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Abstract

A modern datacenter server aims to achieve high energy
efficiency by co-running multiple applications. Some of
such applications (e.g., web search) are latency sensi-
tive. Therefore, they require low-latency I/O services to
fast respond to requests from clients. However, we ob-
serve that simply replacing the storage devices of servers
with Ultra-Low-Latency (ULL) SSDs does not notably
reduce the latency of I/O services, especially when co-
running multiple applications. In this paper, we pro-
pose FLASHSHARE to assist ULL SSDs to satisfy differ-
ent levels of I/O service latency requirements for differ-
ent co-running applications. Specifically, FLASHSHARE
is a holistic cross-stack approach, which can signifi-
cantly reduce I/O interferences among co-running appli-
cations at a server without any change in applications.
At the kernel-level, we extend the data structures of the
storage stack to pass attributes of (co-running) applica-
tions through all the layers of the underlying storage
stack spanning from the OS kernel to the SSD firmware.
For given attributes, the block layer and NVMe driver
of FLASHSHARE differently manage the I/O scheduler
and interrupt handler of NVMe. We also enhance the
NVMe controller and cache layer at the SSD firmware-
level, by dynamically partitioning DRAM in the ULL
SSD and adjusting its caching strategies to meet diverse
user requirements. The evaluation results demonstrate
that FLASHSHARE can shorten the average and 99th-
percentile turnaround response times of co-running ap-
plications by 22% and 31%, respectively.

1 Introduction

Datacenter servers often run a wide range of online ap-
plications such as web search, mail, and image ser-

vices [8]. As such applications are often required to
satisfy a given Service Level Agreement (SLA), the
servers should process requests received from clients and
send the responses back to the clients within a certain
amount of time. This requirement makes the online ap-
plications latency-sensitive, and the servers are typically
(over)provisioned to meet the SLA even when they un-
expectedly receive many requests in a short time period.
However, since such events are infrequent, the average
utilization of the servers is low, resulting in low energy
efficiency with poor energy proportionality of contempo-
rary servers [28, 17].

To improve utilization and thus energy efficiency, a
server may run an online application with offline applica-
tions (e.g., data analytics workloads), which are latency-
insensitive and are often throughput-oriented [26, 30,
29]. In such cases, it becomes challenging for the server
to satisfy a given SLA for the online application because
co-running these applications further increase I/O ser-
vice latency. We observe that device-level I/O service
latency of a high-performance NVMe solid state drive
(SSD) contributes to more than 19% of the total response
time of online applications, on average. To reduce the
negative impact of long I/O service latency on response
time of online applications, we may deploy Ultra-Low-
Latency (ULL) SSDs based on emerging memory, such
as Z-NAND [36] or 3D-Xpoint [15]. These new types
of SSDs can accelerate I/O services with ULL capabil-
ity. Our evaluation shows that ULL SSDs (based on Z-
NAND) can give up to 10× shorter I/O latency than the
NVMe SSD [14] (cf. Section 2).

These ULL SSDs offer memory-like performance, but
our in-depth analysis reveals that online applications can-
not take full advantage of ULL SSDs particularly when
a server co-runs two or more applications for higher uti-
lization of servers. For example, the 99th percentile re-
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sponse time of Apache (i.e., online application) is 0.8 ms.
However, the response time increases by 228.5% if the
server executes it along with a PageRank (i.e., offline ap-
plication). A reason behind this offset of the benefits of
memory-like performance is that server’s storage stack
lacks understanding of criticality of user’s I/O requests
and its impact on the response time or throughput of a
given application.

In this paper, we propose FLASHSHARE, a holis-
tic cross-stack approach that enables a ULL SSD de-
vice to directly deliver its low-latency benefits to users
and satisfy different service-level requirements. Specif-
ically, FLASHSHARE fully optimizes I/O services from
their submission to execution to completion, by punch-
ing through the current server storage stack. To en-
able this, FLASHSHARE extends OS kernel data struc-
tures, thereby allowing users to dynamically configure
their workload attributes (for each application) without
any modification to their existing codes. FLASHSHARE
passes these attributes through all components spanning
from kernel to firmware and significantly reduces inter-
application I/O interferences at servers when co-running
multiple applications. The specific stack optimizations
that this work performs can be summarized as follows:
• Kernel-level enhancement. At the kernel-level, there
are two technical challenges in exposing the pure perfor-
mance of ULL SSDs to users. First, the Linux multi-
queue block layer (blk-mq) holds I/O requests in its soft-
ware/hardware queues, introducing long latencies. Sec-
ond, the current standard protocol of the NVMe queu-
ing mechanism has no policy on I/O prioritization, and
therefore, a request from an offline application can eas-
ily block an urgent I/O service requested by an online ap-
plication. FLASHSHARE carefully bypasses the latency-
critical requests to the underlying NVMe queue. In addi-
tion, our NVMe driver pairs NVMe submission and com-
pletion queues by being aware of the latency criticality
(per application).
• Firmware-level design. Even though kernel-level op-
timizations guarantee to issue latency-critical requests
with the highest order, the ULL characteristics (memory-
like performance) cannot be fully exposed to users if the
underlying firmware has no knowledge of latency crit-
icality. In this work, we redesign the firmware for I/O
scheduling and caching to directly disclose ULL char-
acteristics to users. We partition ULL SSD’s embed-
ded cache and separately allocate the cache for each I/O
service based on its workload attributes. Our firmware
dynamically updates the partition sizes and adjusts the
prefetch I/O granularity in a fine-granular manner.
• New interrupt services for ULL SSDs. We observe
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Figure 1: High-level view of software kernel stack.
that the current NVMe interrupt mechanism is not op-
timized for ULL I/O services, due to the long latency
incurred by storage stack layers. We also discover that a
polling method (implemented in Linux 4.9.30) consumes
many CPU cycles to check the completion of I/O ser-
vices, which may not be a feasible option for servers co-
running two or more applications. FLASHSHARE em-
ploys a selective interrupt service routine (Select-ISR),
which uses message-signaled interrupts for only offline
applications, while polling the I/O completion for online
interactive applications. We further optimize the NVMe
completion routine by offloading the NVMe queue and
ISR management into a hardware accelerator.

We implement the kernel enhancement components in
a real I/O stack of Linux, while incorporating Select-ISR
and hardware/firmware modifications using a full system
simulation framework [2, 21]. We also revise the mem-
ory controller and I/O bridge model of the framework,
and validate the simulator with a real 800GB Z-SSD pro-
totype. The evaluation results show that FLASHSHARE
can reduce the latency of I/O stack and the number of
system context switch by 73% and 42%, respectively,
while improving SSD internal cache hit rate by 37% in
the co-located workload execution. These in turn shorten
the average and 99th percentile request turnaround re-
sponse times of the servers co-running multiple appli-
cations (from an end-user viewpoint) by 22% and 31%,
respectively.

