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ABSTRACT
Software pipelining is widely used as a compiler optimization tech-
nique to achieve high performance in machines that exploit instruc-
tion-level parallelism. However, surprisingly, there have been few
theoretical or empirical results on optimal software pipelining of
loops with control flows. In this paper, we present three new con-
tributions for this under-investigated problem. First, we propose a
necessary and sufficient condition for a loop with control flows to
have an optimally software-pipelined program. We also present a
decision procedure to compute the condition. Second, we present
two software pipelining algorithms. The first algorithm computes
an optimal solution for every loop satisfying the condition, but may
run in exponential time. The second algorithm computes optimal
solutions efficiently for most (but not all) loops satisfying the con-
dition. Third, we present experimental results which strongly in-
dicate that achieving the optimality in the software-pipelined pro-
grams is a viable goal in practice with realistic hardware support.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compilers

General Terms
Algorithms, Languages

Keywords
Software pipelining, instruction-level parallelism, VLIW

1. INTRODUCTION
Software pipelining refers to a class of fine-grain loop paral-

lelization algorithms which impose no scheduling barrier such as
basic block or loop iteration boundaries, thus achieving the effect of
fine-grain parallelization with full loop unrolling. Software pipelin-
ing computes a static parallel schedule for machines that exploit
instruction-level parallelism (ILP) such as superscalar or VLIW
processors.

While software pipelining has been used as a major compiler op-
timization technique to achieve high performance for ILP proces-
sors, surprisingly, there have been few theoretical results, let alone
practical ones, known on the optimality issue of software pipelined
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programs. One of the best known open problems is the time opti-
mal software pipelining problem, which can be stated as follows:
given a loop (with or without control flows), 1) decide if the loop
has its equivalent time optimal program or not and 2) find a time
optimal parallel program if the loop has one, assuming that suffi-
cient resources are available.A parallel program is said to be time
optimal if every execution pathp of the program runs in its mini-
mum execution time determined by the length of the longest data
dependence chain inp [19].

For straight-line loops (without control flows), the time optimal
software pipelining problem is well understood and a time opti-
mal program can be computed in polynomial time [1]. This is be-
cause the process of software pipelining can be easily formalized
thanks to the strong periodicity of such loops (e.g., a periodic exe-
cution model and dependence patterns). For example, the problem
of software pipelining of such loops can be modeled by a simple
linear formulation [8] and several software pipelining algorithms
have been developed using this model.

On the other hand, for loops with control flows, software pipelin-
ing algorithms cannot exploit the loop periodicity because execu-
tion paths of these loops cannot be modeled by periodic constraints.
This irregularity results in numerous complications and makes the
formalization very difficult. As a consequence, time optimal soft-
ware pipelining of such loops has been under-investigated, leaving
most of theoretical questions unanswered. In this paper, we focus
on loops with control flows.

1.1 Previous Work
Until recently, only two results for loops with control flows were

published [19, 20]. The work by Uht [20] proved that the resource
requirement necessary for the time optimal execution may increase
exponentially for some loops with control flows. The work by
Schwiegelshohnet al. [19], which is the best known and most
significant result on time optimal programs, simply illustrated that
certain loops with control flows do not have their equivalent time
optimal programs. Since the work by Schwiegelshohnet al. was
published, no further research results on the problem have been re-
ported for about a decade, possibly having been discouraged by the
pessimistic result.

Instead, most researchers focused on developingbettersoftware
pipelining algorithms. To overcome the difficulty of handling con-
trol flows, many developed algorithms imposed unnecessarily strict
constraints on possible transformations of software pipelining. For
example, several software pipelining algorithms first apply trans-
formations that effectively remove control flows before scheduling
[4, 12], and recover control flows after scheduling [21]. Although
practical, these extra transformations prohibit considerable amount
of code motions, limiting the scheduling space exploration signifi-
cantly.
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Figure 1: Loop classification based on time optimality

Recently, we have proposed a novel formalization of software
pipelining of loops with control flows and, based on the formaliza-
tion, suggested a necessary condition for loops with control flows
to have equivalent time optimal programs [22]. Our previous work
can be considered as a generalization of Schwiegelshohnet al.’s re-
sult, significantly expanding a set of loops that cannot have equiv-
alent time optimal programs.

1.2 Contributions
In this paper, we are to identify exactly what can and cannot be

achieved by software pipelining and to empirically evaluate how
often software pipelining can generate optimal solutions in real ap-
plications. Our contributions can be divided into two parts, theo-
retical ones and practical ones.

For the theoretical contributions, we further extend our previous
results and give answers to the following two fundamental open
problems on time optimal software pipelining:

Question 1: Is there a decision procedure that determines if a
loop has its equivalent time optimal program or not?

Question 2: For the loops that have the equivalent time optimal
programs, is there an algorithm that computes time optimal pro-
grams for such loops?

For loops with control flows, these two questions have not been
adequately formulated, let alone being solved, until we proposed
a new formalization of software pipelining in [22]. In this paper,
we call the necessary and sufficient condition for a loop to have its
equivalent time optimal program as theTime Optimality Condition.

As an answer to the first question, we present the Time Optimal-
ity Condition and describe how to compute the Time Optimality
Condition. For the second question, we present a software pipelin-
ing algorithm that computes time optimal programs for every loop
satisfying the Time Optimality Condition.

Figure 1 summarizes our theoretical contributions graphically.
The enclosing ellipse represents the setU of all the reducible in-
nermost loops and the bold curve represents the boundary between
two sets of loops, one set whose loops have equivalent time optimal
programs (i.e., the right region) and the other set whose loops do
not have time optimal programs (i.e., the left region). The small
circle represents the set of loops shown to have no time optimal
solutions by Schwiegelshohnet al. [19] while the region closed by
the dashed curve represents the set of loops shown to have no time
optimal solutions by our previous work [22]. The work described in
this paper classifies all the loops inU into one of two sets, proves
that the classification is decidable (i.e., each set is recursive) and
shows that there exists an algorithm for computing time optimal
solutions for eligible loops.

The optimal software pipelining algorithm, which is given to an-
swer Question 2 above, enables us to complete the theoretical treat-
ment on time optimal software pipelining. However, the algorithm

r0 := r1
cc0 := (r1==0)
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if cc0
if cc1
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L3:

store(r2,r1)
store(r2,r0)

Figure 2: A tree VLIW instruction

is of little practical importance; it suffers from excessive overhead
in computation time and code expansion. In the worst case, the
overhead is inherently unavoidable [20]. As a practical alternative,
we present a more realistic optimal software pipelining algorithm
which runs faster with less code expansion and less hardware re-
quirement. Unlike the former optimal algorithm, this algorithm
guarantees optimal solutions when loops satisfy a stronger version
of the Time Optimality Condition. According to our experimental
observations, however, most loops satisfying the Time Optimality
Condition satisfy the stronger version as well, which strongly in-
dicates the practical significance of the proposed realistic software
pipelining algorithm. (Note that this paper focuses on the theoreti-
cal results and that the experimental results are provided to empha-
size the importance of the theoretical results in practice.)

The rest of the paper is organized as follows. We explain the ma-
chine model assumptions, program representation and dependence
representation in Section 2. In Section 3, we present the Time Opti-
mality Condition and describe how to compute it. In Sections 4 and
5, we present two optimal software pipelining algorithms, respec-
tively. Experimental results are given in Section 6 and we conclude
with a summary and directions for future work in Section 7.

2. PRELIMINARIES

2.1 Architectural Requirements
In order that the time optimality is well defined for loops with

control flows, some architectural assumptions are necessary. In this
paper, we assume the following architectural features for the target
machine model: First, the machine can execute multiple branch op-
erations (i.e.,multiway branching[14]) as well as data operations
concurrently. Second, it has an execution mechanism to commit
operations depending on the outcome of branching (i.e,conditional
execution[6]). The former assumption is needed because if multi-
ple branch operations have to be executed sequentially, time opti-
mal execution cannot be defined. The latter one is also indispens-
able for time optimal execution, since it enables to avoid output
dependence of store operations which belong to different execution
paths of a parallel instruction as pointed out by Aikenet al. [3].

As a specific example architecture, we use the tree VLIW archi-
tecture model [15], which satisfies the architectural requirements
described above. In this architecture, a parallel VLIW instruction,
called a tree instruction, is represented by a binary decision tree as
shown in Figure 2. A tree instruction can execute simultaneously
ALU and memory operations as well as branch operations. The
branch unit of the tree VLIW architecture can decide the branch
target in a single cycle [14]. An operation is committed only if it
lies in the execution path determined by the branch unit [6].

