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ABSTRACT
Broadcast filtering technique is useful in reducing the snoop-
energy consumption of shared bus-based MPSoCs by intelli-
gently avoiding useless coherency-request broadcasts. Since
the patterns of coherency-request broadcasts are highly de-
pendent on how concurrent tasks are assigned to multiple
processors, a broadcast filtering-aware task assignment is
important in achieving a high-level of energy efficiency for
MPSoCs with a broadcast filtering support. In this paper,
we propose broadcast filtering-aware task assignment tech-
niques for low-power MPSoCs, taking advantage of the pat-
terns of coherency-request broadcasts of given tasks. We
first propose a restricted optimal task assignment technique
that can be useful only when the number of tasks is equal
to the number of processors. Then, we describe a general
task assignment heuristic that can be used for the arbitrary
number of tasks.

Experimental results show that when the number of tasks
is equal to the number of processors, the proposed optimal
task assignment technique reduces the snoop energy con-
sumption by 13% over naive task assignment cases. For
general task sets, the proposed task assignment heuristic re-
duces the snoop energy consumption by 15% over naive task
assignment cases.

Categories and Subject Descriptors
D.4.1 [Software]: Operating Systems—Process Management ;
B.3.2 [Hardware]: Memory Structure—Design Styles

General Terms
Algorithms, Design

Keywords
MPSoC, Energy reduction, Task assignment, Broadcast fil-
tering, Snoop-based cache coherency

1. INTRODUCTION
According to the development of architecture and VLSI tech-
nology, multiprocessor system-on-a-chips (MPSoCs) are now
widely used in high-performance mobile embedded systems
[1, 2]. They include multiple processor cores and on-chip
memories in single chip die. As they can execute multiple
context concurrently, they can meet the high performance
demands for multimedia applications on mobile embedded
systems. However, the higher performance means that they
consume the more power. Since mobile embedded systems,
such as cellular phones and personal game players, use bat-
teries as their power sources, the importance of low power
consumption increases in the design of MPSoCs.

As typical MPSoCs contain private local caches for each
processor to enhance the performance, they have a cache
coherency problem like general multiprocessor systems. In
shared bus-based MPSoC environments, snoop-based schemes
are widely used to solve the cache coherency problem. In
snoop-based schemes, if a local cache requires or modifies
data, it broadcasts a coherency request message and remote
caches snoop on the broadcast and keep their data coherent.
As an on-chip global wire occupies up to 25% of total chip
power [3] and a tag lookup operation contributes up to 50%
of cache energy [4], a cache coherency operation becomes
one of major energy consumers in MPSoCs.

To reduce snoop-energy, a broadcast filtering technique [5]
was proposed. It used a snooping cache and a split bus ar-
chitecture so as to remove unnecessary coherency request
broadcasts, and reduced 30% of snoop-energy in a shared
bus-based four-way MPSoC. From the analysis of snoop-
energy reduction by the broadcast filtering, we knew that
the energy consumed by a cache coherency operation is vari-
ant according to the distance among a requestor cache, the
snooping cache, and a data supplier cache. Because a co-
herency request is sent only to the remote caches which have
the requested data and the requested data is copied from the
closest supplier cache, the numbers of used bus segments,
used splitters, and tag lookup operations is dependent on
the distance among participated caches. Therefore, we pro-
pose a snoop-energy minimizing technique by making tasks
related with a cache coherency operation to be executed on
the processors located close.

Although, finding an optimal through the execution and
comparison of all cases is the most confident method, it
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takes too much time. We also propose an optimal detection
technique which ensures the optimality without the execu-
tion of all cases. We analyze the execution characteristic of
tasks and hardware characteristic of target MPSoC. With
the analysis, our technique detects an optimal task assign-
ment with only single execution and multiple calculations.
We first propose an optimal task assignment technique, if
the number of tasks is same to the number of processors.
However, as the number of tasks is not always same to the
number of processors in real computing environment, we ex-
tend our technique to be applicable even though the number
of tasks is different from the number of processors, where a
grouping technique is used to make the number of tasks be
same to the number of processors. As the location of snoop-
ing cache can be changed in the early design step of target
MPSoC, we detect optima for two cases, 1) the location of
snooping cache is fixed as the middle of processors and 2)
the location of snooping cache is not fixed.