2 Background

2.1 Storage Kernel Stack
Figure 1 illustrates the generic I/O stack in Linux, from
user applications to low-level flash media. An I/O re-
quest is delivered to a file system driver through the vir-
tual file system interface. To improve system-level per-
formance, the request can be buffered in the page buffer
module, using an address space structure, which in-
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cludes the inode information and mapping/spin-lock
resources of the owner file object. When a cache miss oc-
curs, the file system retrieves the actual block address, re-
ferred to as Logical Block Address (LBA) by looking up
inodes and sends the request to the underlying multi-
queue block layer (blk-mq) through a bio structure.

In contrast to the kernel’s block layer that operates
with a single queue and lock, the multi-queue block layer
(blk-mq) splits the queue into multiple separate queues,
which helps to eliminate most contentions on the single
queue and corresponding spin-lock. blk-mq allocates a
request structure (associated to bio) with a simple
tag and puts it in the per-CPU software queues, which
are mapped to the hardware issue queues. The soft-
ware queue of blk-mq merges the incoming request
with an already-inserted request structure that has the
same LBA, or an adjacent LBA to the current LBA. The
merge operation of blk-mq can reduce the total num-
ber of I/O operations, but unfortunately, it consumes
many CPU cycles to search through the software queues.
From the latency viewpoint, the I/O merging can be
one of the performance bottlenecks in the entire storage
stack. On the other hand, the hardware issue queues sim-
ply buffer/reorder multiple requests for the underlying
NVMe driver. Note that the hardware issue queue can
freely reorder the I/O requests without considering the
I/O semantics, since the upper-level file system handles
the consistency and coherence for all storage requests.

The NVMe driver exists underneath blk-mq, and it
also supports a large number of queue entries and com-
mands per NVMe queue. Typically, each deep NVMe
queue is composed of pairing a submission queue (SQ)
and a completion queue (CQ). The NVMe driver informs
the underlying SSD of the arrivals and completions of
I/O requests through head and tail pointers, allocated per
NVMe queue. In the storage stack, every request issued
by the NVMe driver is delivered to the PCI/PCIe device
driver in the form of a nvme rw command structure,
while the SSD dispatches them in an active manner; in
contrast to other storage protocols in which a host-side
controller must dispatch or transfer all data and com-
mands, NVMe SSDs can pull the command and data
stored in system memory from storage side without a
host intervention. When the I/O request is completed
by the SSD, it sends a message signaled interrupt (MSI)
that directly writes the interrupt vector of each core’s pro-
grammable interrupt controller. The interrupted core ex-
ecutes an ISR associated with the vector’s interrupt re-
quest (IRQ). Subsequently, the NVMe driver cleans up
the corresponding entry of the target SQ/CQ and returns
the completion results to its upper layers, such as blk-mq
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Figure 2: Overview of device firmware stack.
and filesystem.

2.2 Device Firmware Stack

Based on the NVMe specification, the deep queues
are created and initialized by the host’s NVMe driver
through the administrator queues, and the I/O requests in
the queues are scheduled by the NVMe controller that ex-
ists on top of the NVMe SSD firmware stack [46]. Most
high-performance SSDs, including all devices we tested
in this study [13, 14, 36], employ a large internal DRAM
(e.g., 1 GB ∼ 16 GB). Thus, underneath the NVMe con-
troller, SSDs employ an embedded cache layer, which
can immediately serve the I/O requests from the internal
DRAM without issuing an actual storage-level operation
when a cache hit occurs at the internal DRAM [42, 20].
If a cache miss or replacement is observed, the NVMe
controller or cache layer generates a set of requests (asso-
ciated with miss or replacement) and submits them to the
underlying flash translation layer (FTL), which manages
many Z-NAND chips across multiple channels [6, 18].

Figure 2 shows the components of the firmware
stack and depicts how the NVMe controller pulls/pushes
a request to/from the host. Specifically, when the
NVMe driver receives a request ( 1 ), it increases
the tail/head of SQ ( 2 ) and writes the doorbell regis-
ter ( 3 ) that the NVMe controller manages. The NVMe
controller then initiates to transfer the target data ( 4 )
associated with the tail from the host’s kernel mem-
ory pointed by the corresponding Physical Region Page
(PRP) (stored in nvme rw command). Once the DMA
transfer is completed, the NVMe controller moves the
head to the NVMe queue entry pointed by the tail ( 5 ),
and forwards the request to either the embedded cache
layer or underlying FTL ( 6 ). When a cache miss or re-
placement occurs, the FTL translates the target LBA to
the corresponding physical page address of the underly-
ing Z-NAND, and performs complex flash-related tasks
(if needed), such as garbage collection and wear-leveling
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Components Spec. Components Spec.

CPU
i7-4790 Memory 32GB
3.6GHz DDR3
8 cores Chipset H97

Table 1: Server configurations.
[38, 33, 5, 4, 12]. Unlike traditional NAND [11], Z-
NAND completes a 4KB-sized read service within 3 µs
[36] and we observed that a Z-NAND based ULL SSD
can complete an I/O service within 47∼52 µs, including
data transfer and FTL execution latencies (cf. Figure 3a).

After completing the service of the I/O request, the
NVMe controller increases the corresponding tail pointer
of CQ ( 7 ). It then performs a DMA transfer to the host
and changes the phase tag bit associated with the target
CQ entry ( 8 ). The controller notifies the DMA com-
pletion by sending an MSI to the host ( 9 ). The host’s
ISR checks the phase tag by searching through the queue
entries from the head to the tail. For the ones that have a
valid phase tag, the ISR clears the tag bit and processes
the rest of the I/O completion routines. Finally, it in-
creases the head of CQ ( 10 ), removes the correspond-
ing entry of SQ, and writes the CQ’s head doorbell of the
NVMe controller ( 11 ). While polling is not a standard
method in the NVMe specification, the state-of-the-art
Linux (4.9.30) can support it, since the NVMe controller
directly changes the phase tags of the target entries over
PCIe before sending the corresponding MSI. Thus, in the
kernel storage stack, the NVMe driver checks the phase
tags of CQ and simply ignores the MSI updates.

3 Cross-Layer Design

3.1 Challenges with Fast Storage
In this section, we characterize the device latency of a
prototype of real 800GB Z-NAND based ULL SSD by
comparing it against the latency of a high-performance
NVMe SSD [14]. We then evaluate the performance
of a server equipped with the ULL SSD, when Apache
(an online latency-sensitive application) co-runs with
PageRank (an offline throughput-oriented application).
While Apache requires responding to the service com-
ing from the client through TCP/IP by retrieving data on
object storage, PageRank performs data analytics over
Hadoop’s MapReduce (24GB dataset). The configura-
tion details of the server under test are listed in Table 1.