2.2 Program Representation
We represent a sequential programPs by a control flow graph

(CFG) whose nodes are primitive machine operations. If the se-
quential programPs is parallelized by a compiler, aparallel tree
VLIW programPtree is generated. WhilePtree is the final output
from the parallelizing compiler for our target architecture, we rep-
resent the parallel program in theextended sequential representa-
tion for the description purpose.
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Figure 3: (a) A sequential program, (b) a parallel tree VLIW
program, and (c) a parallel program in the extended sequential
representation

Under the extended sequential representation, both sequential
programs and parallel programs are described using the same nota-
tions and definitions used for the sequential programs. Compared
to sequential programs, parallel programs include the additional
information on operation grouping. Figure 3. (a) shows an input
sequential programPs and Figure 3. (b) shows its corresponding
parallel tree VLIW programPtree. Using the extended sequential
representation,Ptree is represented by Figure 3. (c). The parallel
program shown in Figure 3. (c) is based on a sequential representa-
tion except that it has the operation grouping information indicated
by shaded regions. A group of operations in the shaded area indi-
cates independently executable operations and is called aparallel
group. A parallel group corresponds to a tree VLIW instruction and
can be easily converted into the tree VLIW instruction with some
local transformation on copy operations, and vice versa [15].

2.3 Basic Terminology
A program1 is represented as a triple〈G = (N,E) , O , δ 〉. (This

representation is due to Aikenet al. [3].) The body of the program
is a CFGG which consists of a set of nodesN and a set of directed
edgesE. Nodes inN are categorized intoassignmentnodes that
read and write registers or global memory,branchnodes that affect
the flow of control, and special nodes,start andexit nodes. The
execution begins at the start node and the execution ends at the exit
nodes. E represents the possible transitions between the nodes.
Except for branch nodes and exit nodes, all the nodes have a single
outgoing edge. Each branch node has two outgoing edges while
exit nodes have no outgoing edge.

O is a set of operations that are associated with nodes inN. The
operation associated withn ∈ N is denoted byop(n). More pre-
cisely, op(n) represents opcode and constant fields only; register
fields are not included inop(n).2 Without loss of generality, ev-
ery operation is assumed to write to a single register. We denote
by regW(n) the register to whichn writes and byregsR(n) a set of
registers from whichn reads .

A configuration is a pair〈n,s〉 wheren is a node inN ands is
a store (i.e., a snapshot of the contents of registers and memory
locations). The transition functionδ, which maps configurations
into configurations, determines the complete flow of control start-
ing from the initial store. Letn0 be the start node ands0 an initial
store. Then, the sequence of configurations during an execution
is 〈〈n0,s0〉, · · · ,〈ni ,si〉, · · · ,〈nt ,st〉〉 where〈ni+1,si+1〉= δ(〈ni ,si〉)
for 0≤ i < t.

A path p of G is a sequence〈n1, · · · ,nk〉 of nodes inN such
that(ni ,ni+1) ∈ E for all 1≤ i < k. For a given pathp, the length
of p is the number of nodes inp and denoted by|p|. The i-th
(1≤ i ≤ |p|) node ofp is addressed byp[i]. A pathq is said to be
a subpathof p, written qv p, if there existsj (0≤ j ≤ |p| − |q|)
1Since a parallel program is represented by the extended sequential representation, the
notations and definitions explained in Section 2.3 and 2.4 apply to parallel programs
as well as sequential programs.
2For two programs to be equivalent, only the dependence patterns of these are needed
to be identical but not register allocation patterns. For this reason, register fields are
not included inop(n).

such thatq[i] = p[i + j] for all 1≤ i ≤ |q|. For a pathp andi, j (1≤
i ≤ j ≤ |p|), p[i, j] represents the subpath induced by the sequence
of nodes fromp[i] up to p[ j]. Given pathsp1 = 〈n1,n2, · · · ,nk〉
andp2 = 〈nk,nk+1, · · · ,nl 〉, p1 ◦ p2 = 〈n1,n2, · · · ,nk,nk+1, · · · ,nl 〉
denotes the concatenated path betweenp1 andp2. A pathp forms a
cycle if p[1] = p[|p|] and|p|> 1. For a given cyclec, ck denotes the
path constructed by concatenatingc with itself k times. A path from
the start node to one of exit nodes is called anexecution pathand
distinguished by the superscript ‘e’ (e.g.,pe). An execution path
of parallel program is further distinguished by the extra superscript
‘sp’ (e.g.,pe,sp).

It may incur some confusion to define execution paths for a par-
allel program because the execution of the parallel program con-
sists of transitions among parallel instructions each of which con-
sists of several nodes. With the conditional execution mechanism
described in Section 2.1, however, we can focus on the unique com-
mitted path of each parallel instruction while pruning uncommitted
paths. Then, like a sequential program, the execution of a parallel
program flows along a single thread of control and corresponds to
a path rather than a tree.

Some attributes such as redundancy and dependence should be
defined in a flow-sensitive manner because they are affected by
control flows. Flow-sensitive information can be represented by as-
sociating the past and the future control flow with each node. Given
a noden and pathsp1 andp2, the triple〈n, p1, p2〉 is called anode
instanceif n= p1[|p1|] = p2[1]. That is, a node instance〈n, p1, p2〉
defines the execution context in whichn appears inp1 ◦ p2. In or-
der to distinguish the node instance from the node itself, we use
a boldface symbol liken for the former. The node component of
a node instancen is addressed bynode(n). A trace of a pathp,
written t(p), is a sequence〈n1,n2, · · · ,n|p|〉 of node instances such
thatni = 〈p[i], p[1, i], p[i, |p|]〉 for all 1≤ i ≤ |p|. The i-th compo-
nent oft(p) is addressed byt(p)[i] and the index of a node instance
n in the tracet(p) is represented bypos(n). For a node instance
n = 〈n, p1, p2〉 in an execution pathpe in a sequential program, an
attributeit (n) is defined as the number of iterations whichp1 spans
over.

From the formalization of software pipelining in [22], for an ex-
ecution pathpe,sp in a parallel program, there is a unique execution
pathα(pe,sp) in the sequential loop that corresponds tope,sp. Fur-
thermore, for a node instancen in pe,sp, there is a unique node
instanceβ(n) in α(pe,sp) that corresponds ton.

Some of node instances in parallel programs are actually used to
affect the control flow or the final store while the others are not. The
former ones are said to beeffectiveand the latter onesredundant.
A node is said to benon-speculativeif all of its node instances are
effective. Otherwise it is said to bespeculative[22].

2.4 Dependence Model
With the sound assumption of regular memory dependences, true

dependence information can be easily represented for straight line
loops thanks to the periodicity of dependence patterns. For loops
with control flows, however, this is not the case and the dependence
relationship between two nodes relies on the control flow between
them. In order to model this type of dependence, we associate path
information with the dependence relation. The dependences carried
by registers are defined as follows.

DEFINITION 1. For nodesn1 and n2 and a pathp such that
p[1] = n1, p[|p|] = n2, n2 is said to be dependent onn1 along p,
written n1 ≺p n2 , if

regW(n1) ∈ regsR(n2) and

regW(pe[i])) 6= regW(n1) for all 1 < i < |p| .



Furthermore, we can extend the dependence relation on node in-
stances as follows:

DEFINITION 2. Given a pathpandi, j (1≤ i < j ≤ |p|), t(pe)[ j]
is said to be dependent ont(pe)[i], written t(pe)[i] ≺ t(pe)[ j] , if
p[i] ≺p[i, j] p[ j].

The dependence relation between two node instances with mem-
ory operations may be irregular even for straight line loops. Exist-
ing software pipelining techniques rely on conservative dependence
analysis techniques, in which the dependence relationship between
two node instances is determined by considering the iteration dif-
ference only and is usually represented bydata dependence graphs
[11] or its extensions [7, 18]. In our work, we assume a similar
memory dependence relation, in which the dependence relation be-
tween two noden1 andn2 alongp (p[1] = n1, p[|p|] = n2) rely only
on the number of iterations thatp spans.

Assuming regular memory dependences, straight-line loops can
be transformed so that every memory dependence does not span
more than an iteration by unrolling sufficient times. For loops with
control flows, we assumed that they are unrolled sufficiently so that
memory dependences do not span more than an iteration to simplify
notations and the algorithm. This seems to be too conservative but
we believe that the claims in this paper can be shown to be still valid
in other memory dependence models with slight modifications to
the proofs.

