
A LOW-POWER IMAGE CONVOLUTION ALGORITHM
FOR VARIABLE VOLTAGE PROCESSORS

�

Hyugjin Kwon

School of Computer Science & Engineering
Seoul National University

Seoul, Korea
sonmapsi@davinci.snu.ac.kr

Jihong Kim

School of Computer Science & Engineering
Seoul National University

Seoul, Korea
jihong@davinci.snu.ac.kr

ABSTRACT

We describe a low-power image convolution algorithm for vari-
able voltage processors. The algorithm takes advantages of com-
mon properties of popular kernels. Unlike a direct algorithm of
convolution operation where the dynamic voltage scaling (DVS)
feature of variable voltage processors cannot be used, our algo-
rithm modifies the sequence of computing convolution sums so
that DVS can be effectively utilized. Our implementation on Itsy,
a DVS research platform from Compaq, shows the energy saving
of up to 71% over that of the direct algorithm without any perfor-
mance degradation.

1. INTRODUCTION

For battery-powered portable imaging systems such as digital cam-
eras and video recorders, low power consumption is a primary de-
sign goal because the battery operation time is one of the most im-
portant performance measures. Since the energy consumption E of
CMOS circuits has a quadratic dependency on the supply voltage
VDD, lowering the supply voltage is an effective way of reducing
the energy consumption of portable imaging systems. However,
lowering the supply voltage also decreases the maximum achiev-
able clock speed; in the CMOS circuit, the delay TD is given by
TD ∝ VDD

���
VDD � V T � α where VT is the threshold voltage and α

is a velocity saturation index [1].
When a given application’s required performance is lower than

the system’s maximum performance, the clock speed and its cor-
responding supply voltage can be dynamically controlled to the
lowest possible level while meeting the application’s deadline con-
straint. This is the key idea behind the dynamic voltage scaling
(DVS) technique [2]. Several recent microprocessors (e.g., Crusoe
[3], XScale [4], and AMD PowerNOW! processors [5]) support
dynamic voltage scaling in the software level. (We call these pro-
cessors variable-voltage processors.)

Since the key idea of DVS is to reduce the supply voltage when
the required performance of a given application is lower than the
maximum performance of a system, accurately predicting work-
load variation is an important requirement in utilizing the DVS
feature of variable-voltage processors. For example, if a target ap-
plication does not exhibit any workload variation, it is impossible
to take advantage of the DVS feature for reducing the energy con-
sumption.

�
This work was supported by grant No. R01-2001-00360 from the Ko-

rea Science & Engineering Foundation.

A convolution operation, which is widely used in image pro-
cessing applications, is such a constant-workload algorithm, mak-
ing it very difficult to implement a convolution operation on vari-
able voltage processors in a power-efficient fashion. (With a fast
expansion of mobile imaging market, it is expected that many fu-
ture mobile imaging products will be based on variable-voltage
processors for an improved energy efficiency.) In this paper, we
describe a low-power image convolution algorithm suitable for
variable-voltage processors.

We consider p � p square kernels. It is convenient to assume
that p is an odd number and to denote q � �

p � 1 � � 2. Let A be an
n � m matrix input image and K be a p � p matrix kernel, where n,
m 	 p. Then for all i, j satisfying q
 i � n � q and q
 j � m � q,
let Ai � j be the p � p square submatrix of A centered in A i � j � . We
say that an output n � m matrix B is a discrete convolution of A
with the kernel K:

B i � j ��� ∑
1 � k � l � p

Ai � j k � l � K p � k � 1 � p � l � 1 ��� (1)

The boundary elements can be treated as a special case or ignored.
The direct algorithm of computing convolution sums would re-
quire p2 multiplications and p2 additions for each convolved ele-
ment.

In order to effectively utilize the dynamic voltage scaling fea-
ture of variable voltage processors, we modify the sequence of
computing convolution sums so that there are large fluctuations on
the execution times depending on kernels used. With the modified
convolution algorithm, we propose two DVS heuristics for adjust-
ing the supply voltage and clock frequency under the constraint
that the performance of a low-power algorithm is as good as that
of the direct algorithm. Our implementation on Itsy [6], a DVS
research platform from Compaq1, shows the energy saving of up
to 71% over that of the direct algorithm without any performance
degradation.

The rest of the paper is organized as follows. Section 2 presents
a low-power convolution algorithm based on a modified sequence
of computing convolution sums. In Section 3, the experimental re-
sults on performance/energy measurements are described. Section
4 concludes with a summary.

1We appreciate a kindly support from Compaq Western Research Lab-
oratory for providing us with two Itsy systems.

2. LOW-POWER CONVOLUTION ALGORITHM

In our low-power convolution algorithm, the key step is to mod-
ify the sequence of computing convolution sums so that the work-
load variation is easily detected in the early stage of computing
convolution sums. Figure 1 shows the overall processing steps of
the low-power convolution algorithm. First, the kernel elements
are analyzed and rearranged, grouping the kernel elements of the
same absolute value together and arranging trivial multiplication
cases separately. Once a decomposed version of the original ker-
nel is constructed, the sequence of computing convolution sums is
modified so that all the kernel elements could be multiplied by the
same data element at each step. Based on the characteristics of the
decomposed kernel, we compute an appropriate clock frequency
and corresponding supply voltage so that the execution time of the
low-power convolution algorithm does not exceed that of the direct
convolution algorithm.