Experimental results show that when the number of tasks is
equal to the number of processors, the proposed optimal task
assignment technique reduces the snoop energy consumption
by 13% over naive task assignment case and the more energy
is reduced with the more tasks. For general task sets, the
proposed task assignment heuristic reduces the snoop energy
consumption by 15% over naive task assignment case. If we
compare the optimal task assignments before and after fixing
up the location of snooping cache, most of cases, the same
task assignment is selected for minimal snoop-energy. It
says that snoop-energy is minimized when a snooping cache
is located in the middle of processors. These results show
that our approach is energy efficient and we expects that our
software level snoop-energy reduction technique will help to
design more energy efficient embedded systems.

The contribution of this paper can be summarized into two
aspects. First, we proposed a snoop-energy reduction tech-
nique by an optimal task assignment, which takes advantage
of hardware and software characteristics. Second, we pro-
pose an energy efficient task assignment heuristic, without
the restriction of the number of tasks and the number of
processors.

The rest of paper is organized as follows. We describe related
works and the broadcast filtering in Section 2 and Section 3,
respectively. In Section 4, we explain how to detect a snoop-
energy optimal task assignment. The experimental results
are shown in Section 5. Finally, we draw conclusions of our
study in Section 6.

2. RELATED WORK
To reduce cache energy in a cache coherency operation, cache
lookup filtering and serial cache lookup have been proposed.
Jetty [4] is a small structure attached to each cache. Be-
fore a cache lookup, Jetty was checked and it filtered out
useless cache lookups. RegionScout [6] saved more cache
energy than Jetty by using smaller sized filters. Jetty used
one entry per cache block, whereas RegionScout used one
entry per region which is a continuous memory area. Serial
snooping [7] and flexible snooping [8] have been proposed
as serial cache lookup techniques. Instead of broadcasting
coherency requests to all remote caches in parallel, remote
caches were checked serially, one by one.

To reduce bus energy, several researchers have proposed and
used bus splitting techniques. Chen et al. [9] proposed the
first bus splitting technique based on pass transistors and
used a graph search technique to find an energy-efficient
bus topology. Heish et al. [10] divided a bus into two seg-
ments and connected communication components based on
a probabilistic model of communication to minimize bus en-
ergy. But they ignored the energy cost of the splitter. A
multiple simultaneously accessible split-bus architecture has
been proposed by Lu et al. [11]. Their goal was to enhance
the bandwidth and latency of the shared bus. They did not
consider energy. Guo et al. [12] proposed a design method
for using a segmented bus. They minimized the number of
bus segments by block ordering and the length of each bus
segment by floor planning.

Optimal assignment and mapping problems happen in nu-
merous design processes. Quadratic assignment problem [13]
is widely used in the task of location electrical assemblies in
given slots so as to minimize the total length of interconnect-
ing wires [14] and in mapping strategy for parallel processing
[15]. Recently, Guo et al. [16] proposed an energy efficient
network topology using the solution of optimal communica-
tion spanning tree problem.

3. LOW-POWER MPSOCS WITH A BROAD-
CAST FILTERING SUPPORT

As typical MPSoCs in an academic and commercial area con-
tain multiple homogeneous processors and on-chip caches [1,
17], we specify the target MPSoC of this paper to be simi-
lar to them. Figure 1 represents the architecture of target
MPSoC which is capable of the broadcast filtering. Shaded
blocks are added logics to implement broadcast filtering.
The MPSoC contains multiple homogeneous processors, and
each processor has its own private L1 caches (I-cache and
D-cache). The L1 D-cache has a duplicated tag to prevent
processor delay during snooping. The MPSoC may contain
a shared L2 cache to enhance performance. All processors
share the memory (or L2 cache) and they communicate with
each other through a shared bus. A snoop-based cache co-
herency protocol is used to keep data coherency between
cache and memory.

It contains a directory, named as snooping cache, to deter-
mine if a requested data is contained in remote caches. The
snooping cache has sharing information about data blocks
in L1 caches. It is different from the conventional directory
which keeps sharing information of data blocks in lower-
level memory hierarchy. If the snooping cache receives a
coherency request with a block address, it selects a set us-
ing an index part of address. After comparing a tag part of
address with the tag array of the snooping cache, it outputs
a corresponding flag vector and snoop-hit information.

