
Journal of Systems Architecture 55 (2009) 196–208
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Broadcast filtering: Snoop energy reduction in shared bus-based low-power MPSoCs

Chun-Mok Chung, Jihong Kim *

School of Computer Science & Engineering, Seoul National University, Seoul 151-742, Republic of Korea
a r t i c l e i n f o

Article history:
Received 8 December 2007
Received in revised form 2 December 2008
Accepted 12 January 2009
Available online 20 January 2009

Keywords:
Multiprocessor system-on-a-chip (MPSoC)
Snoop energy reduction
Snooping cache
Split bus
Broadcast filtering
1383-7621/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.sysarc.2009.01.001

* Corresponding author.
E-mail addresses: chunmok@davinci.snu.ac.kr (C.

snu.ac.kr (J. Kim).
a b s t r a c t

In multiprocessor system-on-a-chips (MPSoCs) that use snoop-based cache coherency protocols, a miss
in the data cache triggers the broadcast of coherency request to all the remote caches, to keep all data
coherent. However, the majority of these requests are unnecessary because remote caches do not have
the matching blocks and so their tag lookups fail. Both the coherency requests and the tag lookups cor-
responding to a remote miss consume unnecessary energy.

We propose an architecture-level technique for snoop energy reduction, called broadcast filtering,
which prevents unnecessary coherency requests from being broadcast to remote caches, and thus
reduces snoop energy consumption by both the cache and bus. Broadcast filtering is implemented using
a snooping cache and a split bus. The snooping cache checks if a block that cannot be obtained locally
exists in remote caches before broadcasting a coherency request. If no remote cache has the matching
block, there is no broadcast; and if broadcasting is necessary, the split bus allows coherency requests
to be broadcast selectively to the remote caches which have matching blocks.

Experimental results show a reduction by 90% of cache lookups, by 60% of bus usage, and by 40% of
snoop energy consumption, at a small cost in reduced performance. An analysis result based on the
energy model shows the broadcast filtering technique can reduce by up to 55% of energy consumption
per cache coherency operation.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

A multiprocessor system-on-a-chip (MPSoC) consists of several
processor cores and memories on a single chip die. MPSoCs can
execute multiple contexts in parallel, allowing them to meet the
high computational demands of many multimedia applications,
and are widely accepted as a next-generation architecture for
high-performance mobile embedded systems [1,2] such as cellular
phones and personal game players. Because these systems run on
batteries, low power consumption is becoming increasingly impor-
tant in designing MPSoCs.

Although there is as yet no clear consensus on the architecture
and organization of MPSoCs, many early chips, such as ARM
MPCore [1] and Stanford Hydra [3], employ a shared bus architec-
ture. In shared bus MPSoCs, snooping is widely used to address the
cache coherency problem. If a local cache requires or modifies data,
it broadcasts a coherency request message and remote caches
snoop on the broadcast to maintain data coherency. Since on-chip
global wires are responsible for up to 25% of the total power con-
sumption of a chip [4], and tag lookup operations contribute up
to 50% of the cache energy consumption [5], cache coherency oper-
ll rights reserved.

-M. Chung), jihong@davinci.
ations are a significant power consumer in MPSoCs, and therefore a
prime target for energy-saving strategies.

Several researchers have already proposed cache energy reduc-
tion techniques for MPSoCs [5–7]. These techniques are all based
on the observation that many coherency requests do not find
matching blocks in remote caches, in which case both the coher-
ency broadcasts and the subsequent remote cache lookups are use-
less. If n remote caches have the required block, we say that there
are n remote hits. But, if none of the remote caches has the re-
quired block, it is a remote miss. Fig. 1 shows how many remote
hits occurs during the execution of parallel applications on an
MPSoC which has a similar configuration to the ARM MPCore (it
consists of four processors and each processor has 32-Kbyte L1
data cache that is four-way set-associative with 32-byte blocks.
MESI [19] is used as the snoop protocol). We can see that the re-
mote miss ratio (the proportion of remote misses) is high, averag-
ing 83% of all coherency requests.

However, most existing snoop energy reduction techniques are
only partially effective, because they only focus on reducing the
cache energy consumption. But cache coherency operations re-
quire bus transactions, and the energy consumed by the shared
bus is a major contribution to the power requirement of the whole
chip. Fig. 2 is a breakdown of the average snoop energy consump-
tion for various remote miss ratios in a four-processor MPSoC, and
shows how much of the snoop energy is used by the bus. As the

mailto:chunmok@davinci.snu.ac.kr
mailto:jihong@davinci.
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ch
ole

sk
y fft

lu
(co

nt.)

lu
(n

on
-co

nt.)
rad

ix

ray
tra

ce

vo
lre

nd
jpe

g
tif

f

Ave
ra

ge

3 remote hits
2 remote hits
1 remote hit
Remote miss

Fig. 1. Distribution of remote hits on a four-processor MPSoC.

Remote miss ratio

E
ne

rg
y

(n
J)

R
at

io

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0%

10%

20%

30%

40%

50%

60%

70%

80%

Cache energy

Bus energy

Bus energy ratio

Fig. 2. Average snoop energy breakdown of a four-processor MPSoC.

C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208 197
remote miss ratio increases, the cache energy decreases, while the
bus energy increases (because of static energy increase), so that the
proportion of energy used by the bus reaches 73% of the average
snoop energy at the highest remote miss ratio. This shows why it
is inadequate to focus exclusively on cache energy reduction. A
new approach is necessary to reduce the energy consumption of
both the cache and the bus.

In this paper, we propose an architecture-level snoop energy
reduction technique called broadcast filtering, which prevents the
broadcast of unnecessary coherency requests to remote caches,
and thus reduces snoop energy consumption in both the cache
and the bus. Broadcast filtering is achieved by combining a snoop-
ing cache with a split bus. The snooping cache checks whether
matching blocks exist in remote caches before broadcasting a
coherency request. If no remote cache has the matching block, it
cancels the broadcast. But if a broadcast is necessary, the split
bus enables the coherency requests to be broadcast selectively to
the remote caches that have matching blocks. Experiments for par-
allel applications show that our technique removes by about 90% of
cache lookups and by about 60% of bus usage at the MPSoC con-
taining 16 processors, resulting in a reduction by about 40% of en-
ergy consumption over the conventional architecture. In order to
understand the efficiency of the proposed technique in a more gen-
eral setting, we build an analytical energy model for systems with
the broadcast filtering support. Based on the energy model, an
analysis result shows that the broadcast filtering can reduce by
55% of energy consumption per cache coherency operation under
various configurations of machine and program characteristics
(such as the number of processors and remote miss ratio).

The rest of paper is organized as follows. In Section 2, we de-
scribe related work on reducing snoop energy consumption. The
target MPSoC platform used in our work is described in Section
3. The details of broadcast filtering is described in Section 4. In Sec-
tion 5, we show how snoop energy is reduced using simulations. In
Section 6, we present an average snoop energy model and use it to
show how the amount of snoop energy saved by the broadcast fil-
tering technique is affected by the characteristics of the target
hardware and software. We draw conclusions from this study in
Section 7.

2. Related work

The main techniques that have been proposed to reduce the
cache energy dissipated in cache coherency operations use cache
lookup filtering [5,7] and serial cache lookup [9,10]. Jetty [5] is a
small structure attached to each cache. It is based on the SMP
(symmetric multiprocessing) system which has a large private L2
cache. Jetty is checked before cache lookup, and filters out unnec-
essary cache accesses. But Jetty does not save much energy in
snooping operations in single-chip multiprocessor systems be-
cause of its won energy overhead [8]. RegionScout [7] saves more
energy than Jetty because it uses a smaller filter. Whereas Jetty

198 C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208
has one entry for each cache block, RegionScout has one entry per
region, which is a continuous memory area. This reduces the space
and energy costs of the filter. However, with these techniques,
most coherency requests still have to be broadcast to all the re-
mote caches, and all the filters are accessed because each filter is
attached to an individual cache and only has information about
the data blocks in that cache.