Now we are to define adependence chainfor sequential and the
parallel programs.

DEFINITION 3. Given a pathp, a dependence chaind in p
is a sequence of node instances〈n1,n2, · · · ,nk〉 in t(p) such that
ni ≺ ni+1 for all 1≤ i < k. A dependence chain is said to be criti-
cal if it is the longest one inp. Thei-th component of a dependence
chaind is addressed byd[i] and the number of components ind is
denoted by|d|.

3. TIME OPTIMALITY CONDITION
In this section, we present the Time Optimality Condition and

describe how to compute it. Before presenting the Time Optimality
Condition, we first formally definetime optimality.

3.1 Time Optimality
For each execution pathpe,sp in a software pipelined program

LSP, the execution time of each node instancen in t(pe,sp) can be
counted from the corresponding parallel control flow graph and is
denoted byτ(n). Time optimality of the parallel programLSP is
defined as follows [19, 3, 22]:

DEFINITION 4. LSP is time optimal if, for every execution path
pe,sp in LSP, τ(t(pe,sp)[|pe,sp|]) is the length of the longest depen-
dence chain in the execution pathpe.

The definition is equivalent to saying that every execution path
in LSP runs in the shortest possible time subject to the true de-
pendences. Note that the longest dependence chain inpe is used
instead of that inpe,sp because the latter may contain speculative
nodes which should not be considered for the definition of time op-
timality. Throughout the remainder of the paper, the length of the
longest dependence chain in a pathp is denoted by‖p‖.
3.2 Time Optimality Condition

In Sections 3.3 and 4, we show that a loopL has an equivalent
time optimal program if and only if the following condition is sat-
isfied:

Condition I (Time Optimality Condition).

(a) There exists a constantB1 > 0 such that for any pathp
in L ,

‖p[1, i]‖+‖p[i +1, |p|]‖ ≤ ‖p‖+B1

for all 1≤ i < |p| and

(b) there exist constantsB2,B3 > 0 such that for any path
p in L , |p| ≤ B2 · ‖p‖+B3 .

Informally, the Time Optimality Condition requires that every
operation be moved within abounded rangeto yield the time opti-
mal execution for every execution path. Condition I.(a) states that
for any pathp in L , if the pathp is splitted into two subpaths, the
sum of the lengths of the longest dependence chains in each sub-
path can exceed the length of the longest dependence chain inp at
most byB1.

Condition I.(b) is rather trivial. It states that for any pathp in
L , |p| is bounded by a linear function of‖p‖. In other words, ifL
has an equivalent time optimal program, there exists a fairly long
dependence chain for every pathp in L .

THEOREM 5. Condition I is a necessary and sufficient condi-
tion for L to have an equivalent time optimal program.

Section 3.3 gives a proof on the necessary part of Theorem 5.
We have already proved a condition, which is slightly weaker than
Condition I.(a), is a necessary condition in our previous work [22].
In Section 3.3, we prove that the previously proved condition im-
plies Condition I.(a). We prove the sufficient part of Theorem 5
by construction, i.e., the proof for the sufficient part follows from
the optimal software pipelining algorithm presented in Section 4.
Condition I is intuitive and useful in deriving the theorems, but it
is not obvious how to determine if a loop satisfies Condition I or
not. If Condition I is to be directly computed from the expressions,
every execution path should be enumerated, which is impossible.
So we present another condition in Section 3.4 which is equivalent
to Condition I and can be computed more easily.

3.3 Necessary Part of Theorem 5
If a loop L has an equivalent time optimal programLSP but it

does not satisfy Condition I,LSP must exhibit some anomaly. If
Condition I.(a) is not satisfied, an operationn1 in LSP should be
executed infinitely earlier thann2 that precedesn1 in L . In case that
Condition I.(b) is not satisfied, infinitely many operations should be
executed at the same time slot. We show that noclosed-formpar-
allel program satisfies this anomalous requirement. In our previous
work [22], we have proved the following condition is a necessary
condition, which is slightly weaker than Condition I.(a):

Necessary Condition I.

There exists a constantB> 0 such that for any execution path
pe in L ,

‖pe[1, i]‖+‖pe[ j, |pe|]‖ ≤ ‖pe‖+B

for all 1≤ i < j ≤ |pe|.

THEOREM 6. Condition I is a necessary condition forL to
have an equivalent time optimal program.

Proof. To prove the above condition implies Condition I.(a), we
first substitutei + 1 for j in the above condition. Then it remains
to show that the inequality also holds for every path, not only for
every execution path. For a pathp, let p1 be a simple path from the
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Figure 4: Dependence cycles

loop header top[1] and letp2 be a simple path fromp[|p|] to an
exit of L . Thenp′ = p1 ◦ p◦ p2 is an execution path ofL , and the
above inequality holds forp′. Therefore, we have

‖p[1, i]‖+‖p[i +1, |p|]‖
≤ ‖p′[1, i + |p1|−1]‖+‖p′[i + |p1|, |p′|]‖
≤ ‖p′‖+B≤ ‖p‖+‖p1‖+‖p2‖+B

≤ ‖p‖+B+2 ·L
whereL is the length of the longest simple path inL .

SupposeL has an equivalent time optimal programLSP. Let
B2 be the maximum height among tree parallel instructions ofLSP

and letB3 be 2 ·L ·B2. For a pathp, we definep′ to be the same
path used for the proof of Condition I.(a). From the fact thatLSP is
time optimal and the definition ofB2, |p′| is bounded byB2 · ‖p′‖.
Therefore, we have

|p| ≤ |p′| ≤ B2 · ‖p′‖ ≤ B2 · (‖p‖+2 ·L) = B2 · ‖p‖+B3 . 2

3.4 Computing Time Optimality Condition
In this section, we explain how to compute the Time Optimal-

ity Condition. Directly computing the Time Optimality Condition
requires that the infinitely many execution paths be enumerated,
which is not possible. So, we derive another equivalent condition
that can be checked in a finite number of steps.

Before presenting the new condition, we define a new term, a
dependence cycle. For straight-line loops the concept of the de-
pendence cycle is well known, but for loops with control flows,
the dependence cycle has not been defined formally. We define the
dependence cycle for each cyclic path inL as follows.

DEFINITION 7. Given a cyclec (may not be simple) inL , d
is a dependence cycle with respect toc if there existl ≥ 1 and
1≤ i1 < i2 < · · ·< i|d| ≤ l · (|c|−1) such that

i1 ≤ |c|−1 ∧ i|d| = i1 +(l −1) · (|c|−1) and

d[ j] = cl [i j ] for 1≤ j ≤ |d| and

d[ j]≺cl [i j ,i j+1] d[ j +1] for 1≤ j < |d| .

Figure 4 shows an example of dependence cycles. We associate
several attributes with the dependence cycle, which are defined be-
low.

DEFINITION 8. For a dependence cycled, the sum of latencies
of d[1],d[2], · · · ,d[|d| − 1] is denoted byδ(d). span(d) denotesl
in Definition 7 andslope(d) is defined to beδ(d)/span(d). Fur-
ther,DC(c) represents the set of dependence cycles associated with
c and DCcr(c) represents the subset ofDC(c) that consists of all
the dependence cycles with the maximum slope inDC(c). A depen-
dence cycle inDCcr(c) is called a critical dependence cycle and its
slope value is denoted bymax slope(c).

There are a finite number of simple dependence cycles inDCcr(c)
as well as inDC(c) and these dependence cycles can be enumer-
ated using Johnson’s algorithm [9]. It is also useful to define de-
pendence relation on dependence cycles. Informally,d2 is said to
be dependent ond1 if there is a dependence chain from a node in
d1 to one ind2.

DEFINITION 9. Given two cyclesc1 andc2 in L such thatc1[i1]
= c2[i2], d2 is said to be dependent ond1 (d1 ∈ DC(c1), d2 ∈
DC(c2)) , writtend1 ≺C d2 , if

∃ j1 < j2, d1[ j1]≺p d2[ j2] for somep s.t.

pv cspan(d1)+1
1 ◦c1[1, i1]◦c2[i2, |c2|]◦cspan(d2)+1

2 .

If d1[k1] = d2[k2] for somek1 and k2, d1 and d2 are said to be
joined, writtend1 1 d2.3

Let C = {c1,c2, · · ·} represent the set of all the simple cycles in
L starting from the loop header node and letCk (1≤ k≤ |C|) and
C∗ be defined as follows:

Ck = {ci1 ◦ci2 ◦ · · · ◦cik | ∀ j 6= l , i j 6= i l ∧ ∀ j > 1, i1 < i j}
C∗ = ∪|C|k=1 Ck .