To selectively broadcast coherency requests, the MPSoC
adopts a split-bus architecture. A processor or snooping
cache is connected to each bus segment. A splitter con-
nects two adjacent bus segments and transfers signals be-
tween them only if it is activated. The split-bus works like a
monolithic bus if all splitters are activated. An arbiter and
the snooping cache control the splitters.
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Figure 1: The architecture of target MPSoC with a
broadcast filtering support.

The process of cache coherency operation is modified af-
ter applying the broadcast filtering. In case of BusRd, (1)
the local cache requests bus use to the arbiter to perform a
BusRd transaction. (2) the arbiter permits bus use. At the
same time, it activates the splitters between the local cache
and the snooping cache. (3) the local cache sends a BusRd
request to the snooping cache. (4) the snooping cache checks
if the requested data is shared by remote caches. If remote
caches contain the requested block, it activates the splitters
corresponding to remote caches. (5) if the requested data
is shared, the snooping cache broadcasts the request to re-
mote caches. Otherwise, it sends the request to the shared
memory. (6) remote caches or the shared memory snoop the
request and supplies the requested data to the local cache.

Because coherency requests are sent only to the remote caches
that have the requested data and the requested data is copied
from the closest supplier cache, the numbers of used bus seg-
ments, used splitters, and tag lookup operations is depen-
dent on the distance between participating caches. There-
fore, we can minimize snoop-energy by making the tasks
that raise many cache coherency operations to be executed
on the processors that is located close.

4. BROADCAST FILTERING-AWARE TASK
ASSIGNMENT TECHNIQUES

We are given a task set T and a processor set P and they
are defined as follows:

T = {τ1, τ2, ..., τk}
P = {p1, p2, ..., pm}.

If k = m = N , the number of possible task assignments
of T into P is as large as N !. Although, finding an opti-
mal with execution and comparison of all cases is the most
confident method, it takes too much time. So, we propose
an optimal detection technique which ensures the optimal-
ity without execution of all cases. We analyze an execution
characteristic of tasks and hardware characteristic of target
MPSoC. With the analysis, our technique detects an opti-
mal task assignment with only single execution and multiple
calculations.

However, k is not always same to m in general computing en-
vironments. So, we first propose an optimal task assignment
technique for the case of k = m and extend our technique
to cover the case of k 
= m.

4.1 Restricted optimal task assignment tech-
nique (RTA)

If we are given a cost matrix of n objects and a distance ma-
trix of n locations, the problem of finding the assignment(a)
over all permutations that minimizes the objective function(o)
is called as a quadratic assignment problem (QAP) [13]:

o =
i,j

cijda(i)a(j).

If k = m = N , RTA detects an optimal task assignment by
formulating the problem with QAP. However, as the vari-
ables of two problems have difference, we will define a cost
matrix, a distance matrix, and an objective function to de-
tect an optimal with QAP solution.

4.1.1 Definition of cost matrix
As the number of cache accesses is proportional to the num-
ber of bus transactions, we use only a bus transaction fre-
quency and infer cache energy from it using coefficients.

A cost matrix is defined as the number of bus transactions
between tasks, as follows:

C = {(rij , bij)|1 ≤ i, j ≤ N + 1}.

A cost is represented as a tuple of (r, b), where r means the
number of coherency requests and b means the number of
block copies. We distinguished r and b, because the number
of bus transactions per request and those per data block
copy may be different according to a system configuration.

The cost matrix is built from a trace about cache coherency
operations during execution of an application. Figure 2
shows the cost matrix generation algorithm. As a BusRd
and a BusRdX send coherency requests to remote caches,
r between the local cache and the snooping cache increases
one. If a snoop-hit happens, as coherency requests are for-
warded to remote caches, r ’s between the snooping cache
and remote caches also increase one. We also add 1/h to b’s
between them. Although the local cache copies data from
only one remote cache that is the closest to the local cache
in the reality, as we cannot know the distance between the
local cache and remote caches before task assignment, we
assume the probability which remote cache is chosen as a
data supplier is equivalent and add 1/h to b’s between the
local cache and all remote caches equivalently. In case of a
BusUpgr, r between the local cache and the snooping cache
is incremented by one. If a snoop-hit happens, r ’s between
snooping cache and remote caches also increase one. As a
BusUpgr does not need a data copy between caches, b’s be-
tween them has no change. If a coherency type is a BusWB,
r and b between the local cache and the snooping cache in-
crease one. Because a dirty block is not shared by remote
caches, no bus transaction happens between caches.

