
Journal of Systems Architecture 55 (2009) 446–456
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Reusability-aware cache memory sharing for chip multiprocessors with private
L2 caches

Hyunhee Kim a, Sungjun Youn b, Jihong Kim a,*

a School of Computer Science and Engineering, Seoul National University, San 56-1, Shinlim-9dong, Gwanak-gu, Seoul, 151-742, Republic of Korea
b LG Electronics Corporation, Seoul 152-702, Republic of Korea

a r t i c l e i n f o
Article history:
Received 3 December 2008
Received in revised form 22 August 2009
Accepted 15 September 2009
Available online 18 September 2009

Keywords:
CMPs
Private L2 Cache
Reusability
Cache management
1383-7621/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.sysarc.2009.09.003

* Corresponding author. Tel.: +82 2 880 8792; fax:
E-mail addresses: hh0726@davinci.snu.ac.kr (H. Kim

(S. Youn), jihong@davinci.snu.ac.kr (J. Kim).
a b s t r a c t

In this paper, we propose a novel on-chip L2 cache organization for chip multiprocessors (CMPs) with pri-
vate L2 caches. The proposed approach, called reusability-aware cache sharing (RACS), combines the
advantages of both a private L2 cache and a shared L2 cache. Since a private L2 cache organization has
a short access latency, the RACS scheme employs a private L2 cache organization. However, when a cache
block in a private L2 cache is selected for eviction, RACS first evaluates its reusability. If the block is likely
to be reused in the near future, it may be saved to a peer L2 cache which has space available. In this way,
the RACS scheme effectively simulates the larger capacity of a shared L2 cache. Simulation results show
that RACS reduced the number of off-chip memory accesses by 24% compared to a pure private L2 cache
organization on average for the SPLASH 2 multi-threaded benchmarks, and by 16% for multi-programmed
benchmarks.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Chip multiprocessors (CMPs) are rapidly emerging as an alter-
native architecture for high-end embedded systems, providing
high performance and low power consumption. Efficient manage-
ment of the on-chip memory hierarchy is important for these CMPs
to achieve their maximum performance potential, since on-chip
cache memory space is limited and off-chip memory accesses take
much longer than on-chip memory accesses. Therefore, reducing
the number of off-chip memory accesses by carefully managing
the on-chip cache space can improve the overall system perfor-
mance [1,2].

Most CMPs have several levels of on-chip cache memory which
can be accessed more quickly than off-chip memory. Typically, L1
caches are designed in a small size because the access latency of
the L1 cache affects system performance directly. On the other
hand, a second level of large cache can be arranged in two ways,
either all the processors share a single L2 cache or each processor
has its own private L2 cache.

A shared L2 cache has the advantage of using cache space more
flexibly because data blocks do not have to be replicated and cache
is relatively large, which can reduce the number of off-chip mem-
ory accesses. However, increasing the size of the cache leads to lar-
ger access latency and energy consumption. This arrangement also
ll rights reserved.

+82 2 871 4912.
), spica81@davinci.snu.ac.kr
causes more bus contentions than a private L2 cache because of a
shared bus. On the other hand, data in a private L2 cache can be ac-
cessed more quickly because it is closer to the processor and rela-
tively small. Private caches, however, use space inefficiently
because data must often be replicated in several private L2 caches.
In addition, private L2 caches of equal size are a poor match for
applications with different-sized working sets. When a working
set is smaller than the private cache size, the cache space is not
fully utilized; the working set is larger than the cache size, only
part of it can be accommodated.

In this paper, we propose an on-chip L2 cache organization
which combines the advantages of both a private L2 cache and a
shared L2 cache for CMPs. The proposed L2 cache organization is
based on a private L2 cache with low-latency as shown in Fig. 1
but writes blocks from a local private L2 cache to a peer L2 cache
which is a private L2 cache of the other processor when they are
evicted to aggregate the private L2 caches. Writing evicted blocks
to a peer L2 cache has already been proposed in CMP_CC [6]. How-
ever, this scheme does not consider the reusability of evicted
blocks and writes the evicted block to the peer L2 cache with a gi-
ven probability which is not change dynamically depending on the
workloads behavior. Our contribution is to consider the reusability
of the evicted blocks in deciding whether they will be saved in the
peer L2 caches and dynamically adjust the number of writes to the
peer L2 cache depending on the concurrently running workloads.

In the proposed scheme, when a cache block in the private L2
cache is selected for eviction, the reusability of that block is evalu-
ated. If the block is predicted to be reused, it is saved in the private

http://dx.doi.org/10.1016/j.sysarc.2009.09.003
mailto:hh0726@davinci.snu.ac.kr
mailto:spica81@davinci.snu.ac.kr
mailto:jihong@davinci.snu.ac.kr
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

Fig. 1. A CMP architecture with a private L2 cache and shared bus.

H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456 447
L2 cache of other processors, replacing blocks which are not reus-
able. Since it is faster to access the L2 cache of a nearby processor
than the off-chip memory, saving blocks that are likely to be reused
in a peer L2 cache will improve performance. In addition, the pro-
posed scheme dynamically adjusts the number of evicted blocks
written to the peer L2 caches considering the characteristics of
the concurrently running workloads, such as a size of working
set and data reuse ratio. When the large number of evicted blocks
is written to the peer L2 caches and degrades the performance by
polluting them, the proposed scheme decides the reusability of a
block more conservatively. On the other hand, if there is an avail-
able space in the peer L2 caches and it could receive the evicted
blocks without the performance loss, the proposed scheme decides
the reusability of a block more aggressively and selects a destina-
tion cache where the evicted blocks are written. In effect, this
arrangement simulates a shared L2 cache organization more effi-
ciently. By considering the reusability of cache blocks and dynam-
ically adjusting the number of evicted blocks written to the peer L2
cache, the proposed technique can always achieve better perfor-
mance improvement by up to 4.8% and 17.4% over the best and
the worst CMP_CC probability setting, respectively.