Our approach is different from these methods because we use a
central directory (called a snooping cache) which is shared by all
caches and it is only accessed once for each coherency request. It
tells us which remote caches need to receive a coherency request,
and the coherency request is only broadcast to those caches. This is
possible because the snooping cache contains data block informa-
tion for all the caches.

Serial snooping [9] and flexible snooping [10] are serial cache
lookup techniques. Serial snooping targets a hierarchical bus
whereas flexible snooping is designed for a ring-based bus. Instead
of broadcasting a coherency request to all the processors in paral-
lel, remote caches are checked sequentially. The idea is that, when
a miss occurs in a local cache, it should often be possible to find the
required block in a nearby remote cache without checking all the
remote caches. A coherency request is sent to the nearest remote
cache and the cache looked up its data (snoop). If the required
block was found there, the snoop transaction is complete. Other-
wise, a snoop transaction is issued to the next cache (forward). This
is called as a ‘‘snoop then forward” scheme. Flexible snooping ex-
tends this process by means of ‘‘forward then snoop” and ‘‘for-
ward” schemes, which enhance snoop performance if a cache far
from the requester has the required block.

Several researchers have used bus splitting techniques
[11,13,14] to reduce bus energy consumption. Chen et al. [11] pro-
posed the first bus splitting technique, based on pass transistors,
and used graph search to find an energy-efficient bus topology.
They segmented the bus at the logic level and reduced the bus en-
ergy by exploiting information about the communication ratio be-
tween modules. Hsieh and Pedram [13] divided the bus into two
segments and connected communication components based on a
probabilistic model of communication. But they only considered
splitting the bus into two segments and they ignored the energy
cost of the splitters. Guo et al. [14] showed how to design a seg-
mented bus in which the number of bus segments is reduced by
block ordering, and the length of each segment is then minimized
by floor planning. Their goal was the automated design of a seg-
mented bus architecture. Although we also use a split bus architec-
ture, our goal is to save snoop energy by filtering unnecessary
coherency requests, an approach which has not been considered
in previous research.

Recently, application-driven snoop-based cache coherence cus-
tomization techniques are proposed. Yu and Petrov [21] proposed a
producer–consumer model-aware cache coherence customization.
They eliminated unnecessary snoop-induced cache tag lookups.
For this, they used a hint from application regarding data sharing
between producer and consumer. They filtered cache tag lookups
Processor Processor Processor Processor

L1 cache L1 cache L1 cache L1 cache

Shared memory
(L2 cache)

Fig. 3. The baseline MPSoC model with four processors.
for data out of the sharing data. Moreover, they proposed a
write-update-based coherence customization with a special
‘‘write-and-flush” instruction to reduce cache misses and bus
transactions [22]. For this, they analyzed the last write per cache
block in compile-time and generated the special instruction to per-
form one write-update transaction per cache block. However,
those techniques are eligible only for producer-consumer model
where a write-after-read sharing is moderate and contiguous
writes to shared data is generated. In a write-after-write sharing
with distributed data, as frequent write-update overwhelms bus
bandwidth, their techniques are not efficient in energy and perfor-
mance aspect.

3. Target MPSoC platform

Typical MPSoCs, both academic and commercial, contain multi-
ple homogeneous processor cores and on-chip caches [1,3], and we
use a similar baseline architecture for our target MPSoC platform.
Fig. 3 shows this baseline MPSoC, which has four processors,
although the technique that we are proposing is not restricted to
a particular number of processors. Each processor has its own pri-
vate L1 caches, comprising a separate I-cache and D-cache. Each D-
cache has a duplicated tag to prevent cache coherency operations
delaying the processor. The MPSoC may also contain a shared L2
cache to enhance performance. All the processors share the mem-
ory (or the L2 cache) and access it through a shared bus. A snoop-
based cache coherency protocol is used to maintain data coherence
between cache and memory.

In a snoop-based protocol, if a cache miss occurs at a processor,
or a data block in the cache is modified, then the cache (called the
local cache) uses a bus transaction to keep its data coherent with
the other processors’ caches (called the remote caches). In the case
of the MESI protocol [19], the occurrence of a read miss in a local
cache causes a read transaction (BusRd). The local cache broadcasts
a block address and a BusRd signal to remote caches and memory.
Remote caches snoop on the bus transaction and a remote cache
containing the requested data supplies the data to the local cache.
If no remote cache contains the requested data, the shared memory
supplies the data. A write hit is processed as an upgrade transac-
tion (BusUpgr). The local cache notifies remote caches that the data
has been modified. The remote caches snoop on the BusUpgr sig-
nal, and those that contain the same data block invalidate their
copies. If a write miss occurs, the local cache executes a read exclu-
sive transaction, by sending a BusRdX signal to all remote caches to
notify them that it needs to become the exclusive holder of the
data block. A remote cache containing the required block transfers
it to the local cache and all remote caches invalidate their copies of
that block. If the cache block to be evicted is dirty, the local cache
writes the dirty block back into the shared memory using a write-
back transaction (BusWB). Because the same block cannot exist in
remote caches, those caches do not perform any operation after
snooping on a BusWB signal.

4. Reducing snoop energy consumption by broadcast filtering

Fig. 1 shows that many coherency requests do not find match-
ing blocks in any remote cache. The broadcasts and subsequent re-
mote cache lookups associated with these remote misses consume
energy without any improvement in performance. We therefore
propose a broadcast filtering technique which reduces snoop en-
ergy consumption by filtering unnecessary coherency broadcasts.
We will describe how to detect and remove these redundant
broadcasts when no remote cache has the required data block.
We will also explain how snoop energy consumption can be re-
duced even if some of the remote caches have the requested data
blocks, so that some coherency request broadcasts are necessary.

Tag Index Offset

MUX

Flag vector
output

Remote hit

FV

= = = =

Tag

Address from coherency request

OR

Fig. 5. The organization of a snooping cache in a four-processor MPSoC.

C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208 199
4.1. Detecting a remote miss and filtering unnecessary broadcasts

If we know that the required data does not exist in any remote
cache, there is no point in broadcasting a coherency request. We
use a directory, called as snooping cache, to determine if the re-
quired data is available in remote caches. A coherency request is
processed in a two-hop bus transaction: one hop from the local
cache to the snooping cache and another from the snooping cache
to the remote caches. Fig. 4 shows a two-hop request: (i) a local
cache sends a coherency request to the snooping cache instead of
broadcasting it to the remote caches and (ii) if a remote hit is de-
tected in the snooping cache, it broadcasts a coherency request
to the remote caches, but if a remote miss is detected in the snoop-
ing cache, it requests the block direct to the shared memory.

The information in snooping cache relates to the sharing of data
blocks among L1 caches. This is different from a conventional
directory which records the ownership and sharing information
about data blocks in shared memory. The snooping cache is orga-
nized as a set-associative cache, consisting of a tag array and a flag
vector (FV) array. It does not have a data array. If an MPSoC con-
tains N processors and each processor has a W-way set-associative
cache with S sets, the snooping cache will have N �W ways and
S sets. Because the purpose of the snooping cache is to determine
whether a block is available in the other caches, a set of tags con-
sists of all the tags with the same index in all the L1 caches. We
need to choose the number of ways conservatively because the
same indexed sets may have different tags in all L1 caches (if no
data is shared by the L1 caches). The length of a tag is the same
as that in the L1 caches, and a flag vector consists of N flag bits.
Each flag bit corresponds to an L1 cache and indicates if the corre-
sponding L1 cache contains the same tag. Fig. 5 shows the snoop-
ing cache organization when an MPSoC consists of four processors
ðN ¼ 4Þ and each L1 cache is direct-mapped ðW ¼ 1Þ.

Like a traditional set-associative cache, the snooping cache re-
ceives a coherency request with a block address, and selects a set
using the index part of that address. After comparing the tag part
of the address with a tag array, it outputs a corresponding flag vec-
tor and remote hit information. To keep the tag array and the flag
vector array up to date, the snooping cache is updated whenever
any L1 cache is updated. When a new tag is added to any L1 cache,
it is also added to the tag array and the corresponding flag bit is set.
If the tag is already present in the tag array, only the corresponding
flag bit is set. When a tag is invalidated in any L1 cache, the corre-
sponding flag bit in the flag vector is cleared. If all bits in the flag
vector are cleared, the corresponding tag in the tag array is also
invalidated.