4.1.2 Definition of distance matrix
As a split-bus architecture is used the target MPSoC, bus
energy is dependent on the number of bus segments used in a
bus transaction. If all units (processors and snooping cache)
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Input; cache coherency operation trace
Output; cost matrix C = {rij , bij}
Definition; l:local cache, e:snoop-hit remote caches,

s:snooping cache, h:snoop-hit count
1: for (all trace)
2: Select one line of trace;
3: if (coherency type is BusRd or BusRdX)
4: rls+ = 1;
5: if ( snoop-hit )
6: rle+ = 1;
7: ble+ = 1/h;
8: end if
9: else if (coherency type is BusUpgr)
10: rls+ = 1;
11: if ( snoop-hit )
12: rse+ = 1;
13: end if
14: else if (coherency type is BusWB)
15: rls+ = 1;
16: bls+ = 1;
17: end if
18: end for

Figure 2: Cost matrix generation algorithm.

are labeled as u1 ∼ uN+1, we define a distance matrix using
the number of bus segments between two units as follows:

D = {dij |1 ≤ i, j ≤ N + 1},
where ∀ui, uj : dij =

|i − j| + 1, if i 
= j
0, if i = j.

4.1.3 Definition of objective function
Total snoop-energy is the sum of consumed energy by L1
D-caches and the shared bus [5]. Cache energy is the sum of
energy during tag lookups (Etag), full cache accesses for data
copy (EL1), and snooping cache accesses (Esc). Bus energy
is the energy consumed by bus segments (Ebs) and splitters
(Esp) for bus transactions. So, the total snoop-energy can
be expressed as follows:

Esnoop = Ecache + Ebus

= Etag + EL1 + Esc

+ Ebs + Esp.

However, full cache access energy and snooping cache access
energy is have no relationship with a task assignment. So,
the snoop-energy with an arbitrary task assignment (a) is
proportional to the energy consumed in tag lookups, bus
segments, and splitters.

Ea
snoop ∝ Etag + Ebs + Esp.

The goal of an optimal task assignment is to minimize snoop-
energy. So, an objective function means the snoop-energy

part dependent on task assignments and it is defined as fol-
lows using variables of cost matrix and distance matrix:

o = Ea
snoop =

i,j

(rij , bij)da(i)a(j)

=
i,j

(1 + α)rij + γbij d̂ij + β(rij + γbij)(d̂ij − 1),

where d̂ij = da(i)a(j), α =
Etag

Ebs
,

β =
Esp

Ebs
, and γ =

block size

bus width
.

α indicates the energy rate of cache and bus segment and β
means that of splitter and bus segment. α and β are used to
calculate the energy consumed by cache lookups and split-
ters during coherency operations. γ is the rate of cache block
size and bus width. It means how many of bus transactions
is necessary to copy a cache block. We use γ to calculate the
number of bus transactions in cache coherency operations.

As we previously described in the cost matrix definition, we
count only the number of bus transactions between tasks
and estimate snoop-energy consumed by caches and split-
ters using the coefficients (α, β, γ). This is possible because
the number of tag lookups is same to the number of re-
quests and the number of used splitters is one less than the
number of used bus segments. The coefficients can be deter-
mined from system configuration and energy consumption
per component.

4.2 General task assignment heuristic (GTA)
The basic idea of GTA is to make the number of tasks to be
same to the number of processors, and to detect an optimal
task assignment using the RTA. We define a new task set T′

which size is same to the number of processors and perform
the RTA to assign T′ to P. From now, we will describe how
to generate the new task set T′ and a corresponding cost
matrix C′ according to the number of tasks.

4.2.1 A case that the number of tasks is bigger than
the number of processors

If |T| = k > |P| = m, multiple tasks should be executed
on the same processor and it needs definition of multitask-
ing environment. As there are many kinds of programming
models and task scheduling policies, we restrict the multi-
tasking environment we consider in this paper.

Programming model: programmers can use multiple proces-
sors simultaneously using a multithreaded programming model
[18]. This model is widely supported in embedded operating
systems [19, 20].