The rest of the paper is organized as follows. Several previous
research works on a cache management technique for CMPs are
introduced in Section 2. In Section 3 we explain the motivation
of our idea. In Section 4 we explain the proposed reusability-aware
cache sharing technique. Our experimental results are presented in
Section 5. Finally, Section 6 summarizes our paper and suggests fu-
ture work.
Fig. 2. The number of unused blocks and reused blocks under CMP_CC with 100%
probability.
2. Related work

There have been many research works which proposed different
on-chip cache organizations in order to use on-chip cache memory
space more efficiently in CMPs. Existing techniques such as CMP-
SNUCA [3], victim replication [4], CMP-NuRAPID [5] and CMP_CC
[6] all aimed to combine the low latency of the private L2 cache
with the low miss-rate of the shared L2 cache. The CMP-SNUCA
[3] applies a non-uniform cache structure [9] to the CMPs architec-
ture and migrates data blocks close to the requesting processor, so
as to reduce the wire-delay. The victim replication [4] scheme at-
tempts to keep copies of data evicted from the L1 caches within
a local slice of the L2 cache, so as to reduce the wire-delay in the
shared L2 cache. The CMP-NuRAPID [5] scheme copies data close
to the requesting processor to allow fast access for read-only shar-
ing, but not for read-write sharing, in order to avoid coherence
misses. It also includes a method of stealing capacity from a neigh-
bor’s cache when a processor’s private cache space is not large
enough.

CMP_CC [6] redistributes private L2 cache space by randomly
writing evicted blocks from a local L2 cache to a peer L2 cache with
a given probability from 0% to 100%. It also offers a single control
point, called cooperation throttling, which uses the probability
when deciding whether the evicted block is written to the peer
cache or not. However, it does not propose a mechanism to dynam-
ically adjust the probability even though the performance
improvement changes depending on workload behavior. A tech-
nique proposed in [10] similarly redistributes evicted blocks (as
done in CMP_CC) but its redistribution decisions require stronger
conditions for evicted blocks. It only writes evicted blocks from
the local L2 cache to the peer L2 cache only when there is invali-
dated or shared line. Unlike our proposed approach, these schemes
do not consider the reusability of an on-chip cache block.

The earlier version of the RACS technique proposed in [7,8] con-
siders the reusability of an on-chip cache block only when deciding
whether the block should be kept on an on-chip cache or not. How-
ever, the technique described in this paper has significantly im-
proved the decision procedures for determining the reusability of
an on-chip cache block and the destination cache where the
evicted block should be written. In the extended technique, the cri-
terion of deciding the reusability of a block is dynamically adapted
by dynamically adapting the threshold value, unlike in the earlier
version of RACS where the constant threshold value was used for
the reusability check. Adapting the threshold value dynamically
depending on the changing execution environment allows more
cache blocks to be reused. We also improved the procedure for
deciding the destination cache by considering the working set size
and data locality of the destination cache in the OS level, unlike the
earlier version of RACS where the selection of the destination cache
was decided by purely in the hardware level. Taking into accounts
of OS level information (e.g. data locality of a cache), the extended
technique outperforms the earlier version by choosing the destina-
tion cache which has the least performance degradation from
accepting the evicted block.
3. Motivation

CMP_CC [6] transfers evicted blocks to peer L2 caches with a gi-
ven probability which is decided before an execution and does not
change through the execution. However, this technique does not
identify whether the evicted block is likely to be reused or not in
the near future. Fig. 2 shows how many of the blocks written to
peer L2 caches by the CMP_CC with a given 100% probability,
which writes all of the evicted blocks to the randomly selected
peer L2 cache, are reused and how many are not, for the SPLASH
2 benchmarks [13]. As can be seen, for most benchmarks, the
majority of evicted blocks are not reused. When the large number
of the blocks is not reused even though they are written to other
cache, the performance of a system can be damaged because they
may pollute a peer L2 cache space unnecessarily and generate
additional transactions which cause conflicts on an on-chip shared

448 H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456
bus. This means that an adaptive writing is necessary depending on
the reusability of evicted L2 blocks.

As well as the reusability of blocks, selecting the cache where
the evicted L2 block is written, a destination cache, is important
because accepting a peer cache’s block might pollute its own cache
space and degrade its performance. However, if the space of the
peer L2 cache is available, more evicted blocks with reusability
could be transferred. In this paper, an available space in an L2
cache refers to the space where evicted blocks from peer L2 caches
could be written without performance decrease. In this paper, we
identify the available space in the peer L2 cache and use it as the
destination cache.

Fig. 3 presents how instructions per cycle (IPC) for the
SPEC2000 benchmarks improves as the size of the L2 cache is in-
creased by increasing the number of ways from 1-way to 8-way.
It shows which programs can have the available space for the peer
caches. As can be seen, some programs, such as mcf and gap, are
insensitive to the size of the L2 cache, which means that the corre-
sponding cache can provide their space to other programs without
affecting their own performance. If we exploit this available space
effectively, we can keep more reusable blocks on the chip without
any significant reduction in overall performance.

Therefore, this paper proposes reusability-aware cache sharing
(RACS) Technique, which predicts the reusability of a block and se-
lects a peer L2 cache to which an evicted block is transferred. In the
next section, the proposed technique, RACS, is described in detail.
4. Reusability-aware cache sharing technique

In this section, we explain the proposed RACS technique in more
details. RACS consists of two techniques, one for predicting the
reusability of an on-chip cache block and one for selecting the
cache with an available space.
4.1. Predicting block reusability

4.1.1. Access time interval and frequency (ATIF) pattern
Typical replacement algorithms such as lest recently used (LRU)

and most recently used (MRU) exploit a recency to keep blocks in
the cache which are likely to be reused in the near future. On the
other hand, LRFU [11], a cache or a buffer replacement policy, ex-
ploits the frequency of accesses or its recency to predict its reus-
ability. However, in the proposed scheme, it cannot exploit the
recency of data because it should consider the reusability of a block
after it is evicted from a local private L2 cache. Instead, it considers
the frequency of accesses to a block and a time interval between
consecutive accesses.