Figure 3a compares the average latency of the ULL
SSD and NVMe SSD, with the number of queue en-
tries varying from 1 to 64. The latencies of the ULL
SSD for the random and sequential access patterns are
42% and 48% shorter than that of the NVMe SSD, re-
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Figure 3: Application co-running analysis.

spectively. However, as shown in Figure 3b, we observe
that the turnaround response times of the online applica-
tion significantly degrade when co-running it along with
the offline application. Specifically, the response time
of Apache becomes 41% longer if PageRank also runs
on the same server. This performance deterioration is
also observed in the long tail: the 95th and 99th response
times of Apache under the co-running scenario increase
by 24% and 43%, respectively, compared to those of an
Apache-only execution scenario.

The reason behind these response time increases is
captured by Figure 3c. Once PageRank begins to per-
form I/O services (at 58,880 ms), the I/O services of
Apache gets interfered by PageRank, and this increases
the response time of Apache by 42× compared to the
standalone execution situation (before 58,880 ms). This
happens because the server storage stack has no knowl-
edge of the ultra-low latency exposed by the underlying
Z-NAND media, and also most of the components in
the stack cannot differentiate Apache’s I/O services from
PageRank’s I/O services (even though the two applica-
tions require different levels of the I/O responsiveness).

3.2 Responsiveness Awareness

It is very challenging for the kernel to speculate work-
load behaviors and predict the priority/urgency of I/O re-
quests [24]. Since users have a better knowledge of I/O
responsiveness, a more practical option is to offer a set
of APIs to users. However, such APIs require signifi-
cant changes to existing server application’s sources. In-
stead, we modify the Linux process control block, called
task struct, to accommodate a workload attribute
for each application. A potential issue in leveraging
the attribute, stored in task struct, from the soft-
ware layers in the storage stack is that a reference of
task struct may not be valid, based on the loca-
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Figure 4: Overview of our server stack optimizations.

tion of the storage stack and the timing when a layer re-
trieves such task struct. Therefore, it is necessary
for blk-mq and NVMe driver to have their own copies
of the workload attribute per I/O service. To this end,
we further extend address space, bio, request,
and nvme rw command structures to punch through the
storage stack and pass the workload attribute to the un-
derlying SSD firmware.

As such, FLASHSHARE provides a utility, called
chworkload attr, which allows servers to configure
and dynamically change the attribute of each ap-
plication similar as the nice mechanism [9]. The
chworkload attr helps users to embed the crit-
icality of responsiveness into each application’s
task struct. We modify the system call table (e.g.,
arch/x86/entry/syscalls/syscall 64.tbl)
and implement two system calls, to set/get the workload
attribute to/from the target task struct. These sys-
tem invocations are registered at /linux/syscall.h
with the asmlinkage tag. They change the attribute of
a specific process (given by the user from a shell), which
is implemented in /sched/cores.c. The chwork-
load attr simply invokes the two system calls with an
appropriate system call index, registered in the system
table. Using such interfaces, the chworkload attr
can capture the attribute and fill the information in
task struct for each application at the kernel level.
It should be noted that the chworkload attr is designed
for server-side users (e.g., datacenter operators), not
for client-side users who may recklessly ask a higher
priority all the time.

Figure 4 illustrates how the workload attribute is re-
ferred by task struct in the storage stack modified
by FLASHSHARE. If an incoming I/O request uses a di-
rect I/O (O DIRECT), the file system driver (EXT4 used
in our implementation) retrieves the attribute and puts it
into bio. Otherwise, the page cache copies the attribute
from task struct to address space. Therefore,

when blk-mq receives a bio, it includes the critical-
ity of responsiveness in the attribute, and copies that in-
formation to a request structure. Lastly, the NVMe
driver overrides the attribute to an unused field, called
rsvd2 of nvme rw command. The underlying SSD’s
firmware can catch the host-side attribute information per
request by reading out the value in rsvd2 and passing
it to the NVMe controller and embedded cache layer, the
details of which will be explained in Section 4.

3.3 Kernel Layer Enhancement

By utilizing the workload attributes, we mainly optimize
the two layers underneath the file system: blk-mq and
NVMe driver, as shown in Figure 4. The software and
hardware queues of blk-mq hold I/O requests with the
goal of merging or reordering them. Even though a deep
blk-mq queue can increase chances for merging and re-
ordering requests thereby higher bandwidth utilization,
it also introduces long queue waiting delays. This can,
unfortunately, hurt the responsiveness of online applica-
tions (and cannot take the advantage of ULL). To address
this potential shortcoming, we enhance blk-mq to bypass
all the I/O services requested from the online application
to the NVMe driver (without queueing), while tracking
other requests coming from the throughput applications
just like normal software and hardware queues. How-
ever, this simple bypass strategy potentially raises an I/O
hazard issue; a hazard could happen if an offline applica-
tion has an I/O request being scheduled by blk-mq to the
same LBA that a subsequent online application issued.

Because such request cannot be skipped in the queue,
blk-mq retrieves it, which may have the potential haz-
ard, from the software queue. If the operation type of
the retrieved request is different from that of the incom-
ing request that we want to bypass, blk-mq submits the
retrieved request along with the incoming request in tan-
dem. Otherwise, blk-mq merges those two requests into
a single request structure and forwards the merged re-
quest to the underlying NVMe driver.

Under blk-mq, the NVMe driver submits the bypassed
request to the corresponding SQ. One of the issues in
the NVMe queue management is that the head and tail
pointers for a pair of the target CQ/SQ are managed
by the (kernel-side) NVMe driver and the (firmware-
side) NVMe controller together in a round-robin fash-
ion. Thus, even though our modification in blk-mq pri-
oritizes latency-critical I/O services by expecting them
to be scheduled in the SQ earlier than other requests,
the NVMe controller can dispatch a service requested
by an offline application prior to the latency-critical I/O
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Figure 5: I/O execution analysis of ULL SSD.

service. This, in turn, makes the service latency of the
latter considerably longer. To address this undesirable
situation, we create two SQs and one CQ per core as
a pair of NVMe queue, which is different from a tradi-
tional NVMe queue management strategy. Specifically,
as shown in Figure 4, an SQ between two SQs is used for
the requests whose attributes come from online applica-
tions. In our implementation, the NVMe driver sends a
message via the administrator queue to inform the NVMe
controller of selecting a new queue arbitration method
that always gives a high priority to scheduling requests
in such the SQ. To avoid a starvation owing to the pri-
ority SQ, the NVMe driver drains the I/O requests origi-
nating from the offline applications if the number of such
queued requests is greater than a threshold, or if they are
not served within a certain amount of time. We observed
that it is best to start draining the queue with a 200 µs
threshold or when there are 8 pending queue entries.

