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ABSTRACT
For SSD-based storage systems, the Differential RAID tech-

nique has been proposed to reduce the probability of corre-

lated multiple failures among SSDs caused by the even par-

ity distribution of RAID-5. In order to differentiate the age

among SSDs, the full stripe writes should be replaced to the

partial stripe writes by allocating more writes to a single

SSD. During the full stripe write replacement, the lifetime

of SSDs is inevitably reduced due to the increased number of

parity updates. In this paper, we propose a deduplication-

assisted partial stripe write replacement technique to im-

prove the lifetime of SSD-based RAIDs. With the dedupli-

cation, a full stripe write can be changed to a partial stripe

write so that the age of SSDs can be differentiated without

additional parity updates. Our experimental results show

that the proposed technique can effectively create the age

difference among SSDs similar to the original Diff-RAID

without additional parity updates. Furthermore, with the

elimination of duplicated data, we can extend the lifetime

of SSD-based RAIDs by 44% compared to Diff-RAID.

1. INTRODUCTION
As the price-per-byte of NAND flash memory is rapidly de-

creasing, NAND flash-based solid-state drives (SSDs) are

emerging as a viable replacement for hard disk drives (HDDs).

However, as NAND flash memory technology scales down

to 20-nm and below, storing data reliably in NAND flash

memory becomes a more challenging design requirement of

NAND-based storage systems [1]. In particular, the increased

bit error rate (BER) and reduced maximum program/erase

(P/E) cycle of NAND flash memory requires a special care

to guarantee the reliability of flash-based SSDs.

In order to achieve a higher level of reliability in SSDs,

system-level redundancy techniques such as Redundant Ar-

ray of Independent Disks (RAID) [2, 3] are popular for stor-

age systems. In RAIDs, which combine multiple disks into

a single logical device, data are distributed among multiple

disks in a redundant fashion depending on the required re-

dundancy level (often called as the RAID level). Most RAID

levels employ an error correction scheme (mostly based on

parity bits) that provides a data recovery capability to the

RAID for the event of a disk failure. For example, in a RAID-

5 configuration, writes are grouped by a chunk (which con-

sists of multiple NAND pages) and the parity is distributed

across the SSDs. Figure 1 shows how the data chunks (e.g.,

A0, B1, and C2) and parity chunks (e.g., Ap and Bp) are al-

located in RAID-5. Since a parity chunk is calculated by

xoring all the data chunks in the same stripe (which is com-

posed of multiple chunks at the same offset over disks), it

should be updated when at least one data page in the same

stripe is updated. There are two methods for writing a stripe

in RAID-5 depending on the size of the write request. When

the size of a write request fits to the size of a stripe, the

parity can be directly calculated by data to be written with-

out reading existing one. Therefore, data and parity of the

stripe can be written together, which is called a full stripe

write. On the other hand, when the size of a write request is

smaller than the size of a stripe, existing data and parity in

the stripe should be read so that the new parity can be cal-

culated. Since the stripe is partially updated, this is called

a partial stripe write.

In the RAID-5 array, parity chunks are evenly distributed

across SSDs so that extra load from updating parity chunks

Figure 1: An example RAID-5 configuration with 4 disks.



can be equally shared among SSDs. For instance, if a chunk

consists of a single page and four random pages (which are

allocated to chunk A0, B1, C1, and D2) are updated in Fig-

ure 1, all the pages are written by the partial stripe write

method so each SSD receives both data and parity updates.

As a result, the overhead of the parity updates is equally

distributed among four SSDs in RAID-5.

However, as discussed in [4], for a SSD-based RAID-5 array,

an even distribution of parity updates significantly reduce

the reliability of a SSD-based RAID because all SSDs may

be worn out at similar times, thus increasing a probability

of correlated multiple failures among SSDs. Diff-RAID [4]

attempts to create and maintain the age difference among

SSDs to guarantee that at least some SSDs have lower BER

to avoid the correlated SSD failure. For this purpose, Diff-

RAID allocates more parity chunks to an older SSD to dif-

ferentiate the aging rate of SSDs.

Although the key insight behind Diff-RAID is novel, the

original Diff-RAID may fail to maintain the age difference

among SSDs, especially under a sequential write workload.