Then, the following condition is equivalent to Condition I.

Condition II.

(a) For any cyclec in C∗, DC(c) is not empty and

(b) For each cycleci (1≤ i ≤ |C∗|) in C∗, there
exists a dependence cycledi ∈ DCcr(ci) such that
d j ≺C dk for all 1≤ j < k≤ |C∗|

It is possible to check if a loop satisfies the Condition II in a finite
number of steps because only finite number of cycles need to be
enumerated.

Let us consider the example loop shown in Figure 4. There are
two simple cyclesc1 = 〈1,2,3,4,5,6,10,1〉 andc2 = 〈1,7,8,9,10,1〉
in the loop. So,C = {c1,c2} andC∗ = C1∪C2 = {c1,c2,}∪{c1◦
c2(= c3)}= {c1,c2,c3}. We can easily verify that Condition II.(a)
is satisfied but Condition II.(b) is not satisfied;d2 = 〈3,5,4,3〉 and
d3 = 〈7,7〉 are the unique elements inDCcr(c2) andDCcr(c3), re-
spectively, butd2 is not dependent ond3.

LEMMA 10. If a given loopL satisfies Condition I, it also sat-
isfies Condition II.

Proof. (a) is obviously satisfied. Suppose (b) is not satisfied
for somec1 andc2. For d1 ∈ DCcr(c1) , selectd2 ∈ DCcr(c2) and
d3 ∈ DC(c1) such thatd3 ≺C d2 andslope(d3) is maximum. Note
that everyd2 ∈DCcr(c2) may not be dependent on any dependence
cycles inDC(c1) and thend3 is set to be an imaginary null cycle.

Let p(i) = cai
1 ◦cabi

2 ◦ pf wherepf denotes any simple path from
the unique loop header node to one exit anda,b are defined as
follows.

a =
{

LCM(span(d1),span(d2)) if d3 is null ,
LCM(span(d1),span(d2),span(d3)) otherwise .

b = dslope(d1)/(slope(d2)− r)e
wherer denotes the second largest slope inDC(c2).

It is evident that one of the longest dependence chain inp(i) can
be represented as

dbai/span(d4)c−1
4 ◦ pD

1 ◦dbabi/span(d5)c−1
5 ◦ pD

2

3Note that the1 relation is symmetric.



for some d4 ∈ DC(c1), d5 ∈ DC(c2), and dependence chainspD
1

andpD
2 . Therefore, we have

‖p(i)‖ ≤ δ(d4) · (ai/span(d4))+δ(d5) · (abi/span(d5))+α
= slope(d4) ·ai+slope(d5) ·abi+α

for some constantα.
Case 1 :d5 /∈ DCcr(c2).
slope(d5)≤ r and‖p(i)‖ ≤ slope(d1) ·ai+ r ·abi+α2. From

slope(d1) ·a+ r ·ab−slope(d3) ·a−slope(d2) ·ab≤
a · (slope(d1)+b · (r−slope(d2)))≤
a · (slope(d1)−slope(d1)) = 0 ,

we have

‖p(i)‖ ≤ slope(d3) ·ai+slope(d2) ·abi+α .

Case 2 :d5 ∈ DCcr(c2).
From the definition ofd3, slope(d4)≤ slope(d3). So we have

‖pe
1(i)‖ ≤ slope(d3) ·ai+slope(d2) ·abi+α .

From the assumption,d3 /∈DCcr(c1) andslope(d3) < slope(d1).
But we have

‖p1(i)‖ ≥ slope(d1) ·ai

‖p2(i)‖ ≥ slope(d2) ·abi .

wherep1(i) = p(i)[1,(|c|−1) ·ai] andp2(i) = p(i)[(|c|−1) ·ai+
1,‖p(i)‖]. So,

‖p1(i)‖+‖p2(i)‖−‖p(i)‖ ≤ (slope(d1)−slope(d3)) · i−α .

Therefore, Condition I is not satisfied, a contradiction.2

Before showing that the inverse proposition also holds, we intro-
duce a new representation for cycles. As will be shown in Lemma
11, it is useful to represent a cycle by a composition of given subcy-
cles. For example, consider a cyclec5 shown in Figure 5.(a), given
the subcyclesc1,c2,c3 andc4.The cyclec5 can be represented by a
tree shown in Figure 5.(b).

Given a cyclec, the tree representation ofc, written byCT(c),
can be found by the algorithm in [23]. Each node inCT(c) repre-
sents a cycle inC∗. Conversely, the sequence of a cycle represented
by a tree can be found by the algorithm in [23]. For the sake of con-
venience, we use the following notation for cycles. Given a cyclec,
c( j) represents the same cycle asc but the sequence is shifted such
thatc( j)[i] = c[(i + j−1mod|c|)+1] for 1≤ i ≤ |c|.

LEMMA 11. For any cyclec in L such thatc /∈ C∗,

max slope(c) = ∑ci∈CT(c)max slope(ci) .

Proof. For a critical dependence cycled in c, we decomposed
into critical dependence cycles inCT(c). From Condition II.(b),d
can be written asd j ◦dk, (d j ∈ DCcr(c j )) wherec j is a leaf node
in CT(c). Then it is obvious thatmax slope(c) = max slope(c j )+
max slope(c′) wherec(l) = c j ◦c′(l ′) for somel andi′. By apply-
ing the same argument toc′ recursively, we havemax slope(c) =
∑ci∈CT(c)max slope(ci) . 2

For |C||C| unknownsρi1,i2,··· ,i|C| (1 ≤ i1, i2, · · · , i|C| ≤ |C|), we

solve the following linear system of|C∗| equations in the|C||C|
unknowns.

3

c  (1) [1,6]1

2

c  (0) [4,4]4

1 2

3

5c   =  < 1 , 2 , 2 , 3 , 3 , 2 , 1 >

c   =  < 2 , 1 , 2 >1

3c   =  < 2 , 3 , 2 >
c   =  < 2 , 2 >2

c   =  < 3 , 3 >4

c  (0) [3,5]c  (0) [2,2]

(a) (b)

Figure 5: A new representation for a cycle: (a) A graph with
cycles and (b) a tree representation ofc5

For each cyclec = c j1 ◦c j2 ◦ · · · ◦c jk ∈ C∗ ,
k−1

∑
h=0

ρ j(1+h−1 mod k)+1 , j(2+h−1 mod k)+1, ··· , j(|C|+h−1 mod k)+1

= max slope(c) .

By using a simple argument based on linear algebraic theorems,
we can easily show that the linear system has a solution such that
everyρi1,i2,··· ,i|C| is positive. (Actually, the solution is not unique
and we select any one of them.) Givenρi1,i2,··· ,i|C| , we can char-
acterize the lengths of critical dependence chains. LetM1 denote
the length of the longest dependence chain in cyclesci1 ◦ci2 ◦ · · · ◦
ci|C|−1 (1≤ i1, i2, · · · , i|C| ≤ |C|) and letM2 denote the length of the
longest dependence chain in simple paths inL .

LEMMA 12. Given a pathp = ps◦ ci1 ◦ ci2 ◦ · · · ◦ cik ◦ pf in L
wherek≥ |C| , ci j ∈ |C| for all 1≤ j ≤ k and bothps and pf are
simple paths, letM3 be

∑k−|C|
h=0 ρi1+h , i2+h , ··· , i|C|+h .

Then, M3 ≤ ‖p‖ ≤M1 +2·M2 +M3 .

Proof. Let c′ = ci|C| ◦ ci|C|+1 ◦ · · · ◦ cik . Thenmax slope(c′) is
equal toM3 by Lemma 11. Therefore, we have

‖p‖ ≤ ‖ps‖+‖ci1 ◦ci2 ◦ · · · ◦ci|C|−1‖
+ ‖ci|C| ◦ci|C|+1 ◦ · · · ◦cik‖+‖pf‖

≤ M2 +M1 +M3 +M2 = M1 +2 ·M2 +M3 .

Similarly,

‖p‖ ≥ ‖ci|C| ◦ci|C|+1 ◦ · · · ◦cik‖= M3 . 2

From Lemma 12, we can compute the constants.

LEMMA 13. If B1 is selected as2·M1 +4·M2, Condition I.(a)
is satisfied.

Proof. For a pathp = ps◦ ci1 ◦ ci2 ◦ · · · ◦ cik ◦ pf in L we split p
into two subpathsp1 andp2. Thanp1 andp2 can be written as

p1 = ps1 ◦ci1 ◦ · · · ◦ci l ◦ pf1 and

p2 = ps2 ◦ci l+2 ◦ · · · ◦cik ◦ pf2 .