4.2. Broadcasting to remote caches selectively

Suppose that processor P2 requests a block, which is only in the
cache of P3 in Fig. 4. Because a remote hit is detected in the snoop-
(ii)
(ii)

(ii)

Shared memory
(L2 cache)

Snooping
cache

(i)

Processor
(P1)

L1 cache

Processor
(P2)

L1 cache

Processor
(P3)

L1 cache

Processor
(P4)

L1 cache

Fig. 4. Sending a two-hop coherency request through a snooping cache.
ing cache, a coherency request is broadcast to all the remote ca-
ches. Although P1 and P4 do not have the data, they snoop on
the coherency request and then perform unnecessary cache look-
ups. But if the coherency request is selectively broadcast to P3
alone, the energy consumed in snooping will be reduced.

We will now explain how to select the remote caches to re-
ceive a selective broadcast and how that broadcast is performed.
Because the flag vectors in the snooping cache have information
about data sharing, we know which remote caches need to re-
ceive the coherency request. To broadcast the coherency request
selectively, we use a split bus architecture. This is an extension
of the bus segmentation technique due to Hsieh and Pedram
[13], who divided a bus line into two segments and connected
frequently communicating components to the same bus segment
so as to reduce bus energy consumption. We extend this model
by introducing multiple segments; their number is determined
by the number of processors.

Since, nowadays, repeaters (using buffers or inverters) are in-
serted in bus lines for power and performance enhancement
[12], the split bus can be implemented by replacing some repeaters
by splitters (using tri-state buffer). Therefore, the length of split
bus is same to that of monolithic bus’. Also, there is no difference
in bus wire width and spacing between monolithic bus and split
bus. Fig. 6 shows our split bus architecture applied to the target
MPSoC. The processors and the snooping cache are each connected
to a bus segment. A splitter connects two adjacent bus segments
and transfers signals between them only if it is enabled. If all the
splitters are enabled, the split bus works like a monolithic bus. A
bus arbiter and the flag vector in the snooping cache control the
enabling of the splitters. If a remote hit is detected in the snooping
cache, the bits in the flag vector are used to ensure that the coher-
ency request is only broadcast to the remote caches that contain
the required data. The details of this procedure will be described
in the next subsection.
Fig. 6. A four-processor MPSoC with a split bus.

200 C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208
4.3. Cache coherency operations with broadcast filtering

Sequences of bus transactions are modified by broadcast filter-
ing. We will describe the sequence of bus transactions that takes
place during a cache coherency operation to show that broadcast
filtering is applicable to all kinds of cache coherency operations.

The read transaction (BusRd): Fig. 7 shows the operation se-
quence when processor P2 requests a data block which is in the
cache at P3: (i) If the cache miss occurs in P2’s cache, it sends a
bus request signal to the arbiter to perform a BusRd transaction.
(ii) The arbiter replies with a bus acknowledgement signal and per-
mits bus use. At the same time, it enables splitter S2 between the
local cache and the snooping cache. (iii) After receiving the bus
acknowledgement signal, the local cache at P2 sends a coherency
request (BusRd) to the snooping cache. (iv) The snooping cache
checks the tag array and the flag vector array. The bits that are
set in the flag vector enable all the splitters needed (only S3 in this
example) to connect with the appropriate remote cache. Then a
flag bit corresponding to the local cache is set. (v) If a remote hit
is detected, the snooping cache broadcasts a BusRd request to
the remote caches. But if a remote miss is detected, it omits this
broadcast and sends the request to the shared memory. (vi) Re-
mote caches (only the cache at P3 in this case) snoop on the re-
quest and supply the required data to the local cache at P2.

The read-exclusive transaction (BusRdX): This operation sequence
is similar to that of BusRd. However, the BusRdX request causes the
snooping cache to clear the flag bits corresponding to the remote
caches in step (iv), because the remote caches will invalidate their
cache tags for this data block.

The upgrade transaction (BusUpgr): This is similar to BusRdX, ex-
cept that remote caches do not supply the required data to the lo-
cal cache in step (vi), because it is already there.

The write-back transaction (BusWB): This performs steps (i) to
(iii) in the same way as BusRd. Then (iv) the snooping cache clears
the flag bit corresponding to the local cache, as the local cache will
invalidate the corresponding tag. (v) The snooping cache sends a
BusWB request and then writes the data to the shared memory
without broadcasting, as the block to be written back is dirty and
therefore cannot be shared by the remote caches.

As regards performance, broadcast filtering increases the time
taken by a cache coherency operation, at most by the latency for
one bus transaction and one snooping cache access. This is because
a coherency request is processed as a two-hop bus transaction and
the snooping cache has to be checked to discover whether any of
the remote caches contain the required data. However, if a remote
miss is detected in the snooping cache, it does not broadcast a
coherency request to the remote caches, so that only a one-hop
bus transaction is required, and no tag lookups occur in the remote
caches. Using a snoop-based protocol, the shared memory must
wait until it is certain that no cache will supply the requested data
before driving the bus [19]. So the time taken during a snooping
cache lookup can be offset by the elimination of remote cache look-
up time, assuming that the snooping cache access and an L1 tag
P1 P2 P3 P4

L1 L1 L1 L1
Arbiter

(i) (ii)

(ii)S1 S2 S3 S4

(iii)

Snooping
cache

(v)

Flag vector0 0 1 0

(iv)

(vi)

Fig. 7. The operation procedure of BusRd after applying broadcast filtering.
lookup both take the same number of clock cycles. Therefore, the
performance overhead of broadcast filtering is proportional to
the remote hit ratio. We will evaluate the performance overhead
experimentally.

5. Experiments

We evaluated the effect of broadcast filtering by simulation. The
results illustrate its performance in terms of component utiliza-
tion, energy consumption, and latency. We also compared the
component utilization and energy consumption with the Jetty
and RegionScout techniques. As RegionScout has been shown to
outperform Jetty, we focused on comparisons with RegionScout.

5.1. Experimental setup

We implemented an MPSoC simulation within CATS framework
[15], an extended version of the SimpleScalar tool [16], which sup-
ports multiple processors, private caches, a shared memory, and a
snoop-based cache coherency protocol. As far as possible, we con-
figured CATS to follow the specification of MPCore [20], which is a
representative MPSoC that is widely used in industry. Table 1
shows the detailed simulation parameters of our target MPSoC.
Our implementation of RegionScout consists of 16KB-regions, 16-
entry direct-mapped NSRTs, and 256-entry CRHs, the configuration
that was originally proposed [7] for a low-power single-chip
multiprocessor.

We used benchmark programs from SPLASH-2 [17] and Mi-
Bench [24]. Table 2 describes the benchmark programs and the in-
put data. Although SPLASH-2 was not developed for embedded
system evaluation, as it has been widely used as a benchmark for
multicore and multiprocessor platforms, and there are no other
widely used parallel applications for embedded systems. Small
data sets were chosen to make the SPLASH-2 applications as appro-
priate as possible for MPSoCs. As the programs in MiBench were
designed for single core processor, we parallelized them using po-
six thread-like CATS multitasking model.

We executed the programs on CATS and generated traces about
cache coherency operations. The trace consists of cache coherency
request type, data address, remote hit/miss results according to re-
mote cache tag lookups, and cache block state changes of all L1
data caches according to the cache coherency protocol. To estimate
the energy consumed by cache coherency operations, we designed
an energy estimator. It inputs the trace from CATS and accumulates
the number of snooping cache accesses and remote cache lookups
during each cache coherency operation. It also counts the number
of used bus segments and splitters during each bus transaction.
Then, it estimates the dynamic energy consumed by the snooping
cache, L1 data caches, bus segments, and splitters by multiplying
the number of accesses by the dynamic energy parameter of each
Table 1
Simulation parameters of the target MPSoC.