4 I/O Completion and Caching

Figure 5a shows the actual latency improvement when
we use the Linux 4.9.30 polling mechanism for a ULL
SSD (Z-SSD prototype). In this evaluation, we set the
size of all the requests to 4KB. As shown in Figure
5a, the I/O latency with the polling mechanism is 12%
shorter than the one managed by MSI for all I/O request
patterns. However, we also observe that the cores in the
kernel mode are always busy in handling I/O comple-
tions. Specifically, Figure 5b shows the CPU utilization
of the polling mechanism for both the kernel and user
modes. This figure shows that the CPU utilization for
polling gets significantly high (almost 97% of CPU cy-
cles are used for only polling the I/O completion). This
high CPU utilization presents two technical issues. First,
as there is no core to allocate in handling the criticality
of I/O responsiveness, the original polling method is not
a feasible option for a server co-running multiple appli-
cations. Second, while a 12% latency improvement of
the polling method is still promising, we could shorten

Figure 6: The process implemented by the selective
interrupt service routine.

the latency even more, if we could alleviate the core-side
overheads brought by polling for the I/O completion.

4.1 Selective Interrupt Service Routine
FLASHSHARE uses polling for only I/O services origi-
nating from online applications, while MSI is still used
for offline applications. Figure 6 shows how this se-
lective ISR (Select-ISR) is implemented. We change
submit bio() of blk-mq to insert an incoming re-
quest (i.e., bio), delivered by the file system or page
cache, into its software queue if the attribute of bio in-
dicates an offline application. This request will be re-
ordered and served just like a normal I/O operation. In
contrast, if the incoming request is associated with an
online application, blk-mq directly issues it to the un-
derlying NVMe driver by invoking queue rq(). The
NVMe driver then converts the I/O request into NVMe
commands and enqueues it into the corresponding SQ.

With Select-ISR, the CPU core can be released from
the NVMe driver through a context switch (CS), if the
request came from offline applications. Otherwise, blk-
mq invokes to the polling mechanism, blk poll(),
after recording the tag of the I/O service along with
online applications. blk poll() continues to invoke
nvme poll(), which checks whether a valid comple-
tion entry exists in the target NVMe CQ. If it is, blk-mq
disables IRQ of such CQ so that MSI cannot hook the
procedures of blk-mq later again. nvme poll() then
looks up the CQ for a new entry by checking the CQ’s
phase tags. Specifically, nvme poll() searches an CQ
entry whose request information is matched with the tag
that blk poll() waits for completion. Once it detects
such a new entry, blk-mq exits from the infinite iteration
implemented in blk poll() and switches the context
to its user process.

A challenge in enhancing the storage stack so that it
can be aware of ULL is that, even though we propose
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(a) Hardware viewpoint. (b) Software viewpoint.
Figure 7: Overview of our I/O stack accelerator.

Select-ISR, polling still wastes many CPU cycles and
blk-mq consumes kernel CPU cycles to perform sim-
ple operations, such as searching the tag in SQ/CQ and
merging the requests for each I/O service invocation.
This is not a big issue with conventional SSDs, but with
a ULL SSD, it can prevent one from enjoying the full
benefits of low latency. For example, in Figure 5c, we
observed that polling and storage stack modules, includ-
ing ISR, context switching, and blk-mq cycles, take 58%
of total I/O completion time. Thus, as a further enhance-
ment of Select-ISR, we propose an I/O-stack accelerator.
Figure 7 shows how our I/O-stack accelerator is orga-
nized from the hardware and software viewpoints. This
additional enhancement migrates the management of the
software and hardware queues from blk-mq to an accel-
erator attached to a PCIe. This allows a bio generated
by the upper file system to be directly converted into a
nvm rw command. Especially, the accelerator searches
a queue entry with a specific tag index and merges bio
requests on behalf of a CPU core. The offload of such
tag search and merge operations can reduce the latency
overhead incurred by the software layers in the storage
stack by up to 36% of the total I/O completion time. The
specifics of this accelerator are described in Section 4.3.

4.2 Firmware-Level Enhancement

In our implementation, the NVMe controller is aware of
the two SQs per core, and gives a higher priority to the
I/O service enqueued in the latency-critical SQ. While
this I/O scheduling issue can be simply updated, a modi-
fication of the embedded cache layer to expose a shorter
latency to online applications can be challenging. Specif-
ically, the cache layer can starve latency-critical I/O ser-
vices if it serves more throughput-oriented I/O services.
This situation can be observed even when the cache layer
understands the workload attribute brought by the NVMe
driver/controller, as the internal DRAM is a shared re-
source in a given SSD. In addition, the I/O patterns and
locality of online applications are typically different from
those of offline applications. That is, a single generic

Figure 8: Example of adjustable cache partition.

cache access policy cannot efficiently manage I/O re-
quests from both online and offline applications.

The cache layer of FLASHSHARE partitions the
DRAM into two DRAM caches with the same number
of sets, but different ways of associativity (i.e., cache
ways) [45], and allocates each to online and offline ap-
plications, separately. If the size of partitioned caches
is fixed, it can introduce cache thrashing depending on
the I/O behavior of the given applications (and the cor-
responding workload patterns). For example, in Figure
8, if two partitioned caches (one for online applications
and another for offline applications) employ two ways
for each, the requests 2 ∼ 4 compete for the way ‘c’, and
they experience cache misses.

To address this, in cases of high I/O demands, our
cache layer collects the number of I/O accesses for the
online and offline applications at each epoch. The pro-
posed cache layer dynamically adjusts the number of
cache ways allocated to two different cache partitions.
As shown in Figure 8, if the cache splits can be adjusted
(cf. adjustable cache split), the ways ‘b’∼‘d’ can accom-
modate the requests 2 ∼ 4. However, as the way ’b’
is reallocated to the I/O requests of offline applications
(e.g., throughput-oriented I/Os), the latency critical re-
quest 1 is unable to access data residing in the way ‘b’,
introducing cache miss. To address this challenge, when
adjusting the cache ways, the cache layer keeps the data
for the previous owner as “read-only” until a new request
is written into the corresponding way.

Most firmware in SSDs read out the data from mul-
tiple memory media to improve parallelism, and there-
fore, the cache can be polluted by an ill-tuned prefetch-
ing technique. As shown in Figure 9, we leverage a
“ghost caching” mechanism [37, 31, 34] to help the
SSD controller to evaluate the performance (i.e., cache
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Figure 9: Adjustable cache prefetching scheme.

miss rate) of various prefetching configurations and ad-
just the cache layer to the optimal prefetching configu-
ration at runtime. Specifically, we build multiple ghost
caches, each maintaining only cache tags without any
actual data. The associativity and size of ghost caches
are configured the same way as the configuration of the
proposed cache layer, but each of these caches employs
a different prefetching I/O granularity. In each epoch,
FLASHSHARE identifies the ghost cache that exhibits
a minimum number of cache misses, and changes the
prefetch granularity of the cache layer to that of the se-
lected ghost cache.