By Lemma 12 we have

‖p1‖+‖p2‖−‖p‖ ≤
M1 +2 ·M2 +∑l−|C|

h=0 ρi1+h , i2+h , ··· , i|C|+h +

M1 +2 ·M2 +∑k−|C|
h=l+1 ρi1+h , i2+h , ··· , i|C|+h −

∑k−|C|
h=0 ρi1+h , i2+h , ··· , i|C|+h

≤ 2 ·M1 +4 ·M2 . 2



LEMMA 14. If B2 andB3 are selected as

B2 = max{ |c j |
ρi1,i2,··· ,i|C|

| c j ∈ |C| , 1≤ i1, i2, · · · , i|C| ≤ |C|}

B3 = 2·LC

whereLC is the length of the longest simple cycle inL , Condition
I.(b) is satisfied.

Proof. For a pathp = ps◦ci1 ◦ci2 ◦ · · · ◦cik ◦ pf in L ,

|p| ≤ ∑k
h=1(|cih|−1)+2·LC

≤ ∑k−|C|
h=0 (

|cih|
ρi1+h , i2+h , ··· , i|C|+h

·ρi1+h , i2+h , ··· , i|C|+h)+B3−k

≤ B2 ·∑k−|C|
h=0 ρi1+h , i2+h , ··· , i|C|+h +B3

≤ B2 · ‖p‖+B3 . (By Lemma 12.) 2

Note that all the constantsB1,B2 andB3 can be computed in finite
time.

LEMMA 15. If a given loopL satisfies Condition II, it also sat-
isfies Condition I.

Proof. Directly from Lemmas 13 and 14.2

THEOREM 16. Condition I is decidable.

Proof. From Lemmas 10 and 15, Condition I is equivalent to
Condition II, whose decision procedure is obvious from the given
expression.2

4. TIME OPTIMAL SOFTWARE PIPELIN-
ING ALGORITHM

In this section, we present a software pipelining algorithm that
computes a time optimal parallel program for every loops satisfy-
ing Condition I. (The result in this section also serves as the proof
for the sufficient part of Theorem 5.) The time-optimal software
pipelining algorithm is mostly based on the algorithm by Aikenet
al. [3], the latest version ofPerfect Pipelining[2].

We first present the software pipelining algorithm by explaining
our modifications to the Aiken’s algorithm. Then, we prove that
the output of the algorithm is a time optimal parallel program if the
input loop satisfies Condition I.

4.1 The Algorithm
In this section, without loss of generality, we assume that every

operation takes1 cycle to execute. An operation that takesk cycles
can be transformed into a chaining ofk unit-time delay pseudo
operations, which can be safely eliminated after scheduling. We
assume that an arbitrary but fixed loopL satisfies Condition I.

Before scheduling, a sequential loop is unrolled infinite times to
form an infinite (but recursive) CFG and then the infinite CFG is
incrementally compacted by semantic-preserving transformations
of Percolation Scheduling [16]. During scheduling, the algorithm
finds equivalent nodesn andn′ in the infinite CFG, deletes the infi-
nite subgraph belown′, and adds backedges from the predecessors
of n′ to n. In this way, the infinite CFG eventually becomes a finite
parallel graph.

The Aiken’s original algorithm does not handle false dependences
appropriately [3]. An operation node which is blocked by the false
dependences but not by true dependences may not be available for
scheduling. To compute a time optimal solution, the false depen-
dences should be overcome so that the parallel schedule is con-
strained by the true dependences only. We modify the Aiken’s orig-
inal algorithm so that the infinite CFG is put into the static single

Figure 6: Scheduling above aφ-function at the join point

assignment (SSA) form [5], the SSA form is software pipelined into
a finite parallel graph, and then the finite parallel graph is translated
back out of the SSA form.

By translating into the SSA form, the false dependences are com-
pletely eliminated because every variables are defined by exactly
one operation. Moreover, extraφ-functions do not incur additional
true dependences because the operations that use the target regis-
ters of theφ-functions can always be combined with theφ-functions
and be moved above theφ-functions. For example, in Figure 6,
y=x3+1 is to be scheduled abovex3=φ(x1,x2). The operation
y=x3+1 is combined withx3=φ(x1,x2) and split intoy=x1+1 and
y=x2+1. Furthermore, to maintain the SSA form even after code
motion above the join point, a newφ-function is introduced at the
join point. In Figure 6, twoy definitions are replaced by they1 and
y2 definitions and a newφ-function,y=φ(y1,y2), is added.

If an operation is not true-dependent on any operations (except
φ-functions) in a path, it can always be moved along the path even
if it is not free from the false dependences in the original pro-
gram. When translating a software pipelined program out of the
SSA form, some copies may remain, but all the unremovable copy
operations can be executed concurrently with any operations that
are dependent on the copy operation.

Before describing the algorithm, we define some additional no-
tations. LetL∞ represent the infinite recursive graph obtained by
unrolling L infinite times. For a noden in L , let ni denote the cor-
responding node in thei-th unrolled copy ofL in L∞. For a setX
of nodes inL∞, X j is defined to be the set{ni+ j |ni ∈ X}. Two sets
of nodes inL∞, X1 andX2, are said to beequivalentif X1 ≡ Xk

2 for
somek.

The proposed time-optimal software pipelining algorithm begins
with L∞, an acyclic infinite CFG, and successively transformsL∞

into LSP which consists of parallel groups. Figure 7 describes the
overall processing steps of the software pipelining algorithm. The
procedureSOFTWARE PIPELINE calls theSCHEDULE PARALLEL

GROUP procedure [23] to build a parallel group, and then to build
parallel groups for all the branches of that group, and so on. If at
any point the algorithm encounters the equivalent set of available
operation nodes in the second time, it uses the previously scheduled
parallel group.

Before building a parallel group, theCOMPUTE AVAILABLE

OPERATIONS procedure [23] is invoked to compute the set of all
available operation nodes that can move into the parallel group
without violating the true dependences.4 In our algorithm, every
operation node that is not blocked by the true dependences is al-
ways available for scheduling. As in [3], we impose additional
constraint on available operations: operations are available at most
k iterations. The predetermined constantk is called asliding win-
dow [3] and it guarantees the termination of thewhile loop in the
SOFTWARE PIPELINING procedure.

Once the available operation nodes are computed, theSCHED-
ULE PARALLEL GROUP procedure repeatedly moves the opera-

4This procedure is functionally equivalent to the same procedure in the Moon’s algo-
rithm [15].



procedure SOFTWARE PIPELINE ( L , windowsize)
L ′ := L∞

translateL ′ into the SSA form
f rontiers := {(nstart,nroot)}
scheduledbe f ore:= { }
back edges:= { }
while (∃ (np,ns) ∈ f rontiers)

f rontiers := f rontiers−{(np,ns)}
A := COMPUTE AVAILABLE OPERATIONS( L ′, ns, windowsize)
if (∃A′ ∈ scheduledbe f ore s.t.A′ andA are equivalent)

n′ := parallel group root[A′]
replace(np,ns) by (np,n′) and

delete unreachable nodes fromL ′

back edges:= back edges∪ {(np,n′)}
else

SCHEDULE PARALLEL GROUP( L ′, ns, A, f rontiers)
scheduledbe f ore:= scheduledbe f ore∪ {A}

end if
end while
foreach ((np,ns) ∈ back edges)

INSERT CONSISTENCY COPIES( L ′,np, ns)
end foreach
translateL ′ back out of the SSA form
remove dead operation nodes
return L ′

end function

Figure 7: The time-optimal software pipelining algorithm.

tion nodes to a group boundary [15].5 When a branch operation
node is moved, the group boundary is split into multiple bound-
aries. When moving up an operation node,φ-functions may be en-
countered. In this case, the scheduled operation node is combined
with theφ-functions as described in theCOMBINE SOURCE REG-
ISTERSprocedure [23]. The correctness of the algorithm is proved
in [23].

From the greediness of the algorithm, along with our modifica-
tions in the renaming framework (which has the effect of removing
the false dependences), the algorithm exhibits the following prop-
erty.

LEMMA 17. Let LSP be the result of the software pipelining
algorithm with the sliding window ofk iterations. Then for an ef-
fective node instancen in an execution pathpe,sp in LSP such that
τ(n) > 1, there must exist an effective node instancen′ in pe,sp such
that
τ(n′) = τ(n)−1 ∧ (β(n′)≺ β(n) ∨ it (β(n))− it (β(n′)) > k) .