Task scheduling policy: all processors use a shared task
queue. However, each task is scheduled only to the specified
processor. The processor ID of each task is determined on
task creation and not changed until finish. This policy is
widely used in embedded systems because the hardware and
software of embedded systems are fixed in design step.
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Input; original task set T, cost matrix C, time limit
Output; new task set T′

Definition; unified cost matrix CU ,
et(T): execution time of T

1: τ ′
1 = τ ′

2 = ... = τ ′
m = {};

2: for ∀cu
ij ∈ CU

3: cu
ij := rij + bij ∗ γ;

4: end for
5: while (T 
= {}) do
6: Choose a maximum cost cu

ij ;
7: TM := {τi, τj};
8: if (TM ⊂ T)
9: if ( Any task in Ts exists in τ ′

i )
10: TC := TM – τ ′

i ;
11: if (et(τ ′

i)+et(TC) ≤ time limit)
12: Add TC into τ ′

i ;
13: Remove TC from T;
14: end if
15: else if (et(τ ′

i)+et(TM ) ≤ time limit)
16: Add TM into τ ′

i ;
17: Remove TM from T;
18: end if
19: end if
20: cu

ij := 0;
21: end while

Figure 3: Task grouping algorithm.

To make the number of tasks to be same to the number of
processors, we define new the task set T′ as follows:

T′ = {τ ′
1, τ

′
2, ..., τ

′
m},

where ∀τ ′
i : τ ′

i ⊂ T,

∀τ ′
i , τ

′
j : τ ′

i ∩ τ ′
j = {}, and

τ ′
1 ∪ ... ∪ τ ′

m = T.

As the address space of all tasks are shared in our multi-
tasking environment, no cache flush is necessary for context
switching. So, as the cache is shared by the tasks assigned
into the same processor, there is no cache coherency prob-
lem. Therefore, we cluster the tasks with many cache co-
herency operations into the same task group. However, if
all tasks are clustered into the same task group, the execu-
tion time will be extended. So, we added a time constraint
to finish all tasks. The Figure 3 shows our task grouping
algorithm without violation of time constraint.

With the original task set, the original cost matrix, and time
constraint, we generate the new task set. Initially, we make
all elements of the new task set empty and generate a unified
cost set, which consists of the number of bus transactions
without distinguishing the number of requests and the num-
ber of block copies. To classify frequently communicating
tasks into the same task group, we select two tasks with
the maximum cost. If one of them is already classified into
a task group and if the other can be assigned to the same
task group without violating the time constraint, we assign
them into the same task group and remove the tasks from
the original task set. Otherwise, we assign the selected tasks
into other task group which does not violate the time con-
straint. Until all tasks in the original task set are grouped,
we repeat the grouping process.

The grouping heuristic may not generate optimal task groups,
because it uses cache coherency frequencies between tasks
(when a processor executes a task) as the metric of group-
ing. If multiple tasks are assigned into the same processor,
as the cache is shared by the assigned tasks, cache usage
pattern may be changed because of conflict misses between
the tasks. But it is difficult to predict cache usage pattern
of task group before grouping, so we assume the cache co-
herency frequencies of tasks after grouping will follow those
of individual executions.

After the new task set is generated, we generate a new cost
matrix for it. As each task in the new task set indicates a
task group, the costs are changed from the costs between
tasks to the costs between task groups. As an original cost
consists of the number of requests and the number of block
copies, if a tuple (r′ij , b

′
ij) means a new cost between two task

groups τ ′
i and τ ′

j in the new task set, the new cost matrix is
defined as follows:

C′ = {(r′ij , b′ij)|1 ≤ i, j ≤ m + 1},
where r′ij =

n,l

rnl, b′ij =
n,l

bnl,

τn ∈ τ ′
i , τl ∈ τ ′

j , and

τ ′
m+1 = snooping cache .

4.2.2 A case that the number of tasks is smaller than
the number of processors

If |T| = k < |P| = m, we add empty tasks to make the
number of tasks and the number of processors same. So,
the new task set T′ is defined as follows:

T′ = {τ ′
1, τ

′
2, ..., τ

′
m},

where τ ′
i =

τi, if 1 ≤ i ≤ k
∅, if k + 1 ≤ i ≤ m.

The new cost matrix C′ is defined as a superset of C. As
the size of cost matrix increases from (k + 1) × (k + 1) to
(m + 1) × (m + 1), we set a tuple (0,0) as the cost related
to the added empty tasks.