Parameter Value

Processor ARM core
Processor frequency 200 MHz
Numbers of processors 2, 4, 8, 16
Private L1 I-cache and D-cache 32 kB, 32-byte blocks, four-way set-associative
Cache hit latency One clock cycle
Cache miss latency 80 clock cycles
Cache coherency protocol MESI
Interconnect Shared bus
Bus latency One clock cycle
Bus segment length 6 mm
Snooping cache latency One clock cycle

Table 2
Benchmark programs and their input data.

Program Description of program Input data

cholesky Blocked Cholesky factorization on a sparse matrix tk14.o
fft Complex 1D version of the six-step FFT 16K points
lu (cont.) LU factorization of contiguously allocated blocks 256 � 256 matrices, 16 � 16 blocks
lu (non-cont.) LU factorization of non-contiguously allocated blocks 256 � 256 matrices, 16 � 16 blocks
radix Integer radix sort 256K integers, radix 1024
raytrace Rendering a 3D scene using ray-tracing teapot.env
volrend Rendering a 3D volume using ray-casting head-scaleddown2
jpeg Compressing an image to a JPEG format small.bmp
tiff Converting a color TIFF image to greyscale small.tif

C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208 201
component. It also estimates the static energy consumption of each
component by multiplying the execution time information from
CATS by the static power parameter of each component.
Table 3
Dynamic energy parameters (nJ).

Parameter Number of processors

2 4 8 16

Snooping cache 0.1017 0.1589 0.2423 0.3558
L1 cache 0.6626
L1 cache tag 0.0882
Bus line 0.0005/mm
Splitter 0.0005

Table 4
Static power parameters (lW).

Parameter Number of processors

2 4 8 16

Snooping cache 1.4480 2.8746 5.7279 11.4266
L1 cache 3.4032
Bus line 1.7302/mm
Splitter 0.6302

N
or

m
al

iz
ed

 #
 o

f
ca

ch
e

lo
ok

up
s

N
or

m
al

iz
ed

 #
 o

f
ca

ch
e

lo
ok

up
s

(c) N 8=

(a) N 2=

0%

20%

40%

60%

80%

100%

ch
ole

sk
y fft

lu
(co

nt.
)

lu
(n

on
-co

nt.)
rad

ix

ray
tra

ce

vo
lre

nd jpe
g tif

f

Ave
rag

e

RS BF

0%

20%

40%

60%

80%

100%

ch
oles

ky fft

lu
(co

nt.
)

lu
(n

on-
co

nt
.)

ra
dix

ra
ytr

ac
e

volr
en

d
jp

eg tif
f

Aver
ag

e

RS BF

Fig. 8. The number of cache lookups in snooping operations by RegionScout (RS) an
Tables 3 and 4 show the dynamic energy and the static power
parameters of components used in our energy estimation. The dy-
namic energy parameters of caches were taken from CACTI [18]
with 130 nm CMOS technology. We also referred to the capaci-
tance parameter by Hsieh and Pedram [13] for the dynamic energy
parameter of splitter. We obtained the static powers of snooping
cache and L1 cache using HotLeakage model [23]. For the dynamic
energy and static power of bus lines, equations derived by Banerjee
and Mehrotra [12] were used. These equations took into account
an optimal repeater size/spacing. For 130 nm technology nodes
and beyond, the coupling capacitance can be as high as the sum
of the area and fringing capacitance of wire. The role of coupling
capacitance will be even more dominant in the future as feature
size shrink [25]. The bus energy model took into account not only
an area and fringing capacitance (wire-to-silicon substrate capaci-
tance) but also a coupling capacitance (wire-to-wire capacitance)
based on International Technology Roadmap for Semiconductors
(ITRS). The model used not only a three-dimensional (3D) capaci-
tance model for bus wire capacitances (i.e. coupling capacitance,
area capacitance, and fringing capacitance) [27], but also an in-
put/output parasitic capacitance of repeater. According to the bus
wire capacitance model [26], the coupling capacitance is propor-
tional to a wire thickness and a dielectric thickness and inversely
N
or

m
al

iz
ed

 #
 o

f
ca

ch
e

lo
ok

up
s

N
or

m
al

iz
ed

 #
 o

f
ca

ch
e

lo
ok

up
s

)d(N = 16

)b(N = 4

0%

20%

40%

60%

80%

100%

ch
ole

sk
y fft

lu
(co

nt.
)

lu
(n

on
-co

nt.
)

rad
ix

ray
tra

ce

vo
lre

nd jpe
g tif

f

Ave
rag

e

RS BF

0%

20%

40%

60%

80%

100%

ch
oles

ky fft

lu
(co

nt.
)

lu
(n

on
-co

nt.
)

ra
dix

ra
ytr

ac
e

volr
en

d
jpe

g tif
f

Ave
rag

e

RS BF

d broadcast filtering (BF), for N processors, normalized to the baseline MPSoC.

202 C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208
proportional to an inter-wire spacing. The area and fringing capac-
itance is proportional to a wire with and inversely proportional to a
dielectric thickness. Therefore, since our split-bus implementation
did not change the wire thickness and the inter-wire spacing, we
assumed the capacitance of split-bus was the same to that of
monolithic bus’. The static power of splitter was calculated as
22-times of the static power of bus (an inverter), because the split-
ter requires two tri-state buffers and 20 gates to implement enable
logics of the tri-state buffers [13].

5.2. The utilization of cache and bus

To find out how many of the unnecessary remote cache lookups
are filtered by our technique, we counted the number of remote
cache lookups and the bus segments used during cache coherency
operations. Fig. 8 shows the number of remote cache lookups that
occurs for different numbers of processors. The results are all nor-
malized to the baseline MPSoC.

Both the broadcast filtering and RegionScout reduced the num-
ber of remote cache lookups for all applications and all numbers of
processors. For both techniques, the reduction tracked the propor-
tion of remote misses in each application because remote cache
lookups which would have led to remote misses were filtered
out. However, the broadcast filtering reduced the numbers of re-
mote cache lookups much more than RegionScout. On average,
the broadcast filtering eliminated about 90% of remote cache look-
ups, whereas the best performance of RegionScout, with two pro-
cessors, only reduced by 55% of remote cache lookups. The gap in
performance between the broadcast filtering and RegionScout in-
creased with the number of processors, from 32% with two proces-
sors to 50% with 16 processors. We can explain these results in
terms of the granularity of the sharing information; whereas the
broadcast filtering uses cache blocks, RegionScout uses regions. A
region is much larger than a cache block, so that RegionScout
makes a conservative estimate of cache block sharing, allowing
for local caches to send many redundant broadcasts (because of
false sharing) and for remote caches to look up their tags
unnecessarily.

For the broadcast filtering, the number of remote cache lookups
increases a little with the number of processors, except for LU fac-
torization of non-contiguously allocated blocks. This is because
some residual unnecessary lookups are not filtered. For example,
in Fig. 7, suppose that the data which P2 requests is only in the
cache at P4. Nevertheless, the snooping cache forwards the re-
quests to both P3 and P4, and they look up their caches. If we could
N
or

m
al

iz
ed

 b
us

 s
eg

m
en

t u
sa

ge

0%

20%

40%

60%

80%

100%

cholesky fft lu (cont.) lu (non-
cont.)

radix

N = 2 N = 4

Fig. 9. The bus segment usage of broadcast filtering, for different numbers of proces
map the tasks which will generate cache coherency operations to
processors which were close to each others on the bus, there would
be scope to save more snoop energy. But we will not consider task
mapping in this paper.

As well as reducing cache lookups, the broadcast filtering also
affects bus segment usage, so we counted the numbers of bus seg-
ments used during snoop operations and the totals are shown in
Fig. 9. The baseline model and RegionScout both use a monolithic
bus, which is replaced with N þ 1 bus segments in a split bus,
where N is the number of processors. We therefore took N þ 1
bus segments as our baseline model.