Proof. Suppose that suchn′ does not exist and consider the
execution snapshot of theSOFTWARE PIPELINE procedure when
the set of available operations for the predecessor parallel group
Ω of β(n) is computed. For some path from the group boundary
of Ω to β(n), there cannot exist any node on whichβ(n) is true-
dependent. Otherwise, some node on whichβ(n) is true-dependent
should be scheduled intoΩ so thatβ(n) can be scheduled into the
successor parallel group ofΩ, which contradicts the assumption.

Furthermore,it (β(n)) can exceedmin{it (n′′)|n′′ ∈ Ω} at most
by k. Therefore, when the parallel groupΩ is built, the COM-
PUTE AVAILABLE OPERATIONSprocedure computesβ(n) as avail-
able andβ(n) must be scheduled intoΩ, a contradiction.2

4.2 Time Optimality of the Algorithm
The software pipelining algorithm described in Figure 7 always

generates time optimal parallel programs for loops that satisfy Con-
dition I. The proof is based on the greediness of the algorithm.

5Since the transformations in theSCHEDULE PARALLEL GROUP procedure can be
implemented using transformations described in the Moon’s algorithm whose correct-
ness has been already proved [15], they preserve program semantics.

Before presenting the time optimality proof, we prove some mis-
cellaneous properties stated below in Lemmas 18 and 19. (Recall
that we have assumed thatL satisfies Condition I and that every
operation takes1 cycle to execute.)

LEMMA 18. For a pathp in L and1= i1 < i2 < · · ·< i l ≤ |p| ,

∑l−1
j=1‖p[i j , i j+1]‖ ≤ ‖p‖+ (l −2) · (B1 +1) .

Proof.
‖p‖ ≥ ‖p[i1, i2]‖+‖p[i2 +1, i l ]‖−B1

≥ ‖p[i1, i2]‖+‖p[i2, i l ]‖−1−B1

≥ ‖p[i1, i2]‖+(‖p[i2, i3]‖+‖p[i3, i l ]‖−1−B1)−1−B1

≥ ·· · ≥ ∑l−1
k=1‖p[ik, ik+1]‖− (l −2) · (B1 +1) . 2

LEMMA 19. For node instancesn1 andn2 in a pathp in L such
that it (n2)− it (n1) > k,

‖p[pos(n1), pos(n2)]‖ ≥ d (L−1) ·k+1−B3

B2
e

whereL is the length of the shortest cycle inL .

Proof. Sincen1 andn2 are separated by more thank iterations,
the number of node instances between them is at least(L−1) · k.
From Condition I.(b) we can write

‖p[pos(n1), pos(n2)]‖ ≥ d pos(n2)− pos(n1)+1−B3

B2
e

≥ d (L−1) ·k+1−B3

B2
e . 2

We are now ready to prove the time optimality of the software
pipelining algorithm. TheSOFTWARE PIPELINING procedure re-
quires the size of sliding window as an input parameter. To achieve
the time optimality, we select the sliding window size as

WS= d2 ·B2 · (B1 +1)+B3

L−1
e (1)

whereL is the length of the shortest cycle inL .

LEMMA 20. Let LSP be the result of the software pipelining
algorithm with the sliding window ofWSiterations. ThenLSP is
time optimal.

Proof. It suffices to show that for an arbitrary but fixed execution
path pe,sp in LSP, τ(t(pe,sp)[|pe,sp|]) = ‖α(pe,sp)‖. Let p denote
α(pe,sp) andGD(ND,ED) be a directed graph such thatND is the
set of node instances int(p) and ED = E′D∪E′′D where

E′D = { (n1,n2) | n1 ≺ n2 }
E′′D = { (n1,n2) | it (n2)− it (n1) > WS}.

We first show that the length of the longest path inGD is equal
to the length of the longest path inG′D(ND,E′D), the subgraph of
GD induced byE′D. Suppose that there exists a pathpD = n1 →
n2→ ··· ,→ nh in GD whose length is larger than the length of the
longest path inG′D (which is equal to‖p‖). Then, there must exist
s (≥ 1) edges(ni1,ni1+1), · · · ,(nis,nis+1) (i1 < i2 < · · · < is) in
pD that come fromE′′D. So, we have

‖p‖ < |pD|= i1 +∑s−1
j=1(i j+1− i j )+h− is

≤ ‖p[1, pos(ni1)]‖+∑s−1
j=1‖p[pos(ni j+1), pos(ni j+1)]‖

+ ‖p[pos(nis+1),‖p‖]‖ . (2)



From Lemma 18, we can write

‖p‖ ≥ ‖p[1, pos(ni1)]‖+∑s−1
j=1‖p[pos(ni j+1), pos(ni j+1)]‖+

‖p[pos(nis+1),‖p‖]‖+∑s
j=1‖p[pos(ni j ), pos(ni j+1)]‖

−2s· (B1 +1) . (3)

From (2) and (3), we have

∑s
j=1‖p[pos(ni j ), pos(ni j+1)]‖ < 2s· (B1 +1) . (4)

Since (ni j+1,ni j ) ∈ E′′D , it (ni j+1)− it (ni j ) > WS.
Therefore, by Lemma 19, we have for all1≤ i ≤ s

‖p[pos(ni j ), pos(ni j+1)]‖ ≥ d (L−1) ·WS+1−B3

B2
e

≥ 2·B1 +2 ,

which contradicts (4). So the assumption is false and the length of
the longest path inGD is equal to the length of the longest path in
G′D, which is equal to‖p‖.

Let σ(n) denote the length of the longest path inGD that reaches
n. For1≤ i ≤ ‖pe,sp‖, we are to show that

τ(t(pe,sp)[i])≤ σ(β(t(pe,sp)[i]))

whent(pe,sp)[i] is an effective node instance. The proof is by in-
duction oni. Letmbe the largest integer such thatτ(t(pe,sp)[i]) = 1.
Then, the proposition holds trivially for all1≤ i ≤ m. For the in-
duction step, assume that the proposition holds for all1≤ j < i. By
Lemma 17, there must existi′ < i such that

t(pe,sp)[i′] is an effective node instance and

τ(t(pe,sp)[i′]) = τ(t(pe,sp)[i])−1 and (5)

( β(t(pe,sp)[i′])≺ β(t(pe,sp)[i]) ∨
it (β(t(pe,sp)[i]))− it (β(t(pe,sp)[i′])) > WS)

In any cases,( β(t(pe,sp)[i′]) , β(t(pe,sp)[i]) ) ∈ E′′D. Therefore, by
the definition ofσ, we have

σ(β(t(pe,sp)[i])) ≥ σ(β(t(pe,sp)[i′])) + 1 . (6)

From (5), (6) and the induction hypothesis, we have

τ(t(pe,sp)[i]) = τ(t(pe,sp)[i′])+1

≤ σ(β(t(pe,sp)[i′]))+1≤ σ(β(t(pe,sp)[i])) .

Therefore, we have

τ(t(pe,sp)[k])≤ σ(β(t(pe,sp)[k])) = ‖p‖
wherek is the largest integer such thatt(pe,sp)[k] is an effective
node instance.

To finish the proof, we need to show that redundant node in-
stances do not affect the length of the schedule. Effective node
instances are not dependent on redundant node instances. Further-
more, there cannot exist a redundant node instance following the
last effective node instance. This is because every node instance
following the last effective branch node is guaranteed to be effec-
tive by the dead code elimination after the scheduling.2

From Lemma 20, we can state the following theorem.

THEOREM 21. Condition I is a sufficient condition forL to
have an equivalent time optimal program.

From Lemma 20, the algorithm in Figure 7 is a time-optimal
software pipelining algorithm, provided that the size of sliding win-
dow is computable. From Lemmas 13 and 14,B1,B2 andB3 can
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y = h(x)

if  y == 0

x = f(a)

y = h(x)

a = g2(x)

a1 = g1(x)

if  y == 0

a2 = g2(x)

x = f(a1)

a2 = g2(x)

y = h(x)
a1 = g1(x)

x1 = f(a1)

a1 = g1(x1)

y = h(x1)

a2 = g2(x1)

x = f(a2)

y = h(x2)

a1 = g1(x2)

a2 = g2(x2)

if  y == 0

x2 = f(a2)

(d)

Figure 8: (a) A CFG before scheduling, (b) its corresponding
NCFG, (c) the software-pipelined NCFG, and (d) the (time-
optimally) software-pipelined CFG. (Solid lines and dashed
lines represent control flows and dependences, respectively.
Each shaded region represents a parallel group.)

be computed in a finite number of steps. The size of sliding win-
dow can be directly computed from Equation (1). So, we have the
following theorem.