It is observed that if a block is accessed frequently with a short
time interval but rarely accessed with a long time interval, it usu-
ally is not reused after the eviction because it has only temporal
Fig. 3. IPC variation with a cache size.
locality. On the other hand, in most cases, if a block is rarely ac-
cessed with a short time interval but frequently accessed with a
long time interval, it is likely to be reused after the eviction. Based
on this observation, RACS classifies blocks by access time interval
and frequency (ATIF) pattern and then decides the reusability of
the blocks according to the reuse ratio of each pattern by monitor-
ing how many blocks of each pattern written to the peer L2 cache
are actually reused and how many are unused. A level of reusabil-
ity is thus associated with each pattern.

The ATIF pattern associated with a block is determined by the
number of accesses that occur after short or long time intervals
while the block is in a private L2 cache. We distinguish quite sim-
ply between a short and a long time interval: the interval is long
if there is an intervening access to any block to the same set.
Otherwise, the interval is considered to be short. We use a 4-bit
counter to record the number of accesses to each block with a
short time interval and a 2-bit counter to record the number of
accesses with a long time interval. We use a wider counter for
the short time interval counters because there are usually more
accesses with a short time interval than the accesses with a long
time interval because of the temporal locality. The ATIF pattern of
a block is then determined from these two counts when the block
is evicted from the private L2 cache. The blocks are classified into
16 ATIF patterns using the upper 2 bits of the 4-bit counter and
the whole width of the 2-bit counter. In order to record the reuse
ratio of blocks in each ATIF pattern, we add 16 counters to each
private L2 cache.

If a block written to the peer L2 cache is subsequently reused,
then the corresponding ATIF counter in the L2 cache from which
the block originated is incremented by one. However, if the block
is evicted from the peer L2 cache without reuse, the ATIF counter
is decremented by one. When the ATIF pattern counter becomes
zero, we predict that the blocks which belong to the ATIF pattern
have very low reusability. Thus, the pattern counters provide ongo-
ing estimates of reusability for each pattern. The initial value for
each ATIF counter is half of its maximum value to allow evicted
blocks to be written to the peer L2 cache during the start time of
the execution. During the start time, all of the evicted blocks are
written to the peer L2 cache because the value of the ATIF counter
is not zero. However, if many of written blocks are evicted without
a reuse during the execution, the value of the counters becomes
zero, which prohibit evicted blocks from being written to peer L2
caches. On the other hand, if many of the written blocks are evicted
after a reuse, the value of the counters remains non-zero, which
leads evicted blocks to be written to peer L2 cache continuously.
While the increments of a short or long interval counter should
be performed every time a hit occurs in the cache line, it could
be performed in parallel with the cache access because the hit
could be known earlier after completing only tag lookups. Once
the tag lookups is completed, the counter of the corresponding
hit block can be incremented without increasing the L2 cache hit
time.

Fig. 4 shows what proportion of the blocks written to the peer
L2 caches by CMP_CC with the probability 100% is reused for each
ATIF pattern. X-axis represents the 16 ATIF patterns. The first num-
ber of each pattern represents the upper 2-bit value of the short
time interval counter and the second number represents the 2-
bit value of the long time interval counter. In most cases, ATIF pat-
terns that correspond to a lot of accesses with a long time interval,
such as (13), (22), (23), and (33), have the relatively larger number
of reused blocks. Also, when the first number of the ATIF pattern,
corresponding to the number of accesses after short time intervals,
is zero, like (00), (01), (02), and (03), the blocks do not have a tem-
poral locality but many of them are reused after the eviction. Con-
sequently, ATIF patterns used in RACS can identify blocks with high
reusability.

Fig. 4. Distributions of reused blocks and unused blocks under different 16 ATIF
patterns.

Table 1
Heuristic to select the cache.

/* Initialize*/

selection_threshold = MAX_COUNTER * NUM_OF_COUNTERS/2;
reusability_threshold [] for all the program = MAX_COUNTER/2;
/* for each period, select the destination cache */
for each period

for each i in the dst_cadidate{} for the previous period
if ðIPChistoryðprevÞ½i� � IPCcur ½i� < 0Þ selection_threshold *= 2;
else selection_threshold/= 2;

end for
for each program i running concurrently

pattern_sum[i] = sum of the 16 pattern counters;
if (pattern_sum[i] 6 selection_threshold)

dst_candidate{} += i;
else (pattern_sum[i] > selection_threshold)

H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456 449
4.1.2. Dynamic prediction of block reusability
The accuracy of our reusability prediction depends on the size

of the pattern counters. A longer counter predicts that more blocks
are reusable, because a small counter becomes zero so quickly that
reusability of the block may be unnecessarily underestimated.
Fig. 5 shows the normalized IPC for a private L2 cache scheme, with
different numbers of bits in the ATIF counters. Each of four proces-
sors is running a different program; parser, gcc, gzip, and twolf. As
shown in Fig. 5, the 8-bit counter gives the best performance. On
the other hand, when using the 10-bit counter, IPC decreases be-
cause too many unused blocks are allowed to escape eviction. This
indicates that dynamic technique for predicting block reusability is
likely to be preferable.

For example, when a peer L2 cache has no available space to
save evicted blocks, a more conservative prediction can improve
performance. In this case, we can avoid polluting the other cache
and generating bus traffic by retaining only the blocks with high
reusability. Conversely, if there is available space in the peer cache,
classifying more blocks as reusable can improve the performance.
We, therefore, use a reusability threshold at each cache to adjust
a local prediction of the reusability of the blocks dynamically.