The use of bus segments by broadcast filtering decreases as the
number of processors increases. With two processors, the broad-
cast filtering reduces bus usage to 68% of the baseline. With 16 pro-
cessors, the bus usage is reduced to 38%. In the figure, lu (non-cont.)
reduced the most bus segment usage in the almost all numbers of
processors. The increase of reduction amount was also the highest
according to the increase of the number of processors. Although fft

has the highest remote miss ratio, it reduced less bus segments
usage than lu (non-cont.) which has the lowest remote miss ratio.
This is because the bus segments are not only used to broadcast
coherency requests, but also to copy a required data blocks. More-
over, as the cache block size (32 bytes) is larger than the data bus
width (4 bytes), multiple bus transactions are required to copy a
data block between caches. So the reduction of bus segment usage
achieved by eliminating data copy operation is larger than that
needed to broadcast a request which only uses one bus transaction.
The reduction of bus segments usage is therefore dependent on
both the remote miss ratio and the distance between the requester
and supplier of data.

5.3. Energy and performance

Fig. 10 shows the energy breakdown of cache coherency opera-
tions in baseline model (Base), with RegionScout (RS), and with the
broadcast filtering (BF). The figure shows not only total energy but
also energy consumed by each component. Each energy result is
sum of dynamic energy and static energy consumed by each com-
ponent. Since snoop energy reduction techniques require addi-
tional logics (NSRT and CRH in the case of RegionScout, and the
snooping cache and splitters for broadcast filtering), the energy
consumed by these components is also shown.

Because dynamic energy consumption is proportional to the
numbers of cache lookups and bus usage, we could expect it to
be reduced by both techniques, but in fact RegionScout reduced
raytrace volrend jpeg tiff Average

N = 8 N = 16

sors (N), normalized to the monolithic bus (N + 1 segments) of baseline MPSoC.

Table 6
Definition of parameters in the snoop energy model.

Parameter Definition

0%

20%

40%

60%

80%

100%

120%

B
as

e
R

S
B

F

cholesky fft lu (cont.) lu (non-
cont.)

radix raytrace volrend jpeg tiff Average cholesky fft lu (cont.) lu (non-
cont.)

radix raytrace volrend jpeg tiff Average

cholesky fft lu (cont.) lu (non-
cont.)

radix raytrace volrend jpeg tiff Averagecholesky fft lu (cont.) lu (non-
cont.)

radix raytrace volrend jpeg tiff Average

L1 cache Bus line NSRT+CRH Splitter Snooping cache
N

or
m

al
iz

ed
 s

no
op

 e
ne

rg
y

co
ns

um
pt

io
n

(a) N = 2 (b) N = 4

(c) N = 8 (d) N = 16
N

or
m

al
iz

ed
 s

no
op

 e
ne

rg
y

co
ns

um
pt

io
n

N
or

m
al

iz
ed

 s
no

op
 e

ne
rg

y
co

ns
um

pt
io

n

N
or

m
al

iz
ed

 s
no

op
 e

ne
rg

y
co

ns
um

pt
io

n

0%

20%

40%

60%

80%

100%

120%

B
as

e
R

S
B

F

L1 cache Bus line NSRT+CRH Splitter Snooping cache

0%

20%

40%

60%

80%

100%

120%

B
as

e
R

S
B

F

L1 cache Bus line NSRT+CRH Splitter Snooping cache

0%

20%

40%

60%

80%

100%

120%

B
as

e
R

S
B

F

L1 cache Bus line NSRT+CRH Splitter Snooping cache

Fig. 10. The snoop energy consumed by baseline model (Base), RegionScout (RS), and broadcast filtering (BF), for N processors, normalized to the baseline MPSoC.

C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208 203
little snoop energy consumption. It is because NSRT and CRH con-
sumed additional energy. The broadcast filtering is much more
effective, because it reduced the energy requirement of the bus
as well as that of the cache’s. The more energy was saved as the
number of processors increased, because the more number of
unnecessary broadcasts were eliminated. Due to the dynamic and
static energy overhead by the snooping cache and splitters, the en-
ergy saving was smaller than the reduction of cache lookups and
bus usage. With 16 processors, snoop energy decreased to 59%
on average, to 38% by maximum, of the baseline model. The energy
consumed by splitters and snooping cache represents about 7% of
the total snoop energy.

As we have already described, the performance overhead in-
curred by the broadcast filtering when a remote hit was detected
(because of the two-hop broadcasting and the snooping cache
lookup). To evaluate this performance overhead, we calculated
the average latency of cache coherency operations, which is the
time from a local cache’s sending a coherency request to the return
of the required data, for the bus latencies of one cycle ðLB1Þ and 10
cycles ðLB10Þ. The latencies of the L1 cache and snooping caches
were one cycles in both cases (we verified these latencies using
CACTI [18]). If Lsnoop and LBF

snoop are the average snooping latencies
before and after applying broadcast filtering, respectively, the per-
formance overhead can be calculated as follows:
Table 5
The performance overhead of broadcast filtering in a four-processor MPSoC.

Application Remote hit ratio (%) Toverhead ð%Þ

LB1 LB10

cholesky 5.4 1.1 0.7
fft 0.1 0.0 0.0
lu (cont.) 18.8 3.8 2.3
lu (non-cont.) 43.5 8.7 5.3
radix 1.4 0.3 0.2
raytrace 33.7 6.7 4.1
volrend 28.1 5.6 3.4
jpeg 20.1 4.0 2.4
tiff 2.7 0.5 0.3
Average 3.4 2.1
Toverhead ¼
ðLBF

snoop � LsnoopÞ � remote hit ratio

Lsnoop
:

Table 5 shows the performance overhead incurred by the broadcast
filtering in an MPSoC with four processors. The performance over-
head is small in all cases, and this can be explained in terms of
two characteristics: First, because the snooping cache only broad-
casts coherency requests to remote caches if a remote hit is de-
tected, the overhead is proportional to the remote hit ratio and
this is small for many programs. Second, the cache coherency oper-
ation latency is dominated by the time taken to the required data,
and the cost of the two-hop request is relatively insignificant, so
that Lsnoop and LBF

snoop make little difference.

6. Energy efficiency analysis

As the experimental results show, the amount of snoop energy
reduction by the broadcast filtering varies significantly depending
N The number of processors (L1 caches)
Etag;dynamic Dynamic energy of L1 cache tag lookup
EL1;dynamic Dynamic energy of L1 cache access
Esc;dynamic Dynamic energy of snooping cache access
Ebs;dynamic Dynamic energy of bus segment
Esp;dynamic Dynamic energy of splitter
Ebus;dynamic Dynamic energy of monolithic bus ð¼ ðN þ 1Þ � Ebs;dynamicÞ
A The number of bus transactions per block block size

bus width

� �

phit Remote hit ratio
prd Probability of a BusRd operation
prdx Probability of a BusRdX operation
pupgr Probability of a BusUpgr operation
pwb Probability of a BusWB operation
Pcache;static Static power of L1 cache
Pbus;static Static power of monolithic bus
Psc;static Static power of snooping cache
Psplitter;static Static power of splitter

204 C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208
on the execution characteristics of a parallel application as well as
the number of active processors in the MPSoC. In order to better
understand the efficiency of broadcast filtering under different ma-
chine configuration and program execution characteristics, we de-
fine an analytical snoop energy model. Our snoop energy model
includes not only dynamic energy consumption but also static en-
ergy consumption. So, it will be useful in evaluating the energy
efficiency of broadcast filtering more accurate in general
environment.

It is important to note that the goal of our energy model is not
to design a more accurate energy model of each component but to
design an overall energy model of cache coherency operation.
However, for the accuracy of analysis, our model refers to the en-
ergy parameters from the widely accepted detail (dynamic and sta-
tic) power/energy models for cache [18,23], bus [12], and splitter
[13]. Using the dynamic and static energy parameters, we design
an energy consumption model of cache coherency operation and
evaluate energy efficiency of our technique.

6.1. Baseline average snoop energy model

An energy consumption consist of dynamic energy and static
energy. Dynamic energy is consumed when a logic performs some
operations. Static energy is always consumed even the logic per-
forms no operation. Since the dynamic energy depends on the
number of cache coherency operations and static energy depends
on execution time of applications, it will be more useful to define
an average snoop energy model which is independent of the char-
acteristic of individual applications. Different cache coherency
operations consume different amounts of energy. For example,
while BusRd and BusRdX perform cache-to-cache data copy as well
as remote cache lookup, BusUpgr only performs remote cache
lookup. We therefore construct our snoop energy model to reflect
the average distribution of coherency types.