THEOREM 22. There exists a software pipelining algorithm that
computes time optimal programs for loops that satisfy Condition I.

5. A PRACTICAL SOFTWARE PIPELINING
ALGORITHM

In this section, we present a more practical software pipelining
algorithm. The software pipelining algorithm uses an intermediate
program representation called nondeterministic control flow graph
(NCFG)6 proposed by Milicev [13]. As shown in Figure 8, the
original control flow graph (CFG) of a loop (Figure 8.(a)) is trans-
formed into an NCFG (Figure 8.(b)) and the software pipelining
algorithm is applied to the NCFG. Then, the software pipelined
NCFG (Figure 8.(c)) is transformed back into an equivalent CFG
(Figure 8.(d)). In Section 5.2, we present a software pipelining
algorithm that computes a time optimal NCFG for every loop sat-
isfying a new condition, which is a stronger version of the Time
Optimality Condition. Before describing the software pipelining
algorithm, we first explain the NCFG.

5.1 Nondeterministic Control Flow Graph
The NCFG can be understood as a nondeterministic version of

the standard control flow graph (CFG).7 There is a one-to-one cor-
respondence between NCFGs and CFGs, as is the case with nonde-
terministic finite automata (NFA) and deterministic finite automata
(DFA). Given a CFGG of a loop (before software pipelining), let
Ps = {ps

1, ps
2, · · ·} represent the set of all the acyclic paths starting

from the loop header to a predecessor of the loop header or a loop
exit. Then the corresponding NCFGGNCFG is simply defined as

6Milicev used the term ‘predicate matrix’. For the rest of the paper, we use ‘NCFG’
instead of ‘predicate matrix’, since the former is much more intuitive.
7We apply the notations and definitions explained in Sections 2.3, 2.4 and 3.4 to the
NCFG as well.
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Figure 9: An example of split transformation

follows:

NNCFG = {ni, j | 1≤ i ≤ |Ps| , 1≤ j ≤ l i}
ENCFG = {(ni, j ,ni, j+1) |1≤ i ≤ |Ps| , 1≤ j < l i} ∪

{(ni,l i ,ni′,1) | 1≤ i , i′ < |Ps|} ,

wherel i = |ps
i | andni, j has the same attributes asps

i [ j] (e.g.,op,
regW andregsR). The path〈ni,1,ni,2, · · · ,ni,|l i |〉 forms anondeter-
ministic basic block (NBB), which is denoted bybi . Each node
n∈ NNCFG belongs to exactly one NBB and the NBB is addressed
by b(n). An NCFG can be abstracted into anNBB-graphGNBB

whose nodes are the NBBs of the NCFG. Initially,GNBB is a com-
plete graph.

The CFG in Figure 8.(a) has two acyclic paths from the loop
header to its predecessor and they correspond to two NBBs of the
NCFG in Figure 8.(b). Informally, if a node is contained in more
than one path of the CFG, it is copied into the corresponding NBBs
of the NCFG.

The original NCFG is expanded by thesplit transformation. the
original NCFGGNCFG is transformed into ak-level split NCFG
GNCFG

k by splitting each NBB ofGNCFG into |NNBB|k copies. Since
each copy of an NBB contains the same operations, we describe the
NBB-graphGNBB

k of GNCFG
k to define the split transformation:

NNBB
k = {bm

i | 1≤ i ≤ |NNBB| , 1≤m≤ |NNBB|k}
ENBB

k = {(bm
i ,bm′

i′ ) |m′ = |NNBB|k−1 · (i−1) +
⌈ m−1
|NNBB|

⌉
+1 } .

Figures 9.(a) and 9.(b) show an NCFGGNCFG and its 1-level split
version,GNCFG

1 .
A software-pipelined NCFG is transformed back into an exe-

cutable CFG [13], which is similar to the NFA-to-DFA transfor-
mation. A nice property of an NCFG is that the execution time of
any path in the NCFG is equal to that in the corresponding CFG.
Therefore, it suffices to build a time-optimally software pipelined
NCFG.

5.2 The Software Pipelining Algorithm
As with several software pipelining algorithms based on mod-

ulo scheduling, our software pipelining algorithm decouples the
computation of a schedule and code motions. After computing a
schedule, the code motions that are implicit in the schedule are as-
certained subsequently.

The scheduling algorithm first determines thelatencyof each
NBB of the NCFG based on integer linear programming and then
computes each operation’stime offsetfrom the beginning of its
NBB. Informally, the latency of an NBB can be understood as the
initiation interval (II). For example, the latency of the left NBB of
the NCFG in Figure 8.(b) is the II of the left path of the CFG in
Figure 8.(a). We denote the latency of an NBBb by ρ(b) and the
time offset ofn∈NNCFG by σ(n). Given an execution pathp and a

set of the latencies and the time offsets, the execution time ofp[k]
is given by

τ(t(p)[k]) = ∑|bp(p[1,k])|−1
l=1 ρ(bp(p)[l ]) + σ(p[k]) (7)

wherebp(p) denotes a path in the NBB-graph which corresponds
to p in the NCFG graph. Thus, by determining the latencies and the
time offsets, we essentially build a software-pipelined schedule.

The latencies of NBBs are determined such that, for any simple
cycle c in the NBB-graph, the sum of the latencies of NBBs inc
is equal to the slope of the critical dependence cycle in the corre-

sponding cyclec in the NCFG, i.e.,∑|c|−1
i=1 ρ(c[i]) = max slope(c).

We call such a tuple of latencies as atight tuple. However, a tight
tuple does not always exist because the number of equations may be
larger than the number of variables (the unknown latencies). This
can be resolved by the split transformation, which increases the
number of NBBs (equivalently, the variables).

The split transformation also increases the number of simple cy-
cles in the NBB-graph incurring additional equations. But, some of
the newly introduced equations may be linearly dependent on other
equations and, consequently, the number of variables may exceed
the number of equations. In Figure 9.(a), there are three simple
cycles in the NCFG but only two nodes in NCFG. Therefore, no
solution exists for the linear equations

ρ(b1) = 3 , ρ(b2) = 2 , ρ(b1)+ρ(b2) = 4 .

After splitting withk = 1, the number of variables increases to four
but all the newly introduced linear equations are linearly dependent
on the original equations. The new linear equations are

ρ(b1
1) = 3 , ρ(b2

2) = 2 , ρ(b2
1)+ρ(b1

2) = 4,

ρ(b1
1)+ρ(b2

1)+ρ(b1
2) = 7 , ρ(b2

2)+ρ(b2
1)+ρ(b1

2) = 7,

ρ(b1
1)+ρ(b2

1)+ρ(b2
2)+ρ(b1

2) = 9

and (ρ(b1
1),ρ(b2

2),ρ(b2
1),ρ(b1

2)) = (3,2,2,2) is a solution. Note
that the linear dependence comes from the strong dependence re-
lation 1 between dependence cycles. If the following condition is
satisfied, we can always compute a tight tuple:

Condition III.

(a) For any simple cyclec in GNCFG, DC(c) is not empty and

(b) For each simple cycleci in GNCFG, there exists a depen-
dence cycledi ∈ DCcr(ci) such that

d j 1 dk for every pair of simple cyclesc j andck.

LEMMA 23. If GNCFG satisfies Condition III, there is a positive
integerk such that there exists a tight tuple of latencies of NBBs of
GNCFG

k .

Proof. The proof can be found in [23].2

Given an NCFG that satisfies Condition II, the optimal software-
pipelined schedule can be computed by the algorithm in Figure 10.

LEMMA 24. The schedule computed byCOMPUTE SCHEDULE

meets dependence constraints.