We use ATIF counters which, unregulated, will predict an exces-
sive number of blocks to be reusable. This is fine if cache space in
peer L2 caches is available, but the reusability threshold is used to
produce a more conservative estimate of the reusability when
other caches have no space to keep evicted blocks. To determine
the reusability of a block, we compare the corresponding ATIF
counter with the local reusability threshold. If the value of the ATIF
pattern counter is larger than the reusability, threshold the block is
classified as reusable. Therefore, decreasing the reusability thresh-
old means that more blocks are classified as reusable. Initially, the
reusability threshold is set to half the maximum value of the coun-
ter. If there is available space in the peer caches, then the reusabil-
ity threshold is decreased, so as to predict the reusability of the
blocks more aggressively. However, if no space is available, its va-
lue is increased.
Fig. 5. Normalized IPC with different numbers of bits in the ATIF counters.
4.2. Cache selection technique

When an evicted block is to be written to a peer L2 cache, we
have to select a destination peer L2 cache carefully. For example,
as described in Section 3, if we write the evicted L2 block to the
cache running gcc, its performance might be seriously affected be-
cause it deteriorates as the size of the cache decreases. Instead, it is
better to send the evicted block to an another peer cache which has
space available. In this case, the cache running mcf or gap is the
best destination because it is characterized by low reusability
and not significantly affected by a reduction in the size of the
cache. Even though predicting reusability dynamically can prevent
the evicted blocks with low reusability from being written to peer
L2 caches, we need to get more on-chip space to keep more blocks
evicted from other caches if there is the peer L2 cache whose per-
formance is insensitive to the size of the cache. This allows to ex-
ploit the on-chip cache space more aggressively and improve the
overall performance.

We propose a simple heuristic. If the performance of a program
will not be affected by accepting the evicted block from a peer L2
cache, the more evicted blocks are allowed to be written to this
cache. We call this sort of cache a destination cache. There are
two cases in which evicted blocks will be saved in a destination
cache: either the program running on the cache has a low level
of data reuse, therefore reducing the cache space will not affect
its performance; or the program has a very small working set,
therefore it never fills the cache. we find caches which meet one
or both of these condition at run-time and write evicted blocks
to them. A cache being used by a program with a low level of data
reuse is considered first because its performance is less dependent
on available cache space than a program with a small working set.

Table 1 shows proposed cache selection heuristic, which
chooses destination cache, dst_cache, at which there is a low level
of data reuse, and adapts the reusability threshold, reusabil-
ity_threshold, dynamically. This heuristic is executed through an
src_candidate{} += i;
end if

end for
while (src_candidate{} and dst_candidate{} are not empty)

src_cache = the cache with the maximal pattern_sum
in src_candidate{};
src_candidate{} -= src_cache;
/* to predict the reusability aggressively */
reusability_threshold [src_cache]/= 2;
dst_cache = the cache with minimal pattern_sum
in dst_candidate{};
dst_candidate{} -= dst_cache;
/* to predict the reusability conservatively*/
reusability_threshold [dst_cache] *= 2;
shared_cache[src_cache] = dst_cache;

end while
end for

α

α

α

α

Fig. 6. Overall procedure of the RACS technique.

450 H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456
OS level daemon periodically. At every time period, the OS daemon
reads the information needed for the decision and notifies all the
caches of its decision, namely dst_cache and reusability_threshold.

In our cache selection heuristic, a shared cache register, share-
d_cache[i], stores the destination cache number at each cache. If a
cache does not have a destination cache, the register holds its
own cache number. As well as the reusability threshold, we use a
selection threshold, selection_threshold, to identify programs whose
IPC does not depend on the space of the cache. At each cache, a var-
iable pattern_sum, which represents the data reuse characteristics
of the program, is used to decide the destination cache. If the
sum of the 16 ATIF pattern counters, pattern_sum, at a cache is
equal or less than the selection_threshold, we consider it as a candi-
date for the destination cache, dst_candidate{}. Therefore, if we in-
crease selection_threshold, more caches are considered as the
candidate destination cache for the next period. However, if we se-
lect a program that is sensitive to the amount of space remaining in
its cache as a destination cache due to a high selection_threshold,
the performance of that program might be degraded. We therefore
adapt selection_threshold dynamically using feedback from the per-
formance during the previous period.

Therefore, at the end of each period, we check the IPC of each
program. If the IPC of the cache selected as the destination cache
for the current period is less than it was in the previous period,
it indicates that too many blocks are being written to that cache.
We then halve the selection_threshold by two times to select candi-
dates for the destination cache more conservatively. When we de-
cide whether the IPCs has improved or not, we do not use the IPC
for the previous period, because it might be affected by program
phase change. Instead we use IPChistory, which is averaged over
the recent history of program execution as follows.

IPChistoryðnewÞ ¼
IPChistoryðprevÞ � 3þ IPCcur

4
ð1Þ

IPCcur is the IPC for the current period. If IPCcur is smaller than
IPChistory, it implies that the wrong destination cache is being used,
and we decrease the selection_threshold. Conversely, a value of
IPCcur that is the same as or larger IPChistory, suggests that the pro-
gram is maintaining its performance even though the cache has re-
ceived blocks evicted from peer L2 caches. The selection_threshold
is initialized to half of MAX_COUNTER*NUM_OF_COUNTERS to start
from the middle of the sum of the 16 ATIF pattern counters.

As explained in Section 4.1.2, the reusability threshold is also
used for dynamic reusability prediction. Each of the i caches has
a local reusability threshold, reusability_threshold [i]. By adapting
this threshold, we can predict reusability of a block dynamically
to reflect the availability of space in peer L2 cache. After the
dst_candidate{} and src_candidate{} lists have been created, the
source and destination caches, src_cache and dst_cache, are deter-
mined. The source cache is the cache with the largest sum of pat-
tern values for all the caches in the src_candidate{} because this
cache can be assumed to have the largest number of reusable
blocks. Destination cache has the smallest sum of pattern values
for all caches in dst_candidate{} because this cache can be assumed
to have the fewest reusable blocks, so that its performance is likely
to be least affected by receiving evicted blocks. At the end of per-
iod, the shared_cache[i] register of the source cache is set to the in-
dex of the destination cache according to the result of cache
selection heuristic.