A cache coherency operation consists of the cache accesses for
tag lookup and cache-to-cache data coping, and the bus transac-
tions needed to transfer a coherency request and the required data
block between caches, so the average snoop energy can be parti-
tioned into dynamic energies of cache and bus and static energy
of them, as follows:

Esnoop ¼ Ecache;dynamic þ Ebus;dynamic þ Estatic: ð1Þ

As dynamic energy is dependent on cache and bus operations and a
major energy consumer, if we does not describe static energy, it
means dynamic energy in our energy model. The cache energy is
the sum of the energy consumed during a remote cache access for
tag lookup and a full cache access for copying data between caches
or between the shared memory and the local cache. So the average
cache energy can be expressed as follows:

Ecache;dynamic ¼ Etag;dynamic þ EL1;dynamic: ð2Þ

where, Etag is the average tag lookup energy and EL1 is the average
amount of energy required for a full L1 access. As tag lookup is per-
formed at remote caches, its energy requirement is the product of
the number of remote caches and the energy consumed in each
lookup. However, as no remote cache checks its tag using BusWB,
the probability of a BusWB operation should be excluded in deter-
mining the average tag lookup energy, which can then be formu-
lated as follows:

Etag;dynamic ¼ ðN � 1Þ � ðprd þ prdx þ pupgrÞ � Etag;dynamic: ð3Þ

where the variables are defined in Table 6. If a remote hit occurs
during a data copy operation, the cache-to-cache data copy is per-
formed by BusRd or BusRdX, and a data block is read from a remote
cache and written to a local cache. But if a remote miss occurs dur-
ing BusRd or BusRdX operations, or BusWB is invoked, a memory-
to-cache or cache-to-memory data copy is performed. Therefore
the cache access energy expended during a data copy can be ex-
pressed as follows:

EL1;dynamic ¼ fphit � 2ðprd þ prdxÞ þ ð1� phitÞ
� ðprd þ prdxÞ þ pwbg � EL1;dynamic: ð4Þ

The bus energy is the product of the number of bus accesses and the
energy consumed in one access. The bus is always used once to send
a coherency request, and many times in a data copy operation, but
its usage differs with the type of coherency. The BusRd, BusRdX, and
BusWB operations always use the bus to copy data between the lo-
cal cache, the remote cache, and the shared memory. But, BusUpgr
does not use the bus because no data is copied between caches. So
the average bus energy can be expressed in terms of the probabili-
ties of coherency types, as follows:

Ebus;dynamic ¼ f1þ ðprd þ prdx þ pwbÞ � Ag � Ebus;dynamic: ð5Þ

The static energy consumed by cache and bus during a cache coher-
ence operation can be estimated by multiplying total static power
of all caches and bus by the average latency of snoop operation,
as follows:

Estatic ¼ ðN � Pcache;static þ Pbus;staticÞ � Lsnoop: ð6Þ
6.2. Average snoop energy model for broadcast filtering

When broadcast filtering is applied to the baseline model, the
dynamic and static energy consumed by the snooping cache and
splitters must be considered, and we will now reconstruct the
average snoop energy model to take this into account:

EBF
snoop ¼ EBF

cache;dynamic þ EBF
bus;dynamic þ Esc;dynamic þ EBF

static:

We do not need to determine an average energy requirement for
the snooping cache, because it is always accessed in all kinds of
cache coherency operations.

The average cache energy is the sum of the average tag lookup
energy and the average full cache access energy, as follows:

EBF
cache;dynamic ¼ EBF

tag;dynamic þ EL1;dynamic:

The average amount of energy used by the full cache during a
cache-to-cache data copy remains unchanged from the baseline
model. But the average tag lookup energy is affected by broadcast
filtering because only the remote caches which contain the required
data look up their tags. So the number of tag lookups is now depen-
dent on the numbers of remote hits that occur as a result of each
coherency request. If we define pn to be the probability that there
are n remote hits, the expression for the average tag energy is now:

EBF
tag;dynamic ¼

XN�1

i¼1

ði� piÞ � ðprd þ prdx þ pupgrÞ � Etag;dynamic:

Broadcast filtering uses a split bus consisting of bus segments and
splitters, which all contribute to energy consumption. The energy
consumed by the bus segments is simply the product of the number
of segments used and the energy consumed by a single segment. The
same is true of the splitters. The average number of bus segments
used is the sum of the average number used in a snooping cache ac-
cess ð�nbs;scÞ, in broadcasting a coherency request ð�nbs;bcÞ, and in a
cache-to-cache or cache-to-memory data copy operation ð�nbs;cpÞ.
The average number of splitters used can be calculated in the same
way. The average bus energy can then be expressed as follows:

EBF
bus;dynamic ¼ ð�nbs;sc þ �nbs;bc þ �nbs;cpÞ � Ebs;dynamic

þ ð�nsp;sc þ �nsp;bc þ �nsp;cpÞ � Esp;dynamic: ð7Þ

C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208 205
During a snooping cache access, between 2 and N
2 þ 1 bus segments

are used, depending on the distance between the local cache and
the snooping cache. If we define the probability that nbs bus seg-
ments are used in snooping cache access to be pnbs

, then the average
number of bus segments used in a snooping cache access ð�nbs;scÞ is
the sum of the products of these probabilities and the number of
bus segments used in each case:

�nbs;sc ¼
XN2þ1

nbs¼2

ðpnbs
� nbsÞ:

If one or more remote hits are detected and the coherency type is
BusRd, BusRdX or BusUpgr, the snooping cache broadcasts the
coherency request. Depending on which remote cache contains the
data, between 2 and N þ 1 bus segments are used to broadcast the
coherency request. The average number is the sum of the products
of the probabilities above and the number of bus segments used in
each case. So the average number of bus segments used in broad-
casting a coherency request ð�nbs;bcÞ can now be expressed as follows:

�nbs;bc ¼
XNþ1

nbs¼2

ðpnbs
� nbsÞ � ðprd þ prdx þ pupgrÞ � phit:

The average number of bus segments used in a data copy operation
depends on the coherency type. We first calculate the average num-
bers of segments for each coherency type and then combine them
into an average that covers all the coherency types. In the case of
BusRd and BusRdX, if a remote hit occurs, between 2 and N þ 1
bus segments are used to copy data from a remote cache to the local
cache. Otherwise, if there is a remote miss, between 2 and N

2 þ 1 bus
segments are used to copy data from the shared memory to the lo-
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2mm

8mm
0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2mm

8mm
0%

20%

40%

60%

80%

100%

10mm

10mm

(a) N = 2

Remote miss ratio

Remote miss ratio

(c) N = 8

B
us

 e
ne

rg
y

co
nt

ri
bu

tio
n

B
us

 e
ne

rg
y

co
nt

ri
bu

tio
n

Fig. 11. The contribution of the bus energy to the total snoop energy in the base
cal cache. BusWB also uses between 2 and N
2 þ 1 bus segments to

write data back to the shared memory. Since BusUpgr does not copy
data, its bus usage is zero. The average number of bus segments
used in a data copy operation for all kinds of coherency can now
be expressed as the sum of the products of the probability of each
type of request and the average numbers of bus segments used in
each case, as follows:

�nbs;cp ¼
XNþ1

nbs¼2

ðpnbs
� nbsÞ � ðprd þ prdxÞ � phit � A

þ
XN2þ1

nbs¼2

ðpnbs
� nbsÞ � fpwb þ ðprd þ prdxÞ � ð1� phitÞg � A:

The average usage of splitters three operations �nsp;sc; �nsp;bc and �nsp;cp

can be calculated in a similar way, allowing for the fact that the
number of splitters is always one less than the number of bus seg-
ments in use. The three averages can therefore be expressed as
follows:

�nsp;sc ¼
XN

2

nsp¼1

ðpnsp
� nspÞ:

�nsp;bc ¼
XN

nsp¼1

ðpnsp
� nspÞ � ðprd þ prdx þ pupgrÞ � phit:

�nsp;cp ¼
XN

nsp¼1

ðpnsp
� nspÞ � ðprd þ prdxÞ � phit � A

þ
XN

2

nsp¼1

ðpnsp
� nspÞ � fpwb þ ðprd þ prdxÞ � ð1� phitÞg � A:
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2mm

8mm
0%

20%

40%

60%

80%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2mm

8mm
0%

20%

40%

60%

80%

100%

10mm

10mm

Remote miss ratio

Remote miss ratio

(b) N = 4

(d) N = 16

B
us

 e
ne

rg
y

co
nt

ri
bu

tio
n

B
us

 e
ne

rg
y

co
nt

ri
bu

tio
n

line model for different remote miss ratios and numbers of processors (N).

