
An Efficient Periodic-Request-Grouping Technique for Reduced Seek Time in

Disk Array-based Video-on-Demand Server

Woonseok Kim

School of Computer Science and Engineering
Seoul National University

Seoul, Korea, 151-742

Jihong Kim

School of Computer Science and Engineering
Seoul National University

Seoul, Korea, 151-742

Sam H. Noh

Department of Computer Engineering
Hong-Ik University

Seoul, Korea, 121-791

Sang Lyul Min

School of Computer Science and Engineering
Seoul National University

Seoul, Korea, 151-742

ABSTRACT

Disk throughput is significantly affected by scheduling of

disk I/O requests. In the case of VoD (Video-on-Demand)

servers, disk throughput is directly related to the number

of user requests that can be served simultaneously. In this

paper, we propose an efficient periodic request grouping

scheme for disk array-based VoD servers to improve the disk

throughput. To reduce the disk seek time that are needed in

processing the periodic I/O requests, this scheme groups the

periodic requests that access adjacent regions into one, and

arranges the groups in a pre-determined order. We show

that by using this scheme, we can reduce the average disk

bandwidth required by a stream and serve more periodic

requests simultaneously than existing schemes. We also

propose an adaptation technique that conforms the proposed

scheme to access pattern changes of user requests. We

performed simulation studies to evaluate the performance

of the proposed scheme.

Keywords: Multimedia Server, RAID(Redundant Arrays

of Independent Disks, Request Grouping.

1. INTRODUCTION

In recent years, we have witnessed significant advances in

both networking technology, and computation technologies

involving the digitization and compression of video. As a re-

sult, a growing number of applications need access to video

data stored in digital form on secondary storage devices (e.g.,

video-on-demand, multimedia messaging). Especially, the

advent of internet makes such multimedia applications easy

to use the data distributed geographically distributed.

Video data such as MPEG-1 format data has several char-

acteristics that are different from common data: voluminous

and time-critical. Generally, a movie file requires 0.5 GB to

20 GB of storage. If we use a set of chips such as DRAM or

flash memory to store a number of video data, the cost of the

server system would be prohibitively expensive. Hence, it

is natural to use disks as secondary storage in this systems.

However, since disks have limited capacity and relatively

high latency for data access, disk arrays are commonly used

in the server to achieve huge capacity and higher server

throughput.

In the case of VoD(Video-on-Demand) servers, due to the

timing constraint in data transmission,only a limited number

of users are allowed to be serviced. Such restriction usually

comes from the data access latency in disks, and the disk

throughput is significantly affected by scheduling of disk I/O

1

requests. In disk arrays such as RAID(Redundant Arrays of

Independent Disks) [1], an I/O request is divided into several

sub-requests that access different disks. In particular, if there

are I/O requests for multimedia data, the I/O request will be

divided into a number of sub-requests, and the sub-requests

will access the disk arrays periodically for a long time [2, 3].

Generally, to increase the disk throughput, some opti-

mization algorithms such as SCAN or CSCAN are used in

disk scheduling. However, since such algorithms optimize

the disk latency only for a single disk, and do not consider

the effect of periodic accesses, the throughput cannot be

fully utilized as in [4]. That is, in disk arrays, when I/O

requests are scheduled, the interference between adjacent

disks should be considered.

In this paper, we propose an efficient periodic request

grouping scheme for disk array-based VoD servers to im-

prove the disk throughput. To reduce the disk seek time

that are needed in processing the periodic I/O requests, this

scheme groups the periodic requests that access adjacent re-

gions into one, and arranges the groups in a pre-determined

order(e.g., in left-symmetric or right-symmetric fashion).

We show that by using this scheme, 1) we can reduce the av-

erage disk bandwidth required by a stream, and 2) the server

can serve more periodic requests simultaneously than ex-

isting schemes. Experimental results show that the number

of streams, with marginal increase in memory requirement,

were increased by 9.7% where the seek time occupies 31%

of a block access delay. We also propose an adaptation tech-

nique that conforms the proposed scheme to access pattern

changes of user requests. We performed simulation studies

to evaluate the performance of the proposed scheme and to

confirm that the server sustain the change of user access

pattern.

2. SYSTEM MODEL AND ASSUMPTIONS

To achieve fault tolerance and high throughput, striping

technique is generally used in disk array-based systems such

as RAID. The storage model used in this paper is based on a

coarse-grained striping model described by Ozden, Rastogi

and Silberchatz [4] as shown in Figure 1.