If the cache selection heuristic cannot find the destination cache
with a low level of data reuse, we select the destination cache by
considering the size of the working set at each cache. The size of
the working set is inferred from the memory demand, because a
processor can be expected to require more memory when replace-
ment occurs in its private L2 cache. We use a replacement time
interval Replhistory as a measure of a processor’s memory demand
at each private L2 cache, and this value is updated every time
replacement occurs, as follows:

ReplhistoryðnewÞ ¼
ReplhistoryðprevÞ � 3þ Replinterval

4
ð2Þ

ReplhistoryðprevÞ is the previous prediction of memory demand and
ReplhistoryðnewÞ is the latest value. Replinterval is the time interval
between the last two consecutive replacements. This average over
time is used because it is not affected directly by a change of pro-
gram phase. If an L2 cache has a small Replhistory its processor requires
more memory. This value is only used to compare the memory de-
mand between L2 and does not quantify the memory demand. To
calculate Replinterval, we use a 8-bit counter to measure the time since
the last replacement. This counter is incremented by one every 32
processor cycles, and reset to 0 when replacement occurs.

4.3. Procedure of the RACS technique

Fig. 6 summarizes the RACS steps in processing an evicted L2
cache block a.

1. A block that is evicted from a private L2 cache is not written to
any peer L2 cache (a) if the state of that block is shared, because
it means that the same block is present in another L2 cache; (b)
if the block was transferred from an other L2 cache but was not
reused while residing in the peer cache, because such blocks
have already had a chance to be reused; (c) if the reusability
of the block is low, which is determined by comparing corre-
sponding ATIF pattern counter to the reusability threshold of
its own cache.

2. If a block is still eligible for transfer, we look for a block with
low reusability at the bottom of the LRU stack in one of the peer
L2 caches. If such a block exists, we write the candidate block to
the peer L2 cache.

3. Otherwise, we check the destination cache register first. If a
destination cache has been determined by the cache selection
heuristic, the evicted block is written to it.

4. If cache does not have a destination cache, RACS decides
whether the victim block will remain on-chip from the memory
demand and reuse ratio. Writing to a peer L2 cache does not
cause a subsequent write to the other peer L2 cache to avoid
a ripple effect.

Table 2
Simulation parameters.

Parameter Value

Number of processors 4
Processor model in-order
Processor issue width 4
Number of ALUs 2
Branch predictor 2-level, hybrid, 8 K entries
L1 D-Cache 16 KB, 1-way, 32 B block, 1 cycle
L1 I-Cache 16 KB, 1-way, 32 B block, 1 cycle
L2 Private cache 256 KB, 4-way, 128 B block, 6 cycle

H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456 451
The process of deciding where to write victim blocks requires
communication, and we assume that the necessary peer-to-peer
communication lines are present. If a block has a high reusability,
its cache sends the set number of the block and the value of
Replhistory to all the peer L2 caches. These caches send two bits of
information on reply: one bit indicates whether the cache has a
block with low reusability at the bottom of its LRU stack; and the
other bit indicates whether the value of Replhistory for that cache is
larger than the broadcast value of Replhistory. The block is written
to the peer L2 cache which sends an appropriate response. This
process could be implemented in the L2 controller. Although there
are several steps to decide if the evicted block is written to the peer
cache, the cost of each step is small because most of the steps only
require bit check and the first three steps could be processed in
parallel. Furthermore, it should be noted that the decision whether
to write a block to another cache is not on the critical path because
it can be made after the block is evicted from its original cache and
placed in the write queue.

4.4. Overhead

The RACS scheme has hardware overhead compared to a pure
private L2 cache organization because it requires additional coun-
ters for the two prediction schemes and peer-to-peer communica-
tion lines between the L2 caches. Predicting reusability involves a
4-bit counter and a 2-bit counter at each block, to record the num-
ber of accesses with long and short time intervals, respectively. An
additional 2 bits are required for each set to distinguish between
long and short time interval accesses. These bits record the most
recently accessed block of each set. In addition, each block needs
2 bits to indicate which processor writes it and a further bit indi-
cates whether the block has been reused or not. For each private
L2 cache, we also need 16 10-bit pattern counters, a 10-bit reus-
ability threshold and a 2-bit destination cache register. To predict
the memory demand, a 8-bit counter is used to record the time
from the last replacement and another 8-bit counter records the
replacement history. This comes to a total of 9 bits per block, 2 bits
per set, and 188 bits per cache. For 256 KB private L2 cache with
128 B block size, there are 4096 blocks and 512 sets in each cache.
The total memory overhead becomes 5 KB for each cache, which is
less than 2% of each private L2 cache, therefore is negligible.

Furthermore, it is only necessary for OS to execute the cache
selection heuristic every 2,000,000 cycles. This period long
enough to mitigate the overhead incurred by the cache selection
heuristic while achieving the performance improvement from the
heuristic. When the migration occurs to balance the loads, the
value of the 16 ATIF counters should be stored in the process data
structure of OS and restored in the ATIF counters of the new
node. OS should keep other information, for example, a selection
threshold and an array of the reusability threshold, used in the
cache selection heuristic, which may be used after migration to
identify the reusability of each pattern and decide the destination
cache. The overhead to keep the required data when the migra-
tion occurs is not large.
Interconnect Shared bus, 4 bytes bus width, pipelined
Off-chip memory 500 cycle access latency

Table 3
Multi-threaded and multi-programmed benchmarks.