Kernel Analysis
&

Rearrangemen t

Execution Time
Prediction &

Voltage/Frequency
Setting

Modified
Convolution
Computation

-1

-1-1-1

-1

-1-1

-1 8
Kernel[0]

Kernel[1]
v: 8

NegPtr

PosPtr

xoffset: -2
yoffset: -2

next

-1

-1
null

v: -1

NegPtr
PosPtr

-1
-2

next

0
0

null

MinusOnePtr

Decomposed Kernel

Fig. 1. Overall processing steps of the low-power convolution al-
gorithm.

2.1. Kernel Analysis and Rearrangement

The key observations leading to our low-power convolution algo-
rithm can be summarized by the following three properties from
an analysis of commonly used kernels [7]:

Property 1 For most kernels, the number of distinct kernel ele-
ments is small.

Property 2 0, 1, and -1 are used frequently.

Property 3 Many kernel elements have the same absolute values.

These properties are useful in eliminating redundant multipli-
cations so that the execution time of convolution operation can
vary depending on kernels used. Property 2 is used in reducing
the number of multiplications by skipping multiplications between
input pixels and kernel elements which have a value of 0, 1, or -1.
Properties 1 and 3 are useful as well in reducing the number of
multiplications if the sequence of computing convolution sums is
appropriately modified as described in the next section.

2.2. Single-Data Multiple-Kernel Convolution Algorithm

Based on the observations summarized in Section 2.1, the single-
data multiple-kernel (SDMK) convolution algorithm computes con-
volution sums differently from the direct implementation in two
ways [7]. First, each step computes partial sums for the multiple
locations. Second, in each step, all the kernel elements are multi-
plied by the same input data (i.e., a single data).

Original
Kernel

Reversed
Kernel

d1 d2 d3 d4 d5 d6

c b a

a b c

Input
Sequence

Convolved
Sequence

step i step i+1 step i+2 step i+3 step i+4

*c *b+

*c *b *a+ +

*c *b *a+ +

*c *b *a+ +

*c *b *a+ +

(a) Direct algorithm
Original
Kernel

Reversed
Kernel

d1 d2 d3 d4 d5 d6

c b a

a b c

Input
Sequence

Convolved
Sequence

step i

step i+1

step i+2

step i+3

step i+4

*c *b+

*c *b *a+ +

*c *b *a+ +

*c *b *a+ +

*c *b *a+ +

step i+5

(b) SDMK algorithm

Fig. 2. A comparison of the direct algorithm and SDMK algo-
rithm.

Figure 2 illustrates the key differences in computing convolu-
tion sums between the direct algorithm and SDMK algorithm. Un-
like the direct algorithm shown in Figure 2.(a), for each step, the
SDMK works with a single pixel. For example, in the step (i+2),
d3 is multiplied to all the kernel elements and the computed result
is accumulated to three partial sums, respectively. If all three ker-
nel elements had the same absolute values, a single multiplication
is enough, saving two multiplications from the direct algorithm.

In the SDMK algorithm, the number of multiplications per
convolved element is reduced to Nabs � distinct , the number of ker-
nel elements having distinct absolute values excluding 0, 1 and -1
from the total number of kernel elements, Ntotal . The number of
additions per convolved element is also decreased by the number
of zero elements, Nzero, in kernel elements. For example, in the
example kernel shown in Figure 1, a single multiplication per con-
volved element is sufficient.

2.3. Execution Time Prediction and Speed Setting

Since the execution time of the SDMK algorithm varies depend-
ing on kernels used, the proposed low-power convolution algo-
rithm predicts the expected workload before computing convolu-
tion sums. If the estimated workload is less than one required by
the direct algorithm, the supply voltage/clock frequency is low-
ered so that the resulting execution consumes less energy. We
lower the supply voltage to the extent that the execution time of
the low-power algorithm is less than or equal to that of the direct
algorithm.

We use two heuristics in predicting the execution time of the
SDMK algorithm: one based on a kernel analysis and the other
based on the dynamic measurement of the execution time for a
small portion of actual execution.

The static prediction method, SDMKstatic, is based on the num-
ber of required arithmetic operations obtained in the kernel analy-
sis step (see Section 2.1.). Given an n � m input image and a p � p
kernel, let Cdirect and Csdmk be the number of arithmetic operations
required for the direct implementation and the SDMK implemen-
tation, respectively. Then, Cdirect and Csdmk are given as follows:

Cdirect � �
n � m � � p2 � �

Nmul � Nadd � (2)

Csdmk � �
n � m � � Nabs � distinct � Nmul

� �
n � m � � �

p2 � Nzero � � Nadd (3)

where Nmul and Nadd are the execution latencies (in cycles) of mul-
tiplication and addition operations, respectively.