4.3 I/O-Stack Acceleration
We load the kernel driver of the proposed accelera-
tor as an upper layer module of blk-mq (cf. Fig-
ure 7b). As shown in Figure 10, the accelera-
tor driver checks if the incoming bio is associated
with online latency-critical applications. If so, the
driver extracts the operation type, LBA, I/O size,
memory segment pointer (related to target data con-
tents), and the number of memory segments from
bio’ bio->bi opf, bio->bi iter.bi sector,
bio->bi iter.bi size, bio->bi io vec and
bio->bi vcnt, respectively. The kernel driver then
writes this extracted information into the corresponding
registers in base address registers (BAR) of the acceler-
ator. The accelerator then identifies an I/O submission
queue entry that has an LBA, which is the same as the
target LBA of incoming bio request. If the accelerator
finds such an entry, its merge logic automatically merges
the information (stored in BAR) into the target entry; oth-
erwise, the accelerator composes a new NVMe command
and appends it to the tail of the target SQ. Then, the ac-
celerator rings (writes) the doorbell register of the under-
lying ULL SSD. However, as the merge logic and ULL
SSD can simultaneously access the I/O SQ entries, an
I/O hazard may occur. To prevent such situations, we
propose to add a barrier logic, which is a simple MUX
and works as a hardware arbitrator. It allows either the
merge logic or ULL SSD (via BAR1 register) to access
the target NVMe SQ at one time. Once the I/O request

Figure 10: Design details of hardware accelerator.
is inserted into the SQ, the polling logic of our acceler-
ator starts to poll the corresponding CQ. When the I/O
service is completed, the accelerator raises an interrupt
signal for the accelerator driver. The driver then takes
the control of I/O completion.

Note that, since searching through all entries can in-
troduce a long latency, the accelerator employs content-
addressable memory (CAM), which keeps the LBA of re-
ceived nvme cmd instances (for I/O submissions). Us-
ing the content-addressable memory, our accelerator in
parallel compares the incoming LBA with all recorded
LBAs, thereby significantly reducing the search latency.
For the simultaneous comparison, the number of CAM
entries is set to be same as the number of SQ entries. In
addition, if there is no issued nvme cmd or nvme cmd
instance(s) is fetched by the underlying ULL SSD, the
corresponding SQ entries should be invalid. Thus, we
introduce a status bitmap to filter the entries, which do
not contain valid nvme cmd instances. Specifically, our
status bitmap is set to 1, if merge logic inserts a new
NVMe command; the status bitmap is reset to 0, if the
ULL SSD is detected to pull NVMe commands from I/O
SQ. If the status bitmap indicates that the request entries
in CAM (associated with the target SQ) are invalid, CAM
will skip searching those entries.

5 Evaluation

5.1 Experimental Setup
Implementation environment. We simulate our holistic
optimization approaches on an event-driven computer-
system architecture simulator, gem5 [2]. Specifically,
we configure it to a full system mode which runs on 64-
bit ARM ISA. We use Linux 4.9.30 as the default kernel
in this simulation, and set up 8 ARM cores with 2GHz,
which have private 64KB L1 data and 64KB L1 instruc-
tion caches. We also configure a 2GB DRAM-based
main memory, which is shared by all 8 cores. Note that,
as we employ a detailed architectural simulator (simu-
lation is up to 1000x slower than native-execution), we
scale the simulation memory size to reduce the warmup

484    13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



gem5 SimpleSSD
parameters value parameters values
core 64-bit ARM, 8, 2GHz read/write/erase 3us/100us/1ms
L1D$/L1I$ 64KB, 64KB channel/package 16/1
mem ctrler 1 die/plane 8/8
memory DDR3, 2GB page size 2KB
Kernel 4.9.30 DMA/PCIe 800MHz,3.0, x4
Image Ubuntu 14.04 DRAM cache 1.5GB

Table 2: The configurations of gem5 and SimpleSSD.

App Read Ratio I/O size I/Os per MegaInst. Seq Ratio
bfs 0.997 238KB 0.025 0.70
gpgnu 1.000 134KB 1.985 0.78
gp 0.995 23KB 0.417 0.81
gzip 0.989 150KB 0.105 0.66
index 0.998 28KB 0.205 0.79
kmn 1.000 122KB 0.037 0.82
PR 0.995 30KB 0.367 0.71
ungzip 0.096 580KB 0.076 0.79
wcgnu 1.000 268KB 0.170 0.75
wc 0.999 25KB 0.548 0.89
ap 0.999 24KB 0.666 0.11
au 0.476 27KB 1.205 0.13
is 0.990 12KB 5.761 0.86

Table 3: The characteristics of workloads.

time of the CPU caches and DRAM. This is a com-
mon practice in architectural studies [1]. Our simula-
tion environment integrates an accurate SSD simulator,
SimpleSSD [21], which is attached to the computer sys-
tem as a PCIe device. When booting, Linux running
on gem5 recognizes SimpleSSD as a storage by creat-
ing a pair of NVMe SQ and NVMe CQ for each ARM
core via the NVMe protocol [10]. Our SimpleSSD sim-
ulator is highly flexible and can configure various SSD
prototypes. In this experiment, we configure SimpleSSD
simulator as an ultra low latency SSD, similar to 800GB
ZSSD [36]. The important characteristics of our gem5
simulation and SimpleSSD simulation setups are shown
in Table 2.
Configurations. We implement four different computer
systems by adding the optimization techniques proposed
in FLASHSHARE, and compare them against Vanilla.

1. Vanilla: a vanilla Linux-based computer system run-
ning on ZSSD.

2. CacheOpt: compared to Vanilla, we optimize the
cache layer of the SSD firmware by being aware of
responsiveness.

3. KernelOpt: compared to CacheOpt, we further opti-
mize the block I/O layer to enable latency-critical I/Os
to bypass the software and hardware queues. In addi-
tion, this version also supports reordering between the
NVMe driver and the NVMe controller.