Multi-threaded Cholesky, FMM, LU, Radix

Multi-programmed MultiProg1 gap, parser, gcc, crafty
MultiProg2 parser, gcc, gzip, twolf
MultiProg3 bzip, parser, gcc, mcf
MultiProg4 parser, twolf, mcf, crafty
5. Performance evaluation

5.1. Simulation environment

We modify CATS multiprocessor simulator [12] to evaluate the
proposed technique and support a cache-to-cache transfer based
on a MESI protocol [14] for cache coherency. In this MESI protocol,
a read miss occurred in a local L2 cache causes a read transaction
on a bus, which broadcasts a block address and a read transaction
signal to other L2 caches and memory. Since multiple processors
may have a copy of the memory block in their cache, only one to
supply the data on the bus needs to be selected. If no other cache
has the requested data, the memory supplies the data. We imple-
mented this cache-to-cache transfer in our simulator considering
the overheads. On the other hand, it is also possible for both local
L2 accesses and remote L2 queries from different processors to
happen at the same time, causing contentions for cache tag acces-
ses. In order to solve this potential performance hazard, we employ
a dual-tag system for L2 cache which was also used in the previous
work such as CMP_CC. Therefore, the local access can be served
without interference with remote L2 queries.

Table 2 shows simulation parameters for the processor, cache,
and memory configuration. We evaluated our scheme by varying
the cache size from 128 KB to 512 KB to explore sensitivity to
cache size. We implemented and evaluated the following schemes:
private L2 caches, CMP_CC with 30%, 70% and 100% probability,
RACS. Table 3 shows the benchmarks used for the evaluation.
These are four multi-threaded benchmarks selected from SPLASH
2 and four combinations of multi-programmed benchmarks each
consisting of four programs of SPEC2000.

We selected four programs with the different locality and the
number of cache accesses from SPLASH 2 programs. FMM requires
a larger number of L1 cache accesses compared to RADIX while
FMM has a higher temporal locality. On the other hand, LU and
Cholesky are similar benchmarks but LU has a higher level of tem-
poral locality. Even though these multi-threaded benchmarks from
SPLASH 2 show the different characteristics, the working sets of the
programs mostly fit in the cache and the behavior of each thread in
these benchmarks is not much different. Therefore, the selected
programs are adequate to demonstrate the performance improve-
ment of the proposed scheme because the performance can be im-
proved mainly from identifying the reusability of the block, which
can reduce the bus traffic and pollution of the other cache.

For the multi-programmed workloads, we select the programs
from SPEC benchmarks which have different characteristics of
how the performance varies depending on the cache size, which
could be classified into two categories. First group includes mcf
and gap whose performance does not have benefit as the cache size
is increased. mcf has a large number of cold misses and mcf has a
working set larger than the cache size. Second group includes other
programs whose performance is significantly affected by the cache

Fig. 7. Normalized number of unused and reused blocks.

Fig. 8. Normalized number of off-chip memory accesses.

452 H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456

H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456 453
size. After classifying the programs, we made the 4 mixes of these
programs by randomly choosing the programs from two groups. As
a result, MultiProg1, MultiProg3, and MultiProg4 have one pro-
gram from the first group and three programs from the second
group. In these combinations, we could evaluate how the proposed
technique exploits the available peer L2 cache space aggressively.
For example, we could evaluate from these combinations how
the programs from the second group exploit the available cache
space of the program from first group. On the other hand, Multi-
Prog2 has the four programs from the second group. In this combi-
nation of the program, we could evaluate how the proposed
technique prevents the evicted block from being written to the
peer cache when there are excessive evicted blocks which could
pollute the peer L2 cache while there is no available cache space
in the peer L2 cache.

5.2. Experimental results

Fig. 7 shows the number of the unused and reused blocks writ-
ten to the peer L2 caches, for each scheme. Using the CMP_CC
scheme, the total number of blocks written increases with the
probability, for both multi-threaded and multi-programmed
benchmarks. For the multi-threaded benchmarks, they show that
the RACS scheme writes almost the same number of reused blocks
as CMP_CC with the probability 100% but the number of unused
blocks is reduced by 65% on average compared to CMP_CC with
the probability 100%. For the four multi-programmed benchmarks
from SPEC2000, there are many more unused blocks than there are
in the multi-threaded benchmarks because more blocks are evicted
Fig. 9. Normalized average m
due to the larger working sets. Again, with CMP_CC, the number of
unused blocks increases as the probability increases, and our
scheme reduces the number of unused blocks by up to 88% for Mul-
tiProg2. This benchmark includes gcc, gzip and twolf, which have
large working sets, and the performance of gcc and gzip is easily de-
graded when their caches are taken up with blocks from other ca-
ches. As no cache space remains available, the reusability threshold
of each cache is adjusted to predict the reusability of the evicted
blocks more conservatively. As a result, dynamic reusability pre-
diction decreases the number of unused blocks as well as the num-
ber of reused block. Only blocks with high reusability are kept in
the on-chip cache space, to avoid polluting other caches and gen-
erating bus traffic.

The workload of each thread in multi-threaded benchmarks has
similar behavior and relatively smaller working set size than the
multi-programmed benchmarks so that they may not benefit from
the dynamic prediction of block reusability technique and the des-
tination cache selection technique although the proposed tech-
nique has similar performance over CMP_CC with 100%
probability. The performance improvements of the multi-threaded
applications arise mainly from identifying the reusability of a
block. On the other hand, for the multi-programmed workloads,
each program in each combination has different behavior which
could benefit from the dynamic prediction of block reusability
technique and the destination cache selection technique.

Fig. 8 shows the normalized totals of off-chip memory acces-
ses for each scheme, while varying the cache size. The results for
the multi-threaded programs shows that the number of off-chip
accesses decreases with the CMP_CC scheme as the probability
emory access latency.

454 H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456
increases for most programs. However, for the results for the
multi-programmed benchmarks are different depending on the
characteristics of the programs concurrently running and the
sizes of their working sets. For MultiProg2 and MultiProg3, there
are more off-chip accesses with CMP_CC, especially when the
probability is 100%, than with the private cache scheme. Since
the programs in these benchmarks have large working sets,
there are much more blocks which are evicted from local L2 ca-
ches. These large number of evicted blocks may pollute the peer
caches and cause bus traffic. Nevertheless, our RACS scheme pro-
duces a fewer off-chip accesses than the private cache scheme
by adapting reusability threshold and selection threshold.