4.3 Range of optimal assignment
According to the precedence of task assignment operation in
an embedded system design process, an optimization range
can be changed. If we assign tasks before determining the
location of snooping cache, the location of snooping cache
can be optimized, too. So, we detect optimal assignments
for following two cases.

OptTask: the location of snooping cache is fixed as the
middle of processors and we find an optimal assignments of
tasks. We consider only the task assignment functions which
assign the snooping cache into uN/2. It means the case that
a hardware floor plan is determined before a task assignment
operation.

OptAll: the snooping cache can be placed in any location.
It can be the side of bus or the middle of any two processors.
So, we find an optimal assignment not only tasks but also
the location of snooping cache. It means the case that a
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Table 1: Simulation parameters for target MPSoCs.

Parameter Value

Processor ARM core
# of processors 2, 4, 8, 16
Private L1 I-, D-cache 32KB, 32-byte blocks, 4-way
Cache coherency protocol MESI [24]
Interconnect 32-bit shared bus
Etag 0.0882nJ
Ebs 0.0074nJ/mm
Esp 0.0163nJ

hardware floor plan is not fixed and can be changed after a
task assignment process.

5. EXPERIMENTS

5.1 Environment
We evaluated the snoop-energy reduction effect by the pro-
posed task assignment techniques using simulation based ex-
periments. We used the CATS simulator [21], which is an
extended version of the SimpleScalar tool [22] for an MP-
SoC simulation. It supports multiple processors, private
cache, shared bus, shared memory, and snoop-based cache
coherency protocol. We configured CATS similar to MPCore
specification [23], as it is one of representative MPSoCs and
widely used in an industry field. Table 1 shows the detailed
simulation parameters for baseline MPSoCs.

We executed programs in the SPLASH-2 suite [25] with var-
ious number of tasks (2, 4, 8, and 16) and generated traces
about cache coherency operations such as coherency type,
address, and cache updates. Although SPLASH-2 is not
developed for embedded system evaluation, as it is widely
used in multiprocessor platforms and there is not any widely
used parallel applications for embedded system, we selected
it and used a small size input data.

With the traces from the CATS, we generated the cost ma-
trix. The distance matrix was generated using the number
of bus segments between processors from the configuration
of simulator. With the matrixes, we detected snoop-energy
optimal task assignments using the RTA and the GTA. In
case of 16 processors, as there are too many possible as-
signments (=17!), we used the FANT [26], one of heuristic
searching algorithms for QAP, in the RTA. With the opti-
mal assignment and coherency traces, we estimated snoop-
energy using energy parameters in Table 1, which are gained
from the CACTI [27] and Heish et al’s work [10].

5.2 Objective function verification
Before inspecting the snoop-energy reduction effect by the
proposed techniques, we verified if our objective function
correctly represents snoop-energy. For this, we compared
the relationship between snoop-energy and objective func-
tion value of all possible task assignments. However, as the
objective function includes only the task assignment variant
snoop-energy, direct comparison is not elibigle. Instead, we
examined if the following proposition was kept true.

-

50

100

150

200

250

300

350

1 120Case of task assignments

O
bj

ec
tiv

e 
fu

nc
tio

n 
(m

ill
io

n)

cholesky fft lu (cont.) lu (non-cont.)
radiosity radix raytrace volrend

Figure 4: Increase of objective function according
to increase of snoop-energy.

∀ ai, aj ∈ {possible assignments}:
if snoop-energy with ai > snoop-energy with aj →
objective function with ai > objective function with aj .

Figure 4 shows the objective function of task assignments.
In an X-axis, task assignments are sorted in increasing order
of snoop-energy. In all applications, as the snoop-energy in-
creases, objective function also increases. So, we can know
that our objective function always makes true the proposi-
tion and represents snoop-energy enough correctly. In some
applications, there are ranges where the objective function
does not increases. However, it is not the fault of objective
function, but there are different task assignments with the
same snoop-energy.

5.3 Snoop-energy reduction
To evaluate the snoop-energy reduction by the RTA, we
executed two, four, 8, and 16 tasks on the MPSoCs with
the same number of processors and estimated snoop-energy.
Figure 5 shows the snoop-energy of four-way MPSoC with
different task assignments. In the figure, Baseline means the
snoop-energy when tasks are assigned sequentially. RTAs in-
dicate the snoop-energies when only tasks(OptTask) or tasks
and the snooping cache(OptAll) are optimally assigned by
the RTA. All bars are normalized to the Baseline.