For instance, if three sequential pages (which are allocated

to chunk A0, A1, and A2) are requested to be written for

a page-sized chunk in Figure 1, the pages are written by

the full stripe write so four SSDs (including the parity SSD)

should be written regardless of how we re-allocate the parity

chunk. Thus, there is a limited chance to differentiate the

aging rate of SSDs for Diff-RAID with sequential writes.

The limitation can be overcome by increasing the chunk size

so that more writes are written to a single SSD and even

distribution of writes is avoided. If we change the chunk size

to be three pages in the previous example, the requested

three pages are allocated to the chunk A0 together. Unlike

the previous example, the pages are written by partial stripe

writes instead of full stripe writes. Since only two SSDs are

written, the aging rate of SSDs can be differentiated and

can be managed by re-allocating the chunk Ap to another

SSD. Although using the large chunk size can mitigate the

sequential write problem in Diff-RAID, the total amount

of writes is increased due to more frequent parity updates.

In other words, the lifetime of SSDs should be sacrificed to

achieve a higher reliability.

In this paper, we propose a novel lifetime management tech-

nique for Diff-RAID using a deduplication technique as a

main instrument of converting full stripe writes to partial

stripe writes. By removing duplicated pages from a full stripe

write using a deduplication technique, we convert most writes

into partial stripe writes. Since a partial stripe write allows

more flexibility in deciding a destination SSD for each page

of the partial stripe write, we can better meet the age difffer-

ence requirement for each SSD of Diff-RAID without using

a large chunk size. For this purpose, we propose a simple but

effective SSD re-allocation technique that utilizes the loca-

tion of the eliminated data for differential age distribution.

Our proposed technique achieves a similar reliability level

of the original Diff-RAID while significantly improving the

lifetime of SSDs.

The rest of the paper is organized as follows. Section 2 de-

scribes the write amplification problem of Diff-RAID with

evaluation results. Section 3 presents the dedup-assisted par-

tial stripe write technique. In Section 4, experimental results

of the proposed technique are presented. Finally, Section 5

concludes with a summary and future work.

2. WRITEAMPLIFICATIONPROBLEM IN

DIFF-RAID
In order to decrease the probability of correlated multiple

failures among SSDs in RAID, Diff-RAID incurs skewed

writes across SSDs by distributing parity unevenly. For full

stripe writes, however, the uneven parity distribution can

not make skewed writes because the full stripe write incurs

the same amount of writes to all SSDs in a RAID array. In

order to evaluate the reliability degradation problem due to

the full stripe writes, We ran several traces on the Diff-RAID

array that is implemented based on a Linux RAID module,

MD [6] with four SSDs. Figure 2 shows the percentage of

number of written pages per SSD for various traces. Web,

homes, mail traces are from [5] and Random trace is a syn-

thetic small random write workload. Since the Random trace

incurs only partial stripe writes Diff-RAID effectively differ-

entiate the number of written pages between SSDs. However,

the difference of number of written pages is not sufficient for

web, homes, mail traces because of the significant sequential

writes ratio, which are 87%, 63%, and 94%, respectively.

Thus, increasing the partial stripe write ratio for the sequen-

tial workload is essential for Diff-RAID to achieve desirable

reliability. In order to make more partial stripe writes, the

authors of Diff-RAID suggested that the stripe size should

be increased [4]. Since the size of a stripe is determined by

(size of chunk) * (# of data devices), we can increase
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Figure 2: The difference of written pages of Diff-RAID with

various traces.
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Figure 3: The amount of written data varying chunk sizes.

the stripe size by setting the size of a chunk to be large. How-

ever, a partial stripe write incurs more parity updates than

a full stripe write so the lifetime of SSDs is reduced. We

evaluated how the chunk size affects the amount of parity

update by running a workload that issues 1 MB-sized write

requests on top of MD. Figure 3 shows the total amount of

written pages varying chunk sizes. As shown in Figure 3, the

amount of written parity page is significantly increased as

the chunk size increases due to the frequent parity updates.