In MultiProg1 and MultiProg4, the RACS scheme achieves much
more significant reductions in the number of off-chip accesses.
MultiProg1 and MultiProg4 contain programs such as mcf and gap
whose performance is not affected by the blocks evicted from other
cache, or whose working set size is small. The RACS scheme can use
their cache space that becomes available effectively, and the num-
ber of off-chip memory accesses is reduced by 24%, compared to
the private cache and by 2.4%, compared to the CMP_CC scheme,
averaged over the multi-threaded benchmarks. For the multi-pro-
grammed benchmarks, the number of off-chip memory accesses is
reduced by average of 16% and 7.7%, respectively, compared to the
private and CMP_CC schemes.

Fig. 9 shows how the normalized average memory access la-
tency of each scheme varies with the cache size. In CMP_CC, the
average memory access latency decrease as the probability in-
creases in most cases, since the number of off-chip accesses is re-
Fig. 10. Normalized
duced. For the multi-threaded benchmarks, RACS reduces the
average memory access latency by 21.3% and 5.5%, respectively,
compared to the private and CMP_CC with the 100% probability
schemes on average, respectively. For the multi-programmed
benchmarks, RACS reduces the latency by 13% and 5.7% compared
to the private and CMP_CC with the 100% probability schemes.

Fig. 10 shows how the normalized average IPC of each scheme
varies with cache size. These results are almost same as those for
average memory access latency because that is strongly linked to
IPC. However, the improvement in IPCs is less because IPC is af-
fected by other factors. For the multi-threaded benchmarks, the
average improvement in IPC is 5% and 1%, compared to the private
and CMP_CC with the probability 100% schemes. For the multi-pro-
grammed benchmarks, the corresponding improvements are 4%
and 3%.

Although the improvements of 1% for the multi-threaded
benchmarks and 3% for the multi-programmed benchmarks is
small, the contribution of the proposed technique is that it could
dynamically control the number of evicted blocks written to the
peer L2 cache depending on the available space in the peer L2
cache while CMP_CC is a static approach based on a preset proba-
bility of evicted blocks being written to the peer L2 cache. There-
fore, when CMP_CC is used, this preset probability is quite
different depending on the characteristics of concurrently running
programs. Since CMP_CC presets this probability, it can be difficult
to adapt to the changing program execution behaviors. Our pro-
posed scheme, on the other hand, is a dynamic scheme, outper-
forming the CMP_CC scheme even when the preset probability is
performance.

H. Kim et al. / Journal of Systems Architecture 55 (2009) 446–456 455
set using an oracle (that is, assuming that we know the program
behavior a priori).

For example, in our experiments, for MultiProg1 using a
128 KB L2 cache, RACS achieves up to 4.8% over the best CMP_CC
probability setting of 100%. On the other hand, over the CMP_CC
with 100%, the proposed scheme improves IPC by up to 6% for
MultiProg2 using 256 KB L2 cache. For this program combination,
CMP_CC with 30% probability shows the best performance be-
cause the performance decreases as the probability increases,
which is caused by the pollution of other cache and bus traffics.
Even in this case, RACS can achieve about 3% performance
improvement than the best CMP_CC probability setting of 30%.
Consequently, the proposed technique can improve the perfor-
mance more compared to the worst CMP_CC probability setting.
For example, for RADIX, the performance improvement is 17.4%
over the CMP_CC with 30% probability because the proposed
technique can avoid the pollution of the other cache by identify-
ing the reusability of the block. It only writes the evicted block
with the reusability and replaces the block without the reusabil-
ity in the peer cache. RACS also improves the performance by
6.7% for MultiProg1 using a 128 KB L2 cache and by 5.9% and
6% for MultiProg2 using a 128 KB and 256 KB L2 cache, respec-
tively. These experiment results indicate that the proposed
scheme can identify the reusability of cache blocks and control
dynamically the number of evicted blocks written to other L2
cache compared to the previous technique with static probability
by showing that it always achieves better performance improve-
ment by up to 4.8% and 17.4% over the best and the worst
CMP_CC probability setting, respectively.
6. Conclusions

We have proposed an on-chip L2 cache organization for CMPs
called RACS which combines private and shared L2 caches to re-
duce access latency. A significant feature of the proposed scheme
is that it takes into account the reusability of evicted blocks, so
as to use the on-chip memory space efficiently. When a data block
in a private L2 cache is selected for eviction, RACS evaluates its
reusability. If the cache block is likely to be reused in the near fu-
ture, we save it in one of the other L2 caches. Our second important
contribution is to consider the properties of the program running
at each processor so as to use the on-chip cache space more effi-
ciently. When a cache space is available, we predict the reusability
of evicted blocks more aggressively to give them more chance of
being kept on the chip, while a reusability threshold avoids
impacting the performance of the other programs, which could
dynamically adjust the number of evicted blocks written to the
peer L2 cache depending on the workloads behavior. We use a sim-
ple but effective heuristic to select an appropriate destination
cache. We evaluated the performance improvements using multi-
programmed workloads with a different working set size and
locality.

We evaluated the RACS scheme using a modified CMP simu-
lator and compared its performance with the private cache
scheme, and the CMP_CC scheme with variable probability. RACS
scheme reduces the number of unused blocks written to a peer
L2 cache by up to 65% over CMP_CC with the probability 100%
for multi-threaded SPLASH 2 benchmarks and by up to 88% over
the CMP_CC with the probability 100% for SPEC2000 multi-pro-
grammed benchmarks. Compared to the private cache and
CMP_CC with the probability 100% schemes, it also reduces the
average memory access latency by 13% and 5.7% and improves
the average IPC by 4% and 3%, respectively, for the multi-pro-
grammed benchmarks. Furthermore, the proposed technique
improves the performance by up to 4.8% and 17.4% over the best
and the worst CMP_CC probability setting, which means that it
can identify the reusability of cache blocks and adjust
dynamically the number of evicted blocks written to
other L2 cache compared to CMP_CC which uses the static
probability.