The RTA reduced snoop-energy by minimizing snoop-energy
of frequently performed cache coherency operations. On av-
erage, it reduced snoop-energy by 13% over baseline model.
In case of radix, there is little energy reduction with the
RTA. It is because the frequencies of cache coherency op-
eration between arbitrary two tasks are almost the same,
so snoop-energy has no relationship with task assignment.
In other side, in case of radiosity, the RTA reduced much of
snoop-energy. As specific tasks perform much more cache co-
herency operations, by assigning those closely, 26% of snoop-
energy is saved. So, the more snoop-energy is reduced, if
cache coherency operations are distributed more partially.
OptTask and OptAll reduce almost the same amount of
snoop-energy at most of all applications, except raytrace
and volrend. It means that the optimal location of snooping
cache is the middle of processors. It is because of frequent
bus transactions between caches and the snooping cache.
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Figure 5: Snoop-energy when four tasks are exe-
cuted on a four-way MPSoC.
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Figure 6: Snoop-energy with the RTA on various
number of processors.

To perform cache coherency operation, all caches send co-
herency requests to the snooping cache. Also, if a snoop-
miss is detected, the local cache copies data blocks not from
a remote cache but from the shared memory through the
snooping cache.

Figure 6 shows the snoop-energy reduction by the RTA in
MPSoCs with two, four, 8, and 16 processors. All values in
graph are normalized to the baseline model with the same
number of processors. In all programs, the more snoop-
energy is saved as the number of processors (tasks) increases.
On the average, snoop-energy is reduced to 87% of baseline
in four-way MPSoC. It decreases to 66% of baseline, if an
MPSoC contains 16 processors.

To evaluate the snoop-energy reduction effect by the GTA,
we executed 16 tasks on a four-way MPSoC and estimated
snoop-energy. Figure 7 shows the result. Baseline indicates
the snoop-energy when tasks are assigned to processors ac-
cording to a round-robin scheme. As the GTA is performed
in two steps (the grouping and the RTA), we distinguished
the snoop-energy after each step. Grouping indicates the
snoop-energy after only the grouping is performed and task
groups are assigned to processors sequentially. GTA indi-
cates the snoop-energy when tasks are assigned to proces-
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Figure 7: Snoop-energy when 16 tasks are executed
on a four-way MPSoC.

sors through all steps of GTA. All bars are normalized to
the Baseline.

If we compare Baseline and GTA, snoop-energy decreases
maximally to 74% of baseline model with the GTA, and
on average, the GTA reduces 15% of snoop-energy over the
baseline model. As the coherency operation distribution be-
tween tasks and task groups after grouping is different, the
snoop-energy reduction effect by the grouping step and the
RTA step is different according to the distribution change.
In cases of cholesky, radiosity, raytrace, and volrend, as the
partiality of distribution is large, the RTA step reduces con-
siderable snoop-energy. In other side, the grouping step
reduces little snoop-energy. It reduce 1% ∼ 2% of snoop-
energy, only in cases of lu(cont.) and radix. It is because
the number of cache coherency operations is not reduced by
the grouping. Although, the grouping removes the cache
coherency operations between the tasks in the same task
group, it results in conflict misses in caches and cache co-
herency operations between tasks allocated to different task
groups.

6. CONCLUSIONS
We proposed an optimal task assignment techniques to min-
imize snoop-energy by considering the broadcast filtering
and cache coherency operation among tasks. We explained
how to detect an optimal task assignment technique, if the
number of tasks is same to the number of processors and
extended our technique to be applicable even though the
number of tasks is different from the number of processors.

Experimental results show that when the number of tasks
is equal to the number of processors, the proposed optimal
task assignment technique reduces the snoop energy con-
sumption by 13% over naive task assignment cases. For
general task sets, the proposed task assignment heuristic re-
duces the snoop energy consumption by 15% over naive task
assignment cases.

As the design of embedded systems require both of hardware
and software level optimizations, we expect that our software
level snoop-energy reduction technique will help to design
more energy efficient embedded systems.

MEDEA07                                                                                  
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