For discussion purpose, we assume a disk array that con-

sists of eight disks and contains 12 video files as shown in

g a h e c f h i j

a
d

b
h
k

d
i
j

a
e
j

d
i
l

c
f
k

b
g
h

Request Queue

Outer Track

a[8]

a[32]

a[24]
a[16]

a[25]

a[17]
a[9]

b[32]

b[24]
b[16]
b[8]
b[0]

b[39]

b[31]

b[23]
b[15]
b[7]

c[0]

Inner Track

a

b

c

d
e

f
g

h

i

k
l

j

c
e
l

New Request

S2 S3 S4 S5 S6 S7 S0S1

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5Disk 6 Disk 7

Service Groups

Figure 1. System Model

Figure 1. In Figure 1, a video file consist of several data

blocks which are distributed over the disks in round-robin

fashion. For example, if the first data block of a video file

is stored in
�

-th disk, then the second data block is stored in���
1-th disk, and so on. Thus, if the server read a data block

from
�

-th disk for a user request, then it will read a next data

block from
���

1-th disk. The video file names are denoted����� , where a[5] refers to the sixth data block of video file

named ’a’. If a client request for video 	 arrives, the server

retrieves the first data block of video file 	 from the disk

containing b[0]. Then, the server will retrieve the subse-

quent data blocks from other disks in round-robin fashion.

As the client receives the data block, it will decode the data

and display the result at a pre-specified rate
������� 1. As long

as the server can transmit the subsequent data block before

the client consumes the prior one, the display behavior will

not be effected. This implies that the server can retrieve

data blocks from the disk array at fixed intervals, and the

client request can be assumed to be periodic requests. The

interval, then, can be used as the period length, � ���������� (in

seconds), and calculated as follows where 	 is the size of a

data block (in bits):

������������ (sec) � 	 (bits)
��� �!��" (1)

where
 �� �!� is the rate of display (in bits per second).

For example, if the data block size is 192 KB and the

video data was encoded in 1.5 mbps MPEG-1 format, the

1In this discussion, for simplicity, we assume the Constant-Bit-Rates

(CBR) scheme

2

Table 1. Disk parameters and other notations

the number of periodic requests in a service group$�%�&�&�')(+*-,/.10�2
disk seek time for the track distance

*-,/.�0354�687 9�7�:;68<
average rotational latency= 7�4�91< %!>1& 4
inner track transfer rate (bps)3 %�& 7�7�? &
disk head settle time@BA :DC E
track number of data block needed by F th

scheduled request in
,
th service group@BG :+C E

track number under disk head after retrieving

data block needed by F th scheduled request in,
th service group

server can only transmit one block to the client roughly every

second. If we assume that the server can retrieve a data block

from a disk in 0.3 seconds, this implies that the server could

retrieve at least three data blocks from the same disk every

period. We define a set of periodic requests that want to

access the same disk in any period as a H�I�
�JLK�M�I�N)
�O�PRQ . In

this example, since there are eight disks, eight service groups

are available and each of which use one different disk at any

given time. Thus, overall, the server can serve 24 periodic

requests concurrently during a period.

By increasing the block size, we increase the � ���������� ,

further increasing the number of periodic requests that can

be served simultaneously. But, since, in general, data stored

in the disk cannot be transmitted directly to the client via

network and must be loaded into memory first, the larger

block sizes require larger amount of memory resulting in

increased system cost [5]. The cost effective optimal block

size can be calculated by using the method described by

Ozden et al. [4].

When accessing data stored in a disk, we may undergo

some delay caused by the known mechanical behavior(e.g.

seek, rotation, and transfer delays). In disk arrays, the disk

access delay for serving a set of periodic requests can be

described as follow by using notations described in Table 1.

SUT�V�V �����W� XY�8����Z\[�] �_^`ba 1 c d T �!egfh�jik c 0]ml
� n a 2o p

q 0

XY���8��Z\[�] �rig c
p

fh�s^` c
p
a 1]ml

� t [S ���8e T eD��8u � 	v eD� T uw��x���� � S ���!e+e d ��l (2)

As shown in this equation, seek time can be di-

vided into two parts: XY�����8Z\[�] �s^yDa 1 c d T �!eyfz�jik c 0]ml and{ n a 2

p
q 0 X ������Z [�] �ji c

p
f|�s^ c

p
a 1]ml . The former term is the

seek delay caused when a disk serves the first scheduled

request of service group K . This is affected by the last sched-

uled request of the service group that used the disk during

the previous period. The latter term is the seek delay caused

when a service group retrieves the data blocks for its own

periodic requests within a period. This depends on the disk

scheduling policy that the system adopts. In general, to

minimize this value, CSCAN or SCAN algorithms are used.

To guarantee that clients receive its subsequent data on

time, the number of periodic requests
t

should be restricted.

That is, the amount of time should not exceed the length of

the period (i.e. � ������ ���~} S T�V�V �����).
Without increasing the memory requirement, our goal is

to maximize the
t

by reducing seek delays that are caused

when each service group accesses a disk for its periodic

requests within a period.