Figure 4 shows the amplified writes of Diff-RAID when a

large chunk size is used. Since only a part of SSDs receive

writes when the chunk size becomes large, the number of

written page difference is similar to the Random trace. As

mentioned above, however, the number of parity updates in-

creases due to the large chunk size. Particularly, the writes

are amplified up to 1.8x for mail trace, significantly decreas-

ing the lifetime of RAID. In conclusion, Diff-RAID may fail

to satisfy the endurance and the reliability requirements at

the same time when the portion of full stripe writes become

large.

3. ENDURANCE IMBALANCING TECH-

NIQUE USING DEDUP-ASSISTED PAR-

TIAL STRIPE WRITES

3.1 Dedup-assisted Partial Stripe Writes
In this section, we describe the lifetime improvement tech-

nique for SSD-based RAID using dedup-assisted partial stripe

writes. As discussed in Section 2, for the sequential work-

load, the amount of written data is inevitably increased due

to the large chunk size for differentiating the aging rates

of SSDs in Diff-RAID. Instead of using a large-sized chunk,

we can efficiently replace the full stripe writes to partial
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Figure 4: The amount of amplified writes of Diff-RAID.

Figure 5: An example of replacing full stripe write by dedu-

plication.

stripe writes by removing duplicated data in the full stripe

writes. Figure 5 shows how the deduplication is combined

with RAID to increase the ratio of partial stripe writes. In

Figure 5, the deduplication stage is added to the RAID con-

troller so that we can find duplicated data across SSDs in

the RAID-5 array. When RAID controller receives a write re-

quest, it computes fingerprint of each page using a collision-

resistant hash function. After fingerprinting, each fingerprint

is looked up in the dedup table which maintains the finger-

prints of written data to SSD. Each entry of the dedup ta-

ble is composed of a key-value pair, {fingerprint, location},

where the location indicates a SSD number and address of

written data. If the same fingerprint is found, it is not neces-

sary to write data. Instead, the mapping table is updated so

that the corresponding mapping entry points to the location

of previously written data. If there is no matched fingerprint

in the dedup table, the new fingerprint is inserted into the

dedup table with its location.

For example, three sequential pages, whose contents are C,

D, and E, are requested to be written and data A, B, and C

is already written at the first stripe of RAID. Since data

C is duplicated in the example, we need to write only two

pages, which means a full stripe write is replaced by a par-

tial stripe write. After deduplication, the write request is

assigned to the second stripe and the parity is calculated

using the non-duplicated data, D, and E in the example. Be-

fore the stripe is written, the endurance-aware SSD alloca-

tion step can change the location of eliminated data in order

to make sure the difference of written pages across SSDs is

maintained. The detailed method for SSD allocation will be

explained in the following section.

3.2 Dynamic SSD Allocation
Since the SSD location of duplicated data can not be guar-

anteed, converting to partial stripe write may not be able

to incur the desired difference of written pages across SSDs.

In order to satisfy the number of written page difference of

Diff-RAID, we propose a dynamic SSD allocation technique

for a full stripe write that contains duplicated data. The



Figure 6: An example of dynamic SSD allocation.

endurance-aware SSD allocator in Figure 5 re-assigns the

location of data before the stripe is written to the RAID ar-

ray. In order to create the age difference among SSDs same

as Diff-RAID, the number of issued writes per SSD and the

target age distribution are maintained. The target ratio is

obtained from Diff-RAID with (82, 6, 6, 6) allocation. Then,

the allocator re-assigns the SSD location to meet the target

ratio by the following policy. First, since the parity should

be updated whenever data in the same stripe is updated,

the parity is allocated to the SSD which has the most target

ratio. Second, when the duplicated data is eliminated, it is

located to the SSD which has the least target ratio so that

the SSD would receive less writes than other SSDs. Third, if

an SSD receives more writes than the target ratio, the SSD

is not allocated. Instead, we change the SSD location to an

SSD whose written page ratio is below the target if available.

When there are multiple SSDs that exceed the target ratio,

the SSD with larger target ratio is selected to be written

because it is more reliable to have more young SSDs when

an SSD has failed.