The RACS scheme could be improved in several ways. First, the
prediction heuristic might be made more effective: our results
show that around 43% of blocks are not reused even though the
prediction heuristic classifies them as highly reusable. Second,
the RACS scheme has a significant hardware overhead with a large
number of processors because it requires peer-to-peer communi-
cation lines between the private L2 caches. It is a challenge to make
the RACS scheme more scalable so that it is suitable for large-scale
CMP processors.

Acknowledgements

This work was supported by the Korea Science and Engineering
Foundation (KOSEF) grant funded by the Korea government (No.
R0A-2007-000-20116-0) and World Class University (WCU) pro-
gram through KOSEF funded by the Ministry of Education, Science
and Technology (No. R33-2008-000-10095-0). This work was also
supported by the Korea Research Foundation Grant (KRF-2008-
013-D00097) and the Brain Korea 21 Project in 2009. The ICT at
Seoul National University and IDEC provided research facilities
for this study.
References

[1] J. Huh, D. Burger, S.W. Keckler, Exploring the design space of future CMPs, in:
Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, September 2001, pp. 199–210.

[2] B.A. Nayfeh, L. Hammond, K. Olukotun, Evaluation of design alternatives for a
multiprocessor microprocessor, in: Proceedings of the International
Symposium on Computer Architecture, May 1996, pp. 67–77.

[3] B.M. Beckmann, D.A. Wood, Managing wire delay in large chip-multiprocessor
cache, in: Proceedings of the International Symposium on Microarchitecture,
December 2004, pp. 319–330.

[4] M. Zhang, K. Asanovic, Victim replication: maximizing capacity while hiding
wire delay in tiled chip multiprocessors, in: Proceedings of the International
Symposium on Computer Architecture, June 2005, pp. 336–345.

[5] Z. Chishti, M.D. Powell, T.N. Vijaykumar, Optimizing
replication, communication and capacity allocation in CMPs, in: Proceedings
of the International Symposium on Computer Architecture, June 2005, pp.
357–368.

[6] J. Chang, G.S. Sohi, Cooperative caching for chip multiprocessors, in:
Proceedings of the International Symposium on Computer Architecture, June
2006, pp. 357–368.

[7] S. Youn, H. Kim, J. Kim, A reusability-aware cache memory sharing technique
for high-performance low-power CMPs with private L2 Caches, in: Proceedings
of International Symposium on Low Power Electronics and Design, August
2007, pp. 56–61.

[8] S. Youn, H. Kim, J. Kim, A reusability-aware cache memory sharing technique
for high-performance low-power CMPs with private L2 caches, in: Proceedings
of the Workshop on Chip Multiprocessor Memory Systems and Interconnects,
February 2007, pp. 27–32.

[9] C. Kim, D. Burger, S.W. Keckler, An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches, in: Proceedings of the Architectural
Support for Programming Languages and Operating Systems, October 2002, pp.
211–222.

[10] E. Speight, H. Shafi, L. Zhang, R. Rajamony, Adaptive mechanisms and
policies for managing cache hierarchies in chip multiprocessors, in:
Proceedings of the International Symposium on Computer Architecture, June
2005, pp. 346–356.

[11] D. Lee, J. Choi, J. Kim, S.H. Noh, S. Min, Y. Cho, C. Kim, LRFU: a spectrum
of policies that subsumes the least recently used and least frequently
used policies, IEEE Transactions on Computers 50 (12) (2001) 1352–
1361.

[12] D. Kim, S. Ha, R. Gupta, CATS: cycle accurate transaction-driven simulation
with multiple processor simulators, in: Proceedings of the Design, Automation,
and Test in Europe, April 2007, pp. 749–754.

[13] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-2
programs: characterization and methodological considerations, in:
Proceedings of the International Symposium on Computer Architecture, June
1995, pp. 24–36.

[14] D.E. Culler, J.P. Singh, A. Gupta, Parallel Computer Architecture: A Hardware/
Software Approach, Morgan Kaufman, 1998, ISBN 1-55860-343-3.

s Architecture 55 (2009) 446–456
Hyunhee Kim received the B.E. degree in Computer
Science and Engineering from the Chunang University,

Seoul, Korea, in 2004, and the M.E. degree in Computer
Science and Engineering from Seoul National University,
Korea, in 2006. She is currently working toward the
Ph.D. degree at Seoul National University. Her research
interests include Chip Multiprocessor Architecture and
On-chip Memory Management.

456 H. Kim et al. / Journal of System
Sungjun Youn received the B.E. degree and the M.E.
degree in Computer Science and Engineering from Seoul
National University, Seoul, Korea, in 2005 and 2007,
respectively. He is with LG Electronics Corporation. His
interests include Low-power Chip Multiprocessor
Architecture and On-chip Memory Management.
Jihong Kim received the B.S. degree in Computer Sci-
ence and Statistics from Seoul National University,
Seoul, Korea, in 1986, and the M.S. and Ph.D. degrees in
Computer Science and Engineering from the University
of Washington, Seattle, WA, in 1988 and 1995, respec-
tively. Before joining SNU in 1997, he was a Member of
Technical Staff in the DSPS R&D Center of Texas
Instruments in Dallas, Texas. He is currently a Professor
in the School of Computer Science and Engineering,
Seoul National University. His research interests include
Embedded Software, Low-power Systems, Computer
Architecture, and Multimedia and Real-time Systems.

	Reusability-aware cache memory sharing for chip multiprocessors with private L2 caches
	Introduction
	Related work
	Motivation
	Reusability-aware cache sharing technique
	Predicting block reusability
	Access time interval and frequency (ATIF) pattern
	Dynamic prediction of block reusability

	Cache selection technique
	Procedure of the RACS technique
	Overhead

	Performance evaluation
	Simulation environment
	Experimental results

	Conclusions
	Acknowledgements
	References