Proof. We would like to show that

∀p ∀k,k′ (k < k′) such thatp[k]≺p[k,k′] p[k′] ,

τ(t(p)[k])+δ(p[k])≤ τ(t(p)[k′]) . (8)



procedure COMPUTE SCHEDULE

1: if (Condition III is not satisfied)
2: return SCHEDULENOT FOUND
3: else
4: compute a tight tuple〈ρ(b1),ρ(b2), . . .〉
1: NDG := NNCFG ∪ {nDUMMY }
2: EDG := { (ni j , ni′ j′ ) | ni j ≺p ni′ j′ wherep is the shortest path fromni j to ni′ j′ }
3: EDG := EDG ∪ ( {nDUMMY } × (NDG−{nDUMMY }) )
4: foreach (e = (ni j , ni′ j′ ) ∈ EDG)
5: r(e) := δ(ni j )−d(e) ·ρ(bi) whereδ(ni j ) is the latency of the operation

of ni j andd(e) = 0 if i = i′, 1 otherwise
6: end foreach
7: foreach (e = (nDUMMY , ni j ) ∈ EDG)
8: r(e) := 0
9: end foreach
10: foreach (ni j ∈ NDG−{nDUMMY })
11: σ(ni j ) := the length of the longest path inGDG = (NDG,EDG)

where the length of a pathp is the sum of weightr(e) of edges inp
end procedure

Figure 10: The algorithm to compute a software-pipelined
schedule.

procedure MOVE CODE

1: foreach ( bi )
2: bi := 〈 〉
3: foreach ( ni j )
4: MOVE OP( ni j , bi , σ (ni j ) )
end procedure
procedure MOVE OP(n, b, σ)
1: if (0 ≤ σ < ρ( b))
3: placesn on the time-slotσ of b
4: else if(σ < 0) /* move upward */
5: foreach ( (b′, b) ∈ ENBB )
6: MOVE OP ( n, b′, σ+ρ( b′) )
7: else /* move downward */
8: foreach ( (b, b′) ∈ ENBB )
9: MOVE OP ( n, b′, σ−ρ( b′) )
end procedure

Figure 11: The algorithm to move operations in NCFG.

By virtue of the longest path inequalities, we have

σ(p[k])+ r((p[k], p[k′]))≤ σ(p[k′]) , which implies

σ(p[k])+δ(p[k])−d((p[k], p[k′])) ·ρ(b(p[k]))≤ σ(p[k′]) . (9)

Therefore, we have

τ(t(p)[k]) + δ(p[k]) − τ(t(p)[k′])

= ∑|bp(p[1,k])|−1
l=1 ρ(bp(p)[l ]) + σ(p[k]) + δ(p[k]) −

∑|bp(p[1,k′])|−1
l=1 ρ(bp(p)[l ]) −σ(p[k′])

= −∑|bp(p[1,k′])|−1
l=|bp(p[1,k])| ρ(bp(p)[l ]) + σ(p[k]) − σ(p[k′]) + δ(p[k])

≤−∑|bp(p[1,k′])|−1
l=|bp(p[1,k])| ρ(bp(p)[l ]) + d((p[k], p[k′])) ·ρ(b(p[k]))(10)

If b(p[k])≡ b(p[k′]), we have

τ(t(p)[k]) + δ(p[k]) − τ(t(p)[k′])
≤ d((p[k], p[k′])) ·ρ(b(p[k])) = 0 ·ρ(b(p[k])) = 0 .

Otherwise, we have

τ(t(p)[k]) + δ(p[k]) − τ(t(p)[k′])
≤ −ρ(b(p[k]))+d((p[k], p[k′])) ·ρ(b(p[k]))
= −ρ(b(p[k]))+1 ·ρ(b(p[k])) = 0 .

So, the schedule meets dependence constraints.2

Given a schedule, operation nodes are moved by the algorithm in

Figure 11. The procedureMOVE CODE first initializes each NBBs
and invokes theMOVE OPprocedure for each operation nodes. The
procedureMOVE OP places each operation node such that the exe-
cution time of each operation instance becomes Eq. (7). From the
definition of the tight tuple of latencies of NBBs, it can be easily
seen that the software-pipelined NCFG is time-optimal.

6. EXPERIMENTAL RESULTS
In order to evaluate how practical the proposed software pipelin-

ing algorithms are, we have performed several experiments using a
SPARC-based VLIW testbed [17]. We used 1317 innermost loops
(with control flows) extracted from SPEC95 integer benchmark
programs. We considered loops with up to 64 operations. We as-
sumed that load operations take three cycles while all the other op-
erations take one cycle.

Figure 12.(a) explains an overview of experimental scenarioes.
In the first experiment (i.e., E1 in Figure 12.(a)), we measured how
many loops satisfy Condition II (i.e., the Time Optimality Condi-
tion). Because the computation of Condition II may require exces-
sive time8, we set the upper boundTth on computing Condition II.
If the computation takes longer thanTth, the computation gives up,
assuming that a loop does not satisfy Condition II. WhenTth was
set to be 30 seconds, we could not determine Condition II within
the threshold time for about 3.7% of 1317 loops tested. In Figure
12.(a), the set of such loops is denoted by L1. Among the loops
for which Condition II can be checked withinTth, 92.5% satisfied
Condition II. (That is, 89.1% of the loops tested satisfied Condition
II.)

Next, we turned our attention on the practicality of the realistic
software pipelining algorithm presented in Section 5. In the sec-
ond experiment (i.e., E2 in Figure 12.(a)), we measured how many
loops satisfy Condition III (i.e., the stronger version of the Time
Optimality Condition presented in Section 5). Unlike the first ex-
periment (i.e., E1), we could determine Condition III within the
threshold time for all the loops (except those in L1 and L2) since
Condition III can be more efficiently evaluated. In the experiment,
79.2%of total loops satisfy Condition III, which indicates that Con-
dition III does not impose a much practical constraint on Condition
II. In Figure 12.(a), L3 represents the set of loops that failed Con-
dition III.

In the third experiment (i.e., E3 in Figure 12.(a)), we applied the
proposed realistic software pipelining algorithm to the loops satis-
fying Condition III and measured the running time of the algorithm.
In rare cases, the algorithm did not run within the threshold time
Tth. In Figure 12.(a), the set of such loops is denoted by L4 and
the set of loops for which optimally software pipelined loops are
computed withinTth is denoted by L5, respectively. The portion of
loops belonging to L4 and L5 are 2.4% and 76.8% (of total loops),
respectively. Figure 12.(b) summarizes graphically the results of
three experiments, E1, E2 and E3.

In the final experiment (i.e., E4 in Figure 12.(a)), we were con-
cerned with the resource requirement of optimally software pipelined
loops (in L5). We measured the number of functional units and the
number of registers in the optimally software-pipelined programs
and the results are summarized in Table 1.9 (We assumed homo-
geneous FUs.) Among the loops in L5, 42.7% of the loops require

8The problem of determining if Condition II, i.e., the Time Optimality Condition, is
satisfied or not can be easily proved to be NP-hard by reducing from the 3-satisfiability
problem. We omit the proof due to the page limit.
9In counting the number of FUs, we omitted copy operations used for renaming. Most
of the renaming copy operations can be eliminated by post-pass optimizations such as
copy propagation or register coalescing after unrolling [10], which is applicable even
to unreducible loops.
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Figure 12: (a) Experiment scenario and (b) loop classification
based on the experimental results. (The area of each region
roughly represents the relative size of the corresponding set of
loops whenTth = 30 seconds.)

% of Loops
# of FUs ≤ 8 9-12 13-16 > 16 Total
≤ 32 39.5 8.2 8.0 13.2 68.9

# of 33-64 3.2 3.1 5.3 15.1 26.7
Regs. > 64 0 0 0.3 4.1 4.4

Total 42.7 11.3 13.6 32.4 100

Table 1: Resource requirement for optimally software-
pipelined programs.

at most 8 FUs while only 32.4% of the loops require more than 16
FUs. We believe that the resource requirement can be further re-
duced if the proposed software pipelining algorithm is augmented
by post-pass local code motions (e.g., moving operations in non-
critical dependence chains). For the register requirement, we ob-
tained more positive results; 95.6% of the loops require at most 64
registers. Furthermore, for 68.9% of the loops, 32 registers were
sufficient without causing any spill.

Our experimental results show that a significant portion of real
loops have their time-optimal software-pipelined programs. Fur-
thermore, the time-optimal programs can be computed with realis-
tic levels of hardware support within a reasonable time limit.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a necessary and sufficient condition

for loops with control flows to have their equivalent time optimal
programs and described how to compute the condition. We also
presented a software pipelining algorithm that computes a time op-
timal solution for every eligible loop satisfying the condition. The
results solve two fundamental open problems on time optimal soft-
ware pipelining of loops with control flows.

As a practical alternative, we presented a more realistic optimal
software pipelining algorithm which covers most eligible loops and
runs faster with less code expansion and less resource requirement.
Our experimental results strongly indicates achieving the optimal-
ity in the software-pipelined programs is a viable goal in practice
with realistic hardware support. As a future work, we are inter-
ested in developing a resource-constrained near-optimal software
pipelining algorithm guided by the results shown in this paper.
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