Figure 6 shows an example of the dynamic SSD allocation. A

full stripe write (data C, D, and E) is requested to be writ-

ten and SSD 2 is the original location of parity. Since the

full stripe write is deduplicated, we can apply the dynamic

SSD allocation policy. As mentioned above, the parity is re-

allocated to SSD 0 so we can make an SSD with the most

target ratio get more writes. Moreover, SSD 1 received more

writes than the target ratio so we allocate the eliminated

data C to SSD 1. Since Diff-RAID utilizes only the uneven

parity distribution, the writes are distributed indirectly. The

proposed technqiue, however, dynamically changes SSD lo-

cation so that the age difference among SSDs is created more

effectively than Diff-RAID.

Furthermore, the proposed SSD allocation technique is ap-

plicable only to the full stripe writes because the partial

stripe writes require different mechanism for changing the

allocation. The different SSD allocation mechanism between

the full stripe writes and the partial stripe writes comes from

the different parity calculation. For the full stripe writes,

since the old parity and old data is not needed to calcu-

late new parity, we can freely overwrite the old data and

(a) Dedup after parity calcu-

lation example

(b) Dedup before parity cal-

culation example

Figure 7: Examples of data recovery when an SSD 0 has

failed.

parity. Unlike the full stripe writes, old data and old parity

are necessary for the parity calculation for the partial stripe

writes. If we re-allocate SSD 0 to SSD 1, the old data at SSD

1 should be moved to SSD 0 to avoid the data loss by over-

writing.

3.3 Excluding Duplicated Data for Parity
For applying deduplication on RAID, since the original data

could be placed in other SSD, data recovery process can be

complicated. In this section, we describe how the recovery

process can be simplified in the proposed method. As ex-

plained in Section 3.1, the deduplication is applied before

the parity calculation so that the parity does not contain

eliminated data. The exclusion of duplicated data for parity

enables the simple data recovery process. For a deduplicated

stripe, if we apply the deduplication after the parity calcula-

tion, we need to recover the original data first. If This proce-

dure is repeated for multiple times, called chained recovery,

the recovery time would be significantly increased.

Figure 7 shows the data recovery process when SSD 0 has

failed for the cases that the deduplication is applied after the

parity calculation and the reverse order. In both example,

data B at Stripe 1 and D at Stripe 3 is deduplicated and

the location where the original data were written is linked

with an arrow in the figure. In Figure 7(a), the parity in-

cludes entire data in the same stripe regardless of whether

the data is deduplicated because the deduplication is ap-

plied after the parity calculation. In order to recover Stripe

1, we need data B, C and the parity. However, since data B is

deduplicated, we need to get original data B. Unfortunately,

the original B was written at SSD 0 so we need to recover

Stripe 3 first. A similar process is required for recovering

the Stripe 3 because data D is also deduplicated and the

original data D is not able to obtain. Finally, after data D

at Stripe 2 is recovered, Stripe 3 and Stripe 1 are also

recovered. As a result, more than one stripes are addition-

ally required to be restored for recovering the deduplicated

stripe.

Unlike the previous example, we do not need to recover other

stripes if the deduplication is applied before the parity cal-

culation. As shown in Figure 7(b), the parity does not in-

clude the deduplicated data. For recovering data A, we only
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(a) Diff-RAID with a large chunk.
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(c) The proposed scheme.

Figure 8: The difference of written pages among SSDs for various schemes.

need data C and the parity since data B was not included

to the parity. Thus, we apply the deduplication before the

parity calculation in this paper.

4. EXPERIMENTAL RESULTS

4.1 Experimental Settings
In order to evaluate the effectiveness of our proposed tech-

niques, experiments are performed on the RAID-5 device

based on the MD with FlashBench [7] as an SSD emulator.

Diff-RAID and the proposed technique is implemented on

MD. A trace-based experimental environment is set up to

set inputs to MD by building a Linux kernel module that is-

sues an I/O request based on a trace file to MD. The module

creates a block I/O request by reading the I/O information

in the block I/O trace file such as logical block address and

size of the request. During the experiments, we collected the

number of written pages of each SSD to see the amount of

the amplified writes of Diff-RAID. We then compared them

with that of the proposed technique to see the lifetime im-

provement.