4. SelectISR: compared to KernelOpt, we add the op-
timization of selective ISR (cf. Section 4).

5. XLER: based on SelectISR, we improve the I/O
stack latency by employing our hardware accelerator.

Workloads. We evaluate three representative online
interactive workloads (latapp): Apache (ap), Apache-
update (au), and ImageServer (is). All these workloads
create a web service scenario, in which a client thread is
created to send client requests periodically and a server
thread is created to receive the client requests. Once re-
quests arrive in the server side, the server thread creates
multiple worker threads to process these requests and re-
spond to the client after the completion. For Apache
and Apache-update, the requests are “SELECT” and
“UPDATE” commands targeting a database, while the
requests of ImageServer are image access requests.
Note that the response time we measure in our experi-
ments is the time between when the client thread issues a
request and when the response of the request is received
by the client. To satisfy the SLA requirements of the
online applications, we select the request issue rate (as
400) right at the knee of the latency-load curve, which
is also suggested by [28]. We also collect ten different
offline workloads (thrapp) from BigDataBench (a Big
Data benchmark Suite) [43] and GNU applications. The
salient characteristics of our online and offline applica-
tions are listed in Table 3. In our evaluations, we co-
run online interactive workloads and offline workloads
together to simulate a real-world server environment.

In our evaluations, the response time means “end-to-
end latency”, collected from interacting workloads be-
tween client and server, which is different with other
storage performance metrics that we used (i.e., I/O la-
tency). Specifically, while the storage performance met-
rics only consider the characteristics of storage subsys-
tems, the response time in our evaluations includes the
request generate/send/receive latencies in a client, net-
work latency, request receive/process/response latencies
in a server, and storage-system latency.

5.2 Performance Analysis

Figures 11 and 12 plot the average response time and the
99th response time, respectively, with the five different
system configurations, normalized to those of Vanilla.
Overall, CacheOpt, KernelOpt, SelectISR and
XLER reduce the average response time by 5%, 11%,
12% and 22%, respectively, compared to Vanilla,
while achieving 7%, 16%, 22% and 31% shorter 99th
response times than Vanilla in that order.
Vanilla has the longest response time across all sys-

tem configurations tested, because, it is not aware of the
different workload attributes, and in turn loses the oppor-
tunity to optimize the kernel stack and flash firmware for
latency-critical I/Os. In contrast, CacheOpt catches the
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Figure 11: Average response times of our online interactive applications normalized to Vanilla.
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Figure 12: 99th response times of our online interactive applications normalized to Vanilla.
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workload attributes from the user processes and passes
them to the underlying flash firmware. It further op-
timizes the SSD embedded cache by isolating latency-
critical I/Os from the interference coming from through-
put I/Os and customizing the cache access policy for
latency-critical I/Os. As a result, it can accommodate
more latency-critical I/Os in the SSD-embedded cache.
As shown in Figures 11b and 12b, CacheOpt can re-
duce the average response time and 99th response time
by up to 11% and 27%, respectively, if there are inten-
sive write I/Os. Nonetheless, as flash firmware sits at the
bottom of overall I/O stack, CacheOpt cannot effec-
tively prevent throughput I/Os from impeding latency-
critical I/Os from upper Linux kernel layers. Compared
to CacheOpt, KernelOpt detects latency-critical I/O
when it is inserted into the block I/O layer and creates
a short path to send latency-critical I/O directly to the
ULL SSD. Specifically, it enables latency-critical I/Os to
directly bypass the software and hardware queues in the
block I/O layer. It also collaborates with NVMe driver
and NVMe controller to allocate an NVMe submission
queue dedicated to latency-critical I/Os and fetch the

latency-critical I/Os with a higher priority. Note that,
KernelOpt can significantly reduce the 99th response
time when offline applications generate intensive I/O
requests (e.g., ungzip). The optimizations mentioned
above can further reduce the average response time and
the 99th response time by 6% and 8%, respectively,
compared to CacheOpt. While KernelOpt works
well for I/O submission optimization, it fails to handle
the software overhead introduced by the interrupt-based
I/O completion approach. For example, while an SSD
read is as short as 3us, the ISR of the MSI-X interrupt
and context switch collectively consume more than 6us.
SelectISR selectively polls the latency-critical I/Os to
avoid the use of ISR and context switch. Compared to
the relatively long response time (i.e., more than 3 ms),
the time saved from the ISR and context switch does not
significantly reduce the average response time. How-
ever, in Figure 12b, we can observe that SelectISR
can reduce the 99th request time by up to 34% in work-
load bfs. This is because, this compute-intensive work-
load creates multiple working threads that use up CPU
resources and postpone the scheduling of the latency-
critical I/Os. SelectISR secures CPU resources for
the online interactive workloads as the CPU resources
are not yielded to other user processes during polling.
XLER can further reduce the average response time and
99th response time by 8% and 10%, respectively, com-
pared to SelectISR. This is because, XLER simplifies
the multiple queue management of the block I/O layer
and NVMe driver, and accelerates the execution by em-
ploying customized circuits.

Since it would be possible to shorten the latency of
storage stack by allocating a dedicated CPU core, we
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Figure 15: Execution time analysis of co-running Apache-Index.

also compare this alternative option with our hardware-
assisted approach. Figure 13 shows the average re-
sponse time and the 99th response time of online ap-
plications with a dedicated CPU core (DedCore) and a
hardware accelerator (XLER). XLER reduces the average
response time and the 99th response time by 12% and
15%, compared to DedCore, respectively. This is be-
cause, to leverage a dedicated core to poll NVMe CQs,
DedCore requires intensive communications with the
general cores, which are in process of the actual online
applications. Unfortunately, such communications intro-
duce different types of overheads associated with CPU
cache flushes and spin-lock management.

Although all our proposed techniques are oriented to-
wards reducing the latency of the online interactive ap-
plications, offline workloads actually do not suffer from
severe performance degradation. Figure 14 shows the
performance of all evaluated offline workloads. Overall,
FLASHSHARE does not degrade the performance of the
offline applications, compared to Vanilla (the worst
degradation observed is around 4%). This is because,
the offline applications are not sensitive to the latency of
each individual I/O, but instead rely on the storage band-
width. Specifically, CacheOpt improves the perfor-
mance of the offline applications by 3.6%, compared to
Vanilla. This benefit comes mainly from the effective
cache design and management. As CacheOpt separates
the cache spaces for latency-critical I/O and throughput
I/O, the throughput I/Os can better enjoy the fruits of
short cache access latency without any competition orig-
inating from the latency-critical I/Os. On the other hand,
we tune the delay time threshold and maximal number of
throughput I/Os in the NVMe submission queue to make
sure that all the delayed throughput I/Os are flushed by
the NVMe controller before they start to introduce se-
vere performance degradation. SelectISR degrades
the performance of offline workloads by 2%, compared
to KernelOpt. This is because, SelectISR uses up
CPU resources for polling the latency-critical I/Os rather
than executing the offline workloads. XLER achieves
1.2% higher performance than SelectISR, as it can
effectively reduce the time spent for polling.