3. PERIODIC REQUEST GROUPING TECHNIQUE

Note from Eq. (2), that the seek delay can be reduced in

the following two cases.� The initial seek time, that is, the first termXY�8����Z\[�] �_^`ba 1 c d T �!e_f��jik c 0]�l is reduced, when at the

beginning of a period, the disk head position is closer

to the track on which the data block needed by the

first scheduled periodic request is stored.� Within a period, the second term{ n a 2

p
q 0 XY���8��Z\[�] �rig c

p
f��_^~ c

p
a 1]ml is reduced, as the pe-

riodic requests included in each service group require

physically adjacent data block.

To make the system serve periodic requests in this way,

we set the system as follows :� Divide each disk area into � service areas. Let each

service group to be dedicated to one of � service areas.

(For fair partitioning of service area, � should be the

exact divisor of the number of disks 2). In Figure 2(a),

2If � equal to 1, it means the normal case that uses the SCAN policy.

3

A0

A1

A2

A3

S0S1S2S5 S3S4S6S7

a
b
c
d
e
f
g
h
i
j

k

l

S0, S7

S3, S4

S2, S5

S1, S6

Outer track

Inner track

(a) Partition (b) Allocation

Disk 0 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7Disk 1

Figure 2. Disk Partition and Allocation

service groups i 0 and i 7 are dedicated to service area�
0, service groups i 1 and i 6 to service area

�
1, and

so on.

� Arrange service areas in rotational fashion among the

disks. (When the movement of the disk head is to-

ward the outer track, service areas are arranged in a

left-symmetric fashion. Otherwise, service areas are

arranged in a right-symmetric fashion.) This is shown

in the Figure 2(b).

In our scheme, each service group only includes periodic

requests that access the data block stored on its service

area. Consequently, the first scheduled periodic request

in a service group and the last scheduled periodic request

in the previous group access adjacent data blocks. Ideally,

the whole disk area is scanned only once during � periods,

and the seek delay is minimized. For example, when a client

request that requires the video I , it first queued in the request-

queue. The server checks the service group i 1 and i 6 to

see whether they are available since they are responsible

for servicing I/O requests to the service area containing the

video file I . If i 1 is avalilable, the request are moved from

request-queue to service group i 1. Then, if e[0] is stored

in the disk 2, i 1 start service for the new request when

accessing the disk 2. Since i 1 contains requests only for

the video � , I and X , it will retrieve the data with less seek

delays. Also, since i 2 that used the disk 2 during prior

period may contains requests only for the video N , � andK , if the new request is scheduled first, the server retrieves

data for i 1 from the disk 2 in this period with less seek

delay. Figure 3 and Figure 4 show the examples of disk arm

movement. In these figures, the boxes represent the disks,

and the upper(lower) side of the boxes are the outter(inner)

DISK 0 DISK 1 DISK 2 DISK 3 DISK 4 DISK 5 DISK 6 DISK 7

S0S1S2S3S4S5 S6S7

a
h
o
t

b
d
n
v

c
j
s
x

d
h
l
u

a
h
q
w

c
h
m
w

b
h
e
b

a
g
j
v

Figure 3. Example of Arm Movement in Disks
(��� 1)

tracks of disks. In each box, the dotted line is the seek range

which were resulted from the previous service group. The

left straight line in the box shows the arm movement needed

to read the data block which should be read in first accoring

to the CSCAN scheduling policy for the current service

group. The right straight line shows the arm movement

needed to read the data blocks for the current service group.

The figures shows that, when service groups are dedicated

to serve data access in short range of disk area, the disks

have reduced seek delay.

One problem with this configuration is that it does not

consider the fact that each service group can be under differ-

ent workload. It is known that some videos are more popular

than others [6, 7]. Hence, the service area that contains the

more popular videos will be frequently accessed, and the

service groups dedicated to those areas will be under higher

load than others. Furthermore, client requests that require

popular videos can be stalled in situations where the load

on the whole is relatively low. To remedy this problem, the

popularity of each video file must be considered when we

set the service area.

To balance the workloads among service groups, we ad-

just service areas as follows:

� Gather the popularity information for video based on

the arrived client requests and estimate the popularity

of each service area.

4

DISK 0 DISK 1 DISK 2 DISK 3 DISK 4 DISK 5 DISK 6 DISK 7

S0S1S2S3S4S5 S6S7

a
a
b
c

d
e
f
g

h
j
o
n

s
t
u
w

a
b
b
d

h
j
m
n

p
q
s
t

u
v
w
x

Figure 4. Example of Arm Movement in Disks
(��� 8)

� Adjust the number of video files that are contained

in each service area to balance the workload based

on service area popularity. (For example, enlarge the

service area if its popularity is higher than that of

others)

Since the popularity of each video can be changed dynami-

cally, this adjustment should also be done dynamically.