We used five different I/O traces for the evaluations. Three

production system traces, web, homes and mail were from

the FIU [5]. Two in-house traces, PC and Package traces

were collected while running real-world applications. PC rep-

resents a desktop PC workload such as an web surfing, email-

ing, and document editing whereas Package includes an up-

dating and downloading software packages. Table 1 summa-

rizes the characteristics of the I/O traces such as amount

of writes, average sequential write request size, the ratio of

sequential write requests, and the ratio of duplicated data.

4.2 Inter-SSD Lifetime Fluctuation Evaluation

Traces
Amount of Avg. Seq. Write % of Seq. Dedup

Writes (GB) Req. Size (KB) Write Req. (%) Ratio (%)

web 37.28 37.48 87 28

homes 65.27 19.96 63 39

mail 1483.4 75.16 94 31

PC 3.1 31.19 77 29

Package 4.9 40.44 69 20

Table 1: Write characteristics of traces used in our experi-

ments.

As mentioned in Section 3, the proposed technique can dif-

ferentiate the amount of written pages among SSDs without

incurring additional parity updates. Figure 8 shows how the

difference of written pages among SSDs is similar to the tar-

get ratio of Diff-RAID for the each case. As shown in Fig-

ure 8(a), Diff-RAID with a large chunk shows a very similar

age distribution to the target distribution. When we use a

large-sized chunk, the workload seems to be random because

it is hard to have a full stripe write. On the other hands,

Diff-RAID with a small chunk size fails to make a desirable

age difference as shown in Figure 8(b). Especially for the

mail trace, since the ratio of sequential write is significant,

most of the writes are written in full stripe writes. However,

Figure 8(c) shows that the proposed technique achieves a

similar result with Diff-RAID with a large chunk size. By

increasing the number of partial stripe writes and allocat-

ing the partial stripe writes in a dynamic fashion among

SSDs, the proposed technique can effectively differentiates

the amount of written pages among SSD. If we compare the

homes trace and the mail trace, when there are more dupli-

cated data, the age difference becomes more similar to the

target ratio.

4.3 Endurance Evaluation
The proposed technique does not incur the additional par-

ity updates due to the large chunk size for differentiating

the amount of written pages among SSDs. Moreover, the to-

tal number of writes is considerably reduced by eliminating

duplicated data. Figure 9 shows the total amount of writ-

ten pages for the various traces. The results shown in Fig-
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ure 9 are normalized to the number of requested pages of

the traces. Since RAID-5 incurs redundant writes, i.e. par-

ity, the amount of written pages is larger than 1 in most

cases. As shown in Figure 9, Diff-RAID with large chunk

size significantly increases the amount of written pages due

to the large number of parity updates. For mail trace, we

can see the largest increase of the written pages because the

significant portion of sequential write results the largest size

of chunk. On the other hand, the amount of amplified writes

for Diff-RAID with small chunk size is almost minimal be-

cause most of the sequential writes are evenly distributed

across SSDs. By exploiting the deduplication, the proposed

technique shows significant reduction in the amount of writ-

ten pages. Despite of the redundancy, the written pages are

smaller than the amount of writes of the traces, except Pack-

age trace. The amount of reduction depends on the dedup

ratio of the traces. As a result, the proposed technique re-

duces the amount of written pages by 44% on average and

up to 52% for mail trace over Diff-RAID, extending the life-

time of SSD-based RAID by the same amount.

5. CONCLUSION
In this paper, we proposed a lifetime improvement technique

for SSD-based RAIDs using dedup-assisted partial stripe

writes. We convert full stripe writes to partial stripe writes

which provide more flexibility in meeting the inter-SSD life-

time fluctuations required by Diff-RAID while avoiding the

write amplification problem of the existing approach. Our

evaluation results show that the proposed technique im-

proves the lifetime of a SSD-based Diff-RAID up to 52%

over the original Diff-RAID.

Our proposed technique can be extended in several direc-

tions. For example, we plan to integrate other lifetime en-

hancement techniques (such as dynamic program erase scal-

ing [8]) in differentiating the lifetime of SSDs so that a bet-

ter reliability of Diff-RAID can be achieved.
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