206 C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208
The static energy can be estimated by multiplying total static power
of caches, bus, snooping cache, and splitters by the average latency
of snoop operation. If we assume that the sum of bus segment
length of split-bus is same to the monolithic bus in the baseline
model, the static energy of broadcast filtering can be expressed as
follows:

EBF
static ¼ ðN � Pcache;static þ Pbus;static þ Psc;static þ N � Psplitter;staticÞ

� LBF
snoop:

Although additional control lines are required to allow the arbiter
and snooping cache to control the splitters, they are much fewer
than the number of bus lines for addresses and data (by a factor
of 32 or 64), and we can neglect their energy requirement.

6.3. The contribution of the bus line to snoop energy

We analyzed the average snoop energy model of a baseline
MPSoC based on Eqs. (1)–(6) and determined the percentage of en-

ergy used by the bus, which is Ebus;dynamicþPbus;static�Lsnoop

Esnoop
. The relative

probabilities of the BusRd, BusRdX, BusUpgr and BusWB transac-
tions were set to the average values found from SPLASH-2 applica-
tions. The average snoop energy was calculated using the
parameters in Table 3. As the total length of the bus line depends
on the design and implementation of the MPSoC, we analyzed
the five cases, in which there are 2, 4, 6, 8, and 10 mm of bus seg-
ments in each case.

Fig. 11 shows how the percentage contribution of bus energy to
the average snoop energy varies with bus length and remote miss
ratio, for MPSoCs with 2, 4, 8, and 16 processors. Irrespective of the
N
or

m
al

iz
ed

 s
no

op
 e

ne
rg

y
co

ns
um

pt
io

n

Remote miss ratio

(a) N 2=

(c) N 8=
oitarssimetomeR

N
or

m
al

iz
ed

 s
no

op
 e

ne
rg

y
co

ns
um

pt
io

n

0%

20%

40%

60%

80%

100%

120%

B
as

e
B

F

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Static L1$ Bus line Splitter Snoop$

0%

20%

40%

60%

80%

100%

120%

B
as

e
B

F

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Static L1$ Bus line Splitter Snoop$

Fig. 12. A average snoop energy against remote mis
number of processors and the bus length, the contribution of the
bus to the total energy consumption increases with the remote
miss ratio. In the case of four processors, the energy contribution
of the bus is between 40% and 77% when the remote miss ratio is
0.0, but it increases to between 48% and 82% when the remote miss
ratio is 1.0. As the remote miss ratio rises, the number of cache-to-
cache data copy operations drops and the contribution of cache en-
ergy decreases. This tells us that we must concentrate on the bus if
we want to reduce the snoop energy consumption for applications
with high remote miss ratios.

Although the contribution of the bus to the total energy con-
sumption increases with bus length, as we would expect, the in-
crease is not proportional, because the total snoop energy also
increases. For four processors and a remote miss ratio of 0.5, the
contribution of buses of length 4, 6, 8, and 10 mm bus segments
were, respectively, 1.32�, 1.59�, 1.73�, and 1.82� that of a
2 mm bus segment. As the number of processors increases, bus en-
ergy becomes a higher proportion of snoop energy. For a remote
miss ratio of 0.8, which is approximately average for the SPLASH-
2 applications and a 6 mm bus segment, the bus consumed 63%,
72%, 80%, and 85% of the snoop energy for 2, 4, 8, and 16 proces-
sors, respectively, showing how the importance of bus energy sav-
ing increases with the number of processors. The energy
contribution of the bus increases smoothly with the remote miss
ratio but the rate of increase declines with the number of proces-
sors. This is because more processors means more tag lookups
and the relative effect of the cache-to-cache data copy operations
decreases, reducing the extent to which the energy contribution
of the cache depends on the remote miss ratio. With two proces-
sors, bus energy is a small proportion of the snoop energy when
)b(N = 4

)d(N = 16
oitarssimetomeR

N
or

m
al

iz
ed

 s
no

op
 e

ne
rg

y
co

ns
um

pt
io

n
N

or
m

al
iz

ed
 s

no
op

 e
ne

rg
y

co
ns

um
pt

io
n

Remote miss ratio

0%

20%

40%

60%

80%

100%

120%

B
as

e
B

F

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Static L1$ Bus line Splitter Snoop$

0%

20%

40%

60%

80%

100%

120%

B
as

e
B

F

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Static L1$ Bus line Splitter Snoop$

s ratio for different numbers of processors (N).

C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208 207
the remote miss ratio is low, but its contribution increases with the
remote miss ratio; but when there are 16 processors the contribu-
tion of the bus energy increases a little (by maximum of 2%) as the
remote miss ratio goes from 0.0 to 1.0.
6.4. Average snoop energy reduction with broadcast filtering

To predict the amount of energy that we might expect to serve
with our technique, we used the energy model with appropriate
component parameters. The baseline model, is an ARM MPCore-
like cache configuration [20] with a 6 mm 32-bit bus segment,
and uses the energy parameters in Tables 3 and 4. Using broadcast
filtering Eq. (7) shows that the energy used by the bus depends on
the number of bus segments and splitters between the requesting
cache and the cache that supplies the data. Average values of these
parameters were obtained from traces of SPLASH-2 applications.
Fig. 12 shows how the average snoop energy depends on the re-
mote miss ratio for 2, 4, 8, and 16 processors. It shows dynamic en-
ergy consumption of each component and accumulated static
energy consumption of all components.

Irrespective of the number of processors, the amount of energy
saved increased with the remote miss ratio. In the case of four pro-
cessors and a remote miss ratio of 0.0, broadcast filtering saved
18% of the snoop energy. For a remote miss ratio of 1.0, this in-
creases to 32%. The pattern is similar for 8 and 16 processors.
When there are more than two processors, broadcast filtering re-
duces the average snoop energy, and the extent of this reduction
increases with the number of processors. For the average remote
miss ratio of SPLASH-2 applications, which is approximately 0.8,
our technique reduced by 12%, 29%, 41%, and 51% of snoop energy,
compared with the baseline, for 2, 4, 8, and 16 processors, respec-
tively. This in largely because the contribution of bus energy in-
creases with the number of processors (as Fig. 11 shows) and
broadcast filtering saves bus energy.

The broadcast filtering also reduces the energy requirement of
the cache to some extent, by the prevention of unnecessary tag
lookups. Even though the snooping cache requires additional en-
ergy, the overall cache energy (i.e. L1 cache energy + snooping
cache energy) is reduced. More overall cache energy is saved as
the number of processors and the remote miss ratio increases. In
four processors, the overall cache energy is 95% of the baseline
requirement; but it drops to 70% in 16 processors with a remote
miss ratio of 1.0.

Unfortunately broadcast filtering actually consumes a little
more energy when there are two processors and the remote miss
ratio is less than 0.3. This energy is consumed dynamically and
statically by additional components, i.e. the snooping cache and
splitters. In the aspect of static energy, because broadcast filtering
needs additional logics such as a snooping cache and splitters, and
it increases the latency of cache coherency operation, static energy
consumption increases a little. As the amount of increase is less
than 2%, static energy increase by broadcast filtering can be as-
sumed to be negligible.
7. Conclusions and future work

The broadcast filtering reduces the snoop energy consumed by
both the cache and the bus in an MPSoC. It most cases, it can detect
when coherency requests will result in remote misses, and then it
prevents unnecessary broadcasts being sent to remote caches
which do not have the required data. The broadcast filtering is
implemented using a snooping cache and a split bus. The snooping
cache checks whether matching blocks exist in remote caches be-
fore broadcasting coherency requests. If a remote miss is detected,
the snooping cache filters out the broadcast. If one or more remote
hits are detected, only a part of the split bus may be used, so that
the request is selectively broadcast to the remote caches which
have the matching data.