4. EXPERIMENTAL RESULTS

We performed simulation to evaluate the performance of

the proposed scheme. This simulation was done with three

different block sizes and we assumed the VoD server with

100 disks. The capacity of each disk is assumed to be 1.5

GB [8]. To simulate the disk operation, we use the disk

simulator module in
 � K��\ikK!� (RAID simulator) [9]. We

assume 75 � 170 minutes length of video files.

Figure 5 and Figure 6 shows the experimental results. As

shown in Figure 5, the number of streams increases with the

increasing number of service areas. In the case of 192 KB(it

is close to two track size of common disks), the number

of streams increased by roughly maximum 10%. Also,

the average user waiting time was reduced along with the

increased number of streams. It is shown in the Figure 6.

From the two figures, we can see that as the data block

Figure 5. Results for Admission Capacity

Figure 6. Results for Service Latency

size increases, the number of serviced streams increases,

but the benefits from the partitioning decreases. It can be

addressed as follows. Since the larger block size requires

longer transfer time, the service time per stream can be larger

than the reduced seek time. In this case, the benefits from

the reduced seek time cannot be used to support additional

user requests.

We also perform the simulation to evaluate the effect of

user access pattern and its change. Figure 7 shows the effect

of adaption in popularity variation. In this experiment, the

result were logged after 10,000 seconds of initial period

which were needed to regulate the workload over disks.

In this initial period, popularities of video files conform

to Zipf distribution [6], so that each video file may have

different popularity from others. After the initial period, the

popularity distribution was changed to uniform distribution

5

���/������D������/������/������/����!�b������/����!�b������/������/������/���

� � � � � � � � � � � �b� � � � � � � � � �m� ��8� �R D¡ ¢b£ � ¤!¥Y¦�� �L§

¨© ª« ¬
® ª¯°±
² ³ ¯ª´
µ

�D¶�·�¸�¹�b�b¶�·8¸8¹�/�b¶�·8¸8¹�b�b¶�º�» ¼�/�b¶�º�» ¼

Figure 7. Results for Adaptation in Workload
Variation

- entire video files have similar popularity. Then, 8,000

seconds later, the popularity distribution was re-changed to

Zipf distribution. Such changes in popularity were repeated

at every 8,000 seconds.

In Figure 7, ’ ½ -DYM’ means that the server is configured

with ½ partitions and performs adaptation to the changed

popularity, while ’ ½ -FIX means no adaptation with ½ par-

titions. As shown in the result, our adaptation technique

balances the load overall service groups, and, regardless of

the popularity variation, the server gives stabilized perfor-

mance.

5. CONCLUSION

In this paper, we proposed an efficient periodic request

grouping technique in disk array. This scheme reduces the

disk seek delay that are needed in serving periodic I/O re-

quests. To achieve this, this scheme groups the periodic

requests that access adjacent regions into one, and arranges

the groups in a pre-determined order. We also presented the

adaptation technique for variation of user access patterns.

Experimental results showed that our scheme maximized

the number of streams that can be served simultaneously

without increasing the memory requirement per stream, and

our adaptation technique made the system to sustain the

change of user access patterns.

References

[1] D. A. Patterson, G. Gibson, and R. H. Katz. A Case

for Redundant Arrays of Inexpensive Disks(RAID). In

Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, pages 109–116, Jan-

uary 1988.

[2] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju.

Staggered Striping in Multimedia Information Systems.

In Proceedings of the ACM SIGMOD International Con-

ference on Management of Data, pages 79–89, June

1994.

[3] M. S. Chen, D. D. Kandlur, and P. S. Yu. Optimization

of the Grouped Sweeping Scheduling(GSS) with Het-

erogeneous Multimedia Server. In Proceedings of the

ACM Multimedia’93, pages 235–242, August 1993.

[4] B. Ozden, R. Rastogi, and A. Silberschatz. Disk Striping

in Video Server Environments. In Proceedings of the

IEEE International Conference on Multimedia Comput-

ing and Systems, pages 580–589, June 1996.

[5] P. Shenoy and H. M. Vin. Efficient Striping Techniques

for Multimedia File Servers. In Proceedings of the

7th International Workshop on NOSSDAV, pages 25–

36, May 1997.

[6] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling

Policies for an On-Demand Video Server with Batch-

ing. In Proceedings of the 2nd Annual ACM Multimedia

Conference and Exposition,pages 15–23, October 1994.

[7] C. Griwodz, M. Bar, and L. C. Wolf. Long-term Movie

Popularity Models in Video-on-Demand Systems or The

Life of an on-Demand Movie. In Proceedings of the

ACM Multimedia’97, pages 349–357, November 1997.

[8] Quantum

Corporation. Quantum Viking Online Specifications.

http://www.quantum.com/products/hdd/viking/.

[9] E. K. Lee. Performance Modeling and Analysis of Disk

Arrays. PhD thesis, Computer Science, University of

California at Berkeley, 1993.

6