5.3 Effectiveness of Holistic Optimization

Figure 15a shows the execution time breakdown of co-
running workloads Apache and Index. As shown in the
figure, CacheOpt reduces the time needed to serve I/Os
by 6%, compared to Vanilla, which in turn allows
CPU to allocate more time for the offline application. On
the other hand, KernelOpt postpones throughput I/Os,
which blocks CPU from executing the offline applica-
tion. For SelectISR, as CPU is used up for polling,
less CPU time is allocated to the offline application. Fi-
nally, as XLER offloads the polling function to our hard-
ware accelerator (cf. Section 4.3) and also reduces the
time of I/O stack, both the online applications and of-
fline applications can benefit from the reduced I/O ser-
vice time.

Figure 15b plots the latency-critical I/O service break-
down between the co-running workloads, Apache and In-
dex. CacheOpt reduces the average SSD access latency
from 29 us to 18 us, compared to Vanilla, thanks to
the short cache access latency. As the latency-critical
I/Os are not queued in the software and hardware queues,
the time for latency-critical I/O to pass through the block
I/O layer is reduced from 39 us to 21 us when employ-
ing KernelOpt. Since the block I/O layer still needs
to merge the latency-critical I/Os with the I/Os queued
in software queues, the delay of the software and hard-
ware queues cannot be fully eliminated. Compared to
KernelOpt, SelectISR reduces the total I/O com-
pletion time by 5 us. We will present a deeper analysis of
the I/O completion procedure shortly. As XLER removes
the software and hardware queues in its implementation,
it fully removes overheads of the block I/O layer.

Figure 15c plots the read and write I/O completion
time breakdown. As shown in the figure, the polling
function, interrupt service routine (ISR), context switch
(CS) and block I/O layer collectively consume 96% of
the I/O completion time, while the NVMe driver, send-
ing MSI-X interrupt, and ringing CQ doorbell register
together cost less than 0.5 us. Interestingly, although
polling can remove the overhead caused by ISR and con-
text switch, the polling function itself also introduces a
6 us delay. This delay is mainly caused by inquiring the
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Figure 16: Online interactive I/O execution time analysis.
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mance by co-running Apache (ap).

0 1 2 3 4 5 6
0

400
800

1200
0.0

0.5

1.0

A
p
a
c
h
e
 r

e
s
p
o
n
s
e

0

1

2

3

ti
m

e
 (

m
s
)

c
a
c
h
e
 r

a
ti
o

P
a
g
e
R

a
n
k

Time (sec)

1.2k

P
a
g
e
R

a
n
k

I/
O

s

Figure 19: Analysis of performance dynamics
when co-running Apache and PageRank.

IRQ locks of both BIO and NVMe CQ, setting current
task status, and checking if there are any valid comple-
tion queue entries. In addition, although both the in-
terrupt based approach and polling based approach ex-
ecute the same block I/O completion function, polling
reduces the average completion latency of block I/O by
4 us in both read I/Os and write I/Os. This is because, the
interrupt-based approach context-switches CPU to other
user processes which can pollute CPU caches, while
the polling-based approach buffers the data used for I/O
completion in the CPU cache.

5.4 I/O Stack Delay Analysis

Figure 16a shows the I/O service delay of the five dif-
ferent system configurations tested, for Apache-Index
over time. In addition, Figure 16b plots the cache miss
rates of a dummy cache (i.e., traditional SSD internal
cache that has no knowledge of the host-side informa-
tion) and our adaptive cache, while Figures 16c and 16d
plot, respectively, the software and hardware queue la-
tencies if we bypass or do not bypass latency-critical
I/Os, and the number of context switches over time if
we use the poll-based approach and the interrupt-based
approach. CacheOpt exhibits a shorter I/O service de-
lay than Vanilla, because it adjusts the cache space
and prefetch granularity for the latency-critical I/Os and
throughput I/Os, separately, resulting in fewer cache
misses than the dummy cache in Vanilla (cf. Figure
16b). However, as shown in Figure 16a, CacheOpt can-
not mitigate the long tail latency which is also observed
in Vanilla, while KernelOpt successfully removes

such tail latency. As shown in Figure 16c, the long
tail latency comes from the software queue and hard-
ware queue, if we buffer I/O requests in the software
queue and hardware queue for merging and reordering.
As KernelOpt enables the latency-critical I/Os to by-
pass the queues, it successfully eliminates the latency
impact from the queues. SelectISR reduces the I/O
service latency further, compared to KernelOpt. This
is because, the polling-based approach can effectively
reduce the number of interrupt service routine invoca-
tions and the number of context switches compared to
the interrupt-based approach (cf. Figure 16d).

Since the I/O requests of online applications directly
bypass the blk-mq layer under KernelOpt, the in-
coming I/O requests can lose their chances for merg-
ing, which can in turn increase the number of NVMe
commands. Figure 17 shows the total number of NVMe
commands, generated under different system configura-
tions, namely Vanilla, KernelOpt and XLER. Com-
pared to Vanilla that disables the bypassing scheme,
KernelOpt increases the number of NVMe commands
by only 2%. This is because the latency-critical I/O re-
quests (coming from the online applications) exhibit low
locality, and their arrival times are sporadic. Thanks to its
merge logic, XLER further reduces the number of NVMe
commands by 0.4%, on average, compared to Vanilla.

5.5 Sensitivity to Embedded Cache Design

Figure 18 gives the cache hit rate of various cache con-
figurations when co-running Apache with offline work-
loads. Specifically, uni-no, uni-128 and uni-dyn con-
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figure a uniform cache for both the latency-critical
and throughput I/Os. However, uni-no disables page
prefetching and uni-128 always prefetches 128 pages
when cache misses, while uni-dynfetch employs the
adaptive prefetching scheme we proposed (cf. Section
4.2). On the other hand, split-lat$ and split-thr$ rep-
resent the separate caches owned by the latency-critical
I/Os and throughput I/Os, respectively. The separate
cache employs adaptive prefetch scheme and adjusts
cache space at runtime. Apache is a representative work-
load which randomly accesses the storage (cf. Table
3). As shown in the figure, although offline applica-
tions access the storage in a sequential manner, uni-128
achieves only a 12% higher cache hit rate than uni-no.
This is because, the random access pattern exhibited by
Apache can pollute the cache space and make prefetch-
ing less effective. On the other hand, uni-dyn adjusts the
prefetch granularity to small number of pages at runtime
so that prefetching pages for latency-critical I/Os will
not pollute all the caches. split-lat$ does not achieve a
high cache hit rate, due to the random access pattern of
Apache. However, as we split the cache and isolate the
interference from online applications, split-thr$ achieves
a great improvement in terms of hit rates.

