20

0.5

0.7

0.8

0.9

1.0

N
o

rm
a

li
ze

d
 p

a
g

e
w

ri
te

s

PCDedupDedup-LFU Dedup-LRU PCDedup

PCDedup-

0.0

0.2

0.4

0.8

1.0

N
o

rm
a

li
ze

d
 n

u
m

b
er

 o
f

co
m

p
a

ri
so

n

0.6

0.6

U
n
u
s
e
d

fi
n

g
er

p
ri

n
t

(%
)

50%

70%

90%

100%

80%

PCDedup

Dedup

60%

Mixed_1RocksDB GraphKernel Mixed_2 Mixed_1RocksDB GraphKernel Mixed_2 Mixed_1RocksDB GraphKernel Mixed_2

(a) Normalized amount of written data. (b) Ratio of unused fingerprints. (c) Normalized fingerprint comparisons.

Figure 5: Comparisons of different deduplication schemes under five I/O workloads.

cache, we used ×1 configuration (in Section 2.1) where the
cache size is set by the total number of duplicate fingerprints
in the each workload.

4.2 Performance Evaluation
In order to compare the lifetime gains of PCDedup over the
existing deduplication schemes, we measured the number
of page writes for each deduplication scheme as shown in
Fig. 5(a). Fig. 5(a) is normalized to the number of page writes
when no deduplication scheme was applied. PCDedup effec-
tively reduced page writes by up to 40% (22.8% on average)
and 16.4% (9.4% on average), over Dedup-LFU and Dedup-LRU,
respectively. In particular, the proposed PCDedupwas themost
effective in RocksDB. It is because, in RocksDB, one PC (com-
paction) has very high data duplicability while that of others
(for logging) has very trivial. In such a case, PCDedup can keep
only promising fingerprints from the PC with high duplica-
bility, while the other deduplication schemes cannot prevent
unnecessary fingerprints from evicting promising ones.

To evaluate the efficacy of the cache management, we also
measured the ratio of unused entries before eviction when
Dedup-LRU and PCDedup. As shown in Fig. 5(b), PCDedup re-
duced unused fingerprints in the cache by 6.8% over Dedup-LRU.
Especially, in Mixed_2, the difference between PCDedup and
existing deduplication scheme was 10.11%, which was the
largest. The main reason for large difference as follows. In
Mixed_2, fingerprints that were never used before being
evicted were mostly generated by Graph. PCDedup can detect
the relatively low deduplication ratio of Graph’s PCs by com-
paring the high deduplication ratio of RocksDB’s PCs. After
detection, PCDedup blacklisted all PCs of Graph, therefore the
fingerprints generated by Graph cannot enter to the cache
at all. However, the existing deduplication schemes always
inserts the Graph’s fingerprints that have high probability
to be evicted without being used.
In order to evaluate the improvement of software over-

head during deduplication process of PCDedup, we measured
the number of fingerprint comparison during fingerprint
searching. We also evaluated PCDedup-, which excluded the

selective fingerprint searching of PCDedup. Fig. 5(c) shows the
normalized number of fingerprint comparison for PCDedup,
and PCDedup-. For this evaluation, the number of fingerprint
comparison was calculated as follows: the number of search-
ing entire cache × the number of fingerprints comparison
per searching. As shown in Fig. 5(c), PCDedup- reduced the
number of fingerprint comparisons on average by 31.4% due
to reduced the first factor. Furthermore, PCDedup reduced the
number of comparisons by 68.6% on average by reducing the
both factors.

5 CONCLUSION
In this paper, we found the inefficiency of existing finger-
print cache management scheme based on fingerprint level
information. To alleviate this inefficiency, we proposed a
novel fingerprint management scheme, PCDedup, which can
effectively manage fingerprint cache by predicting the du-
plicate pattern of an application through information of the
I/O activity level. Based on this prediction, PCDedup is able to
make a better decision in three main stages of the deduplicia-
tion process, cache insertion, victim selection, and fingerprint
searching. Our experimental results showed PCDedup reduced
the total amount of written data over existing deduplication
scheme by up to 16.4% (9.4% on average) while the finger-
print manage overhead is lowered on average by 68.6%. Our
work in this paper can be extended in several directions. For
example, in this paper, we assume that the fingerprint cache
is kept only in the internal memory of the SSD. However,
it will be an interesting extension to keep fingerprint cache
also in NAND flash page of SSD and prefetch fingerprints
before they used by predicting duplicate pattern of data.

6 ACKNOWLEDGMENTS
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(Ministry of Science and ICT) (NRF-2015M3C4A7065645,
NRF-2018R1A2B6006878 and NRF-2017R1E1A1A01077410).
(Corresponding Author: Jihong Kim)

21

REFERENCES
[1] M. Goldman, K. Pangal, G. Naso, and A. Goda. 25nm 64gb 130mm2

3bpc nand flash memory. In Proceedings of the International Memory
Workshop (IMW), 2011.

[2] Z. Fan and D. Park. Extending ssd lifespan with comprehensive non-
volatile memory-based write buffers. Journal of Computer Science and
Technology, 34(1):113–132, 2019.

[3] F. Chen, T. Luo, and X. Zhang. Caftl: A content-aware flash translation
layer enhancing the lifespan of flash memory based solid state drives.
In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST), 2011.

[4] T. Kim, S. Lee, and J. Kim. Finededup: A fine-grained deduplication
technique for extending lifetime of flash-based ssds. JOURNAL OF
SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 17(5):648–659, 2017.

[5] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam. Leverag-
ing value locality in optimizing nand flash-based ssds. In Proceedings
of the USENIX Conference on File and Storage Technologies (FAST), 2011.

[6] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. idedup:
Latency-aware, inline data deduplication for primary storage. In Pro-
ceedings of the USENIX Conference on File and Storage Technologies
(FAST), 2012.

[7] B. Mao, H. Jiang, Z. Wu, and L. Tian. Pod: Performance oriented i/o
deduplication for primary storage systems in the cloud. In Proceedings
of the IEEE International Parallel DIstributed Processing Symposium
(IPDPS), 2014.

[8] H. Wu, C. Wang, Y. Fu, S. Sakr, K. Lu, and L. Zhu. A differentiated
caching mechanism to enable primary storage deduplication in clouds.
IEEE Transactions on Parallel and Distributed Systems, 29(6):1202–1216,
2018.

[9] R. Koller and R. Rangaswami. I/o deduplication: Utilizing content
similarity to improve i/o performance. ACM Transactions on Storage, 6
(13):1–26, 2010.

[10] M. Li, H. Zhang, Y. Wu, and Z. Zhao. Prefetch-aware fingerprint cache
management for data deduplication systems. Frontiers of Computer
Science, 13(3):500–515, 2019.

[11] Facebook. RocksDB. http://rocksdb.org/, 2013.
[12] T. Kim, D. Hong, S. Hahn, M. Chun, S. Lee, J. Hwang, J. Lee, and J. Kim.

Fully automatic stream management for multi-streamed ssds using
program contexts. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST), 2019.

[13] S. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and Arvind.
Bluedbm: An appliance for big data analytics. In Proceedings of the
International Symposium on Computer Architecture (ISCA), 2015.

[14] F. Zhou, J. Behren, and E. Brewer. Amp: Program context specific buffer
caching. In Proceedings of the USENIX Annual Technical Conference
(ATC), 2005.

[15] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2012.

[16] Stanford Large Network Dataset Collection. https://snap.stanford.edu/
data/, 2017.

22

http://rocksdb.org/
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/