By experiment we showed that our technique can eliminate by
about 40% of snoop energy consumption. This saving is larger than
that achieved by other techniques, because the broadcast filtering
reduces not only cache energy but also bus energy. We designed an
average snoop energy model, which enabled us to predict the sav-
ing in snoop energy consumption for applications with different
the remote miss ratios, and MPSoCs with different numbers of pro-
cessors. An energy model analysis showed that the broadcast filter-
ing could reduce by 55% of the energy consumption per cache
coherency operation. This combination of experimental and ana-
lytical results demonstrates the effectiveness of our approach
and we expect the broadcast filtering to be used as an architec-
ture-level energy cache coherency scheme in low-power MPSoCs.

In future work, we intend to enhance the effect of broadcast fil-
tering by exploiting a knowledge of the data sharing characteristics
of the tasks in parallel applications. For example, the broadcast fil-
tering selectively broadcasts coherency requests to remote caches
to obtain shared data, and the energy consumption of each snoop
operation is affected by the distance between the caches which
are sharing the data. If the caches are nearer to each others, less en-
ergy is consumed during a snoop operation, so we could reduce the
energy cost of snoop operations by assigning tasks which share
data to closer processors.
Acknowledgement

This work was supported by the Korea Science and Engineering
Foundation (KOSEF) grant funded by the Korea government (MEST)
(No. R0A-2007-000-20116-0), and the Brain Korea 21 Project in
2008. The ICT at Seoul National University provided research facil-
ities for this study.

References

[1] J. Goodacre, A.N. Sloss, Parallelism and the ARM instruction set architecture,
IEEE Computer 38 (7) (2005).

[2] D. Courtright, MIPS32 M4K core for multi-CPU applications, Embedded
Processors Forum, April 2002.

[3] L. Hammond, B.A. Hubbert, M. Siu, M.K. Prabhu, M. Chen, K. Olukotun, The
stanford hydra CMP, IEEE Micro 20 (2) (2000).

[4] N. Magen, A. Kolodny, U. Weiser, N. Shamir, Interconnect-power dissipation in
a microprocessor, System Level Interconnect Prediction, February 2004.

[5] A. Moshovos, G. Memik, B. Falsafi, A. Choudhary, Jetty: filtering snoops for
reduced energy consumption in SMP servers, in: International Symposium on
High-Performance Computer Architecture, January 2001.

[6] M. Ekman, F. Dahlgren, P. Stenström, TLB and snoop energy reduction using
virtual caches in low-power chip-multiprocessors, in: International
Symposium on Low Power Electronics and Design, August 2002.

[7] A. Moshovos, RegionScout: exploiting coarse grain sharing in snoop-based
coherence, in: International Symposium on Computer Architecture, June
2005.

[8] M. Ekman, F. Dahlgren, P. Stenström, Evaluation of snoop energy reduction
techniques for chip-multiprocessors, in: Workshop on Duplicating,
Deconstructing, and Debunking, May 2002.

[9] C. Saldanha, M. Lipasti, Power efficient cache coherence, in: Workshop on
Memory Performance Issues (in conjunction with ISCA), June 2001.

[10] K. Strauss, X. Shen, J. Torrellas, Flexible snooping: adaptive forwarding and
filtering of snoops in embedded-ring multiprocessors, in: International
Symposium on Computer Architecture, June 2006.

[11] J.Y. Chen, W.B. Jone, S. Wang, H.I. Lu, T.F. Chen, Segmented bus design for low-
power systems, IEEE Transactions on Very Large Scale Integration Systems 7
(1) (1999).

[12] K. Banerjee, A. Mehrotra, A power-optimal repeater insertion methodology for
global interconnects in nanometer designs, IEEE Transactions on Electron
Devices 49 (11) (2002).

[13] C.T. Hsieh, M. Pedram, Architectural energy optimization by bus splitting, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 21
(4) (2002).

[14] J. Guo, A. Papanikolaou, P. Marchal, F. Catthoor, Physical design
implementation of segmented buses to reduce communication energy, in:
Asia and South Pacific Design Automation Conference, 2006.

208 C.-M. Chung, J. Kim / Journal of Systems Architecture 55 (2009) 196–208
[15] D. Kim, S. Ha, R. Gupta, CATS: cycle accurate transaction-driven simulation
with multiple processor simulators, in: Design Automation and Test in Europe,
April 2007.

[16] D. Burget, T. Austin, The SimpleScalar Tool Set Version 4.0. <http://
www.simplescalar.com/v4test.html>.

[17] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-2 programs:
characterization and methodological considerations, in: International
Symposium on Computer Architecture, June 1995.

[18] P. Shivakumar, N.P. Jouppi, CACTI 3.0: an integrated cache timing, power, and
area model, WRL Research Report 2001/2, 2001.

[19] D.E. Culler, J.P. Singh, A. Gupta, Parallel Computer Architecture: A Hardware/
Software Approach, Morgan Kaufman, 1999.

[20] ARM, MPCore Multiprocessor Technical Reference Manual (ARM DDI 0360A),
ARM, 2005.

[21] C. Yu, P. Petrov, Aggressive snoop reduction for synchronized producer–
consumer communication in energy-efficient embedded multi-processors, in:
International Conference on Hardware–Software Codesign and System
Synthesis, 2007.

[22] C. Yu, P. Petrov, Latency and bandwidth efficient communication through
system customization for embedded multiprocessors, in: Design Automation
Conference, 2008.

[23] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, M. Stan, HotLeakage: a
temperature-aware model of subthreshold and gate leakage for architects,
University of Virginia Department of Computer Science Technical Report CS-
2003-05, 2003.

[24] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,
MiBench: a free, commercially representative embedded benchmark suite, in:
Workshop on Workload Characterization, December 2001.

[25] M. Kuhlmann, S.S. Sapatnekar, Exact and efficient crosstalk estimation, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 20
(7) (2001).

[26] S.C. Wong, G.Y. Lee, D.J. Ma, Modeling of interconnect capacitance, delay, and
crosstalk in VLSI, IEEE Transactions on Semiconductor Manufacturing 13 (1)
(2000).

[27] K. Nabors, J. White, FastCap: a multipole-accelerated 3-D capacitance
extraction program, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 10 (11) (1991).
Chun-Mok Chung received BS in computer engineering
from Kwangwoon University, Seoul, Korea in 1997. He
received MS in computer science from Yonsei Univer-
sity, Seoul, Korea in 1999. He is a PhD Student in School
of Computer Science & Engineering, Seoul National
University, Seoul, Korea. His research interests include
computer architecture, low-power design, and embed-
ded system. He is a student member of ACM.
Jihong Kim received his BS in computer science and
statistics from Seoul National University, Seoul, Korea in
1986, and MS and PhD degrees in computer science and
engineering from the University of Washington in 1988
and 1995, respectively. He is a Professor in the School of
Computer Science & Engineering, Seoul National Uni-
versity. Before joining Seoul National University in
1997, he was a Member of Technical Staff in the DSPS
R&D Center of Texas Instruments in Dallas, Texas. His
research interests include embedded software and sys-
tems, low-power systems, computer architecture,
image/multimedia systems and real-time systems. He is
a member of IEEE Computer Society and ACM.

http://www.simplescalar.com/v4test.html
http://www.simplescalar.com/v4test.html

	Broadcast filtering: Snoop energy reduction in shared bus-based low-power MPSoCs
	Introduction
	Related work
	Target MPSoC platform
	Reducing snoop energy consumption by broadcast filtering
	Detecting a remote miss and filtering unnecessary broadcasts
	Broadcasting to remote caches selectively
	Cache coherency operations with broadcast filtering

	Experiments
	Experimental setup
	The utilization of cache and bus
	Energy and performance

	Energy efficiency analysis
	Baseline average snoop energy model
	Average snoop energy model for broadcast filtering
	The contribution of the bus line to snoop energy
	Average snoop energy reduction with broadcast filtering

	Conclusions and future work
	Acknowledgement
	References