Figure 19 further demonstrates the effectiveness of our
dynamic cache partitioning scheme. Specifically, the
lower half of Figure 19 shows the number of I/O re-
quests, generated by offline applications during the ex-
ecution, while the upper half shows the dynamics of
the cache spaces, allocated to the offline application (in
terms of ratio), and in parallel, demonstrates the response
time of the online application. When there is an I/O
burst imposed by PageRank (0∼2.8 seconds), our SSD
controller isolates the negative impact of this I/O burst
by preserving the cache spaces for Apache as 23% of
the total cache space, on average. By partitioning the
cache space being aware of the responsiveness for dif-
ferent applications, our cache partitioning secures just
enough cache spaces for both PageRank and Apache such
that the response time of Apache can be sustained at 3.1
ms while PageRank improves the cache hit rates by ap-
proximately 36% compared to a dummy cache. In cases
where the offline application requests I/O services less
than before (3∼6 seconds), our dynamic cache partition-
ing method increases the faction of internal cache spaces
for the online application, which can be used for the ap-
plication to perform pre-fetch or read-ahead in helping
with an immediate response from the internal cache.

6 Related Work

In various computing domains, there are multiple studies
to vertically-optimize storage stack [16, 24, 47, 50, 19,
22]. For example, [19] and [22] take flash firmware out
of an SSD and locate it to the host, in order to remove the
redundant address translation between a file system and
FTL. In comparison, [47] proposes multiple partitioned
caches on the host side. These caches understand mul-
tiple client characteristics by profiling the hints passed
from one or more clients through out-of-bound protocol.
However, the application hints are used only for cache
management; such hints/approaches have no knowledge
of the underlying storage stack and they do not consider
the potential benefits of ULL. [16] optimizes mobile sys-
tems from the viewpoint of a file system and a block I/O
device to improve the performance of databases such as
SQLite. However, this optimization is applied only for
the logging performance of mobile databases; it cannot
be applied to other applications and cannot expose ULL
to them. [50] schedules write requests by considering
multiple layers on the kernel-side. While this can im-
prove the write performance, such writes can block reads
or ULL operations at the device level, as the ULL SSD
also includes embedded DRAM caches and schedulers.

[24] observes that there exists an I/O dependency be-
tween background and foreground tasks. This depen-
dency degrades overall system performance with a con-
ventional storage stack since kernel always assigns a high
priority to I/O services generated from the foreground
tasks and postpones the background I/O requests. This
I/O stack optimization allows the foreground tasks to do-
nate their I/O priority to the background I/O services,
when an I/O dependency is detected. However, this ap-
proach does not well fit with I/O workloads that often ex-
hibit no I/O dependency. In particular, multiple applica-
tions executed on a same server (for a high resource uti-
lization and energy efficiency) are already independent
(as they operate in a different domain).

[32] and [23] propose sharing a hint with the underly-
ing components to have a better data allocation in disk
array or virtual machine domains. Similarly, [51] mod-
ifies a disk scheduler to priotize I/O requests, which are
tagged by interactive applications. While most prior ap-
proaches leverage the hints from users/applications to
improve the design of specific software layers, they do
not consider the impact from the other parts of the stor-
age stack.

[41] simplifies the handshaking processes of the
NVMe protocol by removing doorbell registers and com-
pletion signals. Instead of using MSI, it employs a
polling-like scheme for the target storage system. More
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recently, [16, 7, 40, 3, 48] also observed that polling can
consume significant CPU cycles to perform I/O comple-
tion. [7, 44] applies a hybrid polling method, which
puts the core into sleep for a certain period of time, and
just performs poll the request only when the sleep time
has passed. While this strategy can reduce the CPU
overheads to some extent, it is not trivial to determine
the optimal time-out period for sleeps. Even in cases
where system architects can decide a suitable time-out
period, I/O request patterns can dynamically change and
the determined time-out period may not be able to sat-
isfy all user demands. Further, this can waste CPU cy-
cles (if the time-out is short) or make the latency of
I/O request longer (if for example the time-out is longer
than the actual completion time). In addition, unlike our
FLASHSHARE, the hybrid scheme cannot reduce the la-
tency burden imposed by the software modules in the
storage stack.

7 Discussion and Future Work

While the hardware accelerator of FLASHSHARE can
perform a series of time-consuming tasks such as NVMe
queue/entry handling and I/O merging operations on be
half of CPUs, the accelerator employed in the target
system is optional; we can drop the accelerator in fa-
vor of a software-only approach. This software-only
FLASHSHARE (as a less-invasive option) makes perfor-
mance of the server-side storage system approximately
10% worse and consumes 57% more storage-stack
side CPU-cycles than hardware-assisted FLASHSHARE.
Note that the hardware accelerator does not require
high-performance embedded-cores and needs no high-
capacity memory either, since it only deals with NVMe-
commands and reuses the system-memory for data-
management (via PRPs).

Bypassing a request is not a new idea, but it requires
the proposed optimization of FLASHSHARE to apply
such bypassing concept from the kernel to the firwmare.
For example, bypassing scheme has been well investi-
gated to improve the throughput of network [27]. While
network kernel bypassing transfers data by directly map-
ping user memory to physical memory, the storage stack
cannot simply adopt the same idea, due to ACID capa-
bility supports and block interface requirements. In addi-
tion, bypassing in block interface devices should still go
through filesystem, page-cache, scheduler and interface-
driver for user-level services. This introduces higher
complexity and multiple interface boundaries than net-
work, and also renders the direct mapping between user
memory and phyiscal memory not a viable option. On

the other hand, SPDK [39] is designed for a specific-
purpose, namely, NVMe-over-Fabric that requires client-
side file-systems or RocksDB-based applications, which
is different from the datacenter’s co-located workload
scenario that FLASHSHARE works on.

Even though FLASHSHARE can remove a significant
chunk of CPU-side overheads (around 79%, compared
to naive-polling) with 20%∼31% better user experience
from the client-side, it also has a limit; FLASHSHARE
is mainly designed towards accelerating the services in
the cluster servers, but it unfortunately does not fit for
the workload scenarios that rent computing-capability
to multiple tenants, such as Infrastructure as a Ser-
vice (IaaS). In our on-going work, we are extending
FLASHSHARE with a different type of storage, such as
multi-streamed (or ported) SSDs [52, 25, 49, 35] over
diverse storage I/O virtualization techniques.
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9 Conclusion

We propose FLASHSHARE, which punches through the
storage stack from kernel to firmware, helping ULL
SSDs satisfy different levels of user requirements. At
the kernel level, we extend the data structures of the stor-
age stack to pass attributes of (co-running) applications
through all software modules of the underlying OS and
device. Given such attributes, the block layer and NVMe
driver of FLASHSHARE custom-manage the I/O sched-
uler and interrupt handler of NVMe. The target ULL
SSD dynamically partitions the internal DRAM and ad-
just its caching strategies to meet diverse user demands.
By taking full advantage of the ULL services, this holis-
tic approach significantly reduces the inter-application
I/O interferences in servers co-running multiple applica-
tions, without modifying any of the applications.
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