Once Csdmk is computed, we calculate the new clock frequency
fsdmk as follows:

fsdmk � � Csdmk

Cdirect
� � fmax (4)

where fmax is the maximum clock frequency of a target system.
The corresponding supply voltage Vnew can be determined by the
voltage-frequency formula:

f �
�
Vnew � VT � α

Vnew
(5)

where Vnew is a supply voltage.
The dynamic prediction method, SDMKdynamic, uses actual

measurements instead of the number of arithmetic operations in
estimating the required workload. Convolution operations are per-
formed for the beginning n � S convolved outputs and the execu-
tion time TS for n � S outputs is measured during run time. An
execution time estimate Tsdmk for an n � m image is given by:

Tsdmk � �
TS � Tkernel � � � n � m

n � S

�
(6)

where Tkernel is the execution time taken by the kernel analysis and
rearrangement step. In all our experiments, S was set to 3. Once
Tsdmk is computed, we can determine the execution speed from
a pre-constructed speed table. The speed table specifies how to
adjust the clock frequency using the ratio of Tsdmk to Tdirect (where
Tdirect is the execution time when the direct algorithm is used.)

3. EXPERIMENTAL RESULTS

3.1. Experimental platform: Itsy Pocket Computer

We use the Itsy pocket computer v2.6 from Compaq [6] as our ex-
perimental platform. Figure 3 shows the experimental setup with
Itsy. Itsy v2.6 is equipped with a StrongARM SA1100 processor
as a main processor. The SA1100 processor uses the phase-locked
loop (PLL), allowing to change the CPU core frequency to one of
11 levels between 59.0 MHz and 226.4 MHz. Furthermore, Itsy
v2.6 has a programmable core voltage regulator; supply voltage
can scale to one of 30 levels between 1.00 V and 2.00 V.

Itsy runs the Linux operating system (ver. 2.0.30) with a kernel
support for dynamic voltage scaling. Applications can access the
DVS function by the ioctl system call to the “/dev/clkspeed” device
file.

Itsy
V2.6

Vin

VRbatt Rbatt

Rest of
Itsy HW

Multimeter 1 Multimeter 2

Recoding
Computer

Fig. 3. Experimental setup with Itsy.

3.2. Results

We have implemented three convolution algorithms, the direct al-
gorithm, the SDMKstatic-based low-power algorithm, and the
SDMKdynamic-based low-power algorithm on Itsy using the C pro-
gramming language. As shown in Figure 3, we have measured the
voltage drops in the current-sense resistors embedded in the Itsy
system. Using Itsy v2.6, we can measure the power consumed in
the processor core only or can measure the power consumption
of the whole system. The energy consumption is computed by
multiplying the execution time by the average power consumption
measured.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

kernel1 kernel2 kernel3 kernel4 kernel5

E
n

er
g

y
 (

m
J

)

(a) 3 � 3 kernels

kernel1 kernel2 kernel3 kernel4

E
n

er
g

y
 (

m
J
)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

(b) 5 � 5 kernels
direct SDMK static SDMK dyanmic

Fig. 4. Energy consumption in the StrongARM processor core.

Figures 4 and 5 show the experimental results of three algo-
rithms. Since the performance and energy consumption of three
algorithms do not depend on pixel values, a single 256 � 256 im-
age was used as an input image for all the experiments. For the di-
rect algorithm, we used the clock frequency of 206.4 MHz and the
supply voltage of 1.55 V. Figure 4 compares the energy consumed

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

kernel1 kernel2 kernel3 kernel4 kernel5

E
n

er
g
y

 (
m

J
)

(a) 3 � 3 kernels

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

kernel1 kernel2 kernel3 kernel4

E
n

er
g
y
 (

m
J
)

(b) 5 � 5 kernels
direct SDMK static SDMK dyanmic

Fig. 5. Energy consumption in the whole Itsy system.

only in the processor core while Figure 5 compares the energy
consumption of the whole Itsy system. As shown in Figure 4, the
core power consumption of the proposed low-power algorithms is
reduced by up to 76.7% over the direct algorithm. Even for the
whole Itsy system, the best reduction ratio of 71.1% is achieved.
On average, the low-power algorithms reduce about 67.6% and
62.8% of energy consumption for the core processor only and the
whole Itsy system, respectively.

In order to understand the high energy efficiency of the pro-
posed low-power convolution algorithms, it is useful to remind
that the energy consumption E of a program P is proportional to
the product of Ncycle and V 2

DD where Ncycle is the number of cy-
cles executed for P.2 In the proposed algorithms, both Ncycle and
VDD are reduced, resulting in high energy savings in the processor
core as shown in Figure 4. Furthermore, as discussed in [8], lower-
ing supply voltage in Itsy also decreases the energy consumption
of non-CPU parts (e.g., LCD) as well (although, in theory, DVS
should not affect these parts.). This additional savings contributed
a higher-than-expected energy saving ratio in the whole Itsy sys-
tem as shown in Figure 5.

Figure 6 compares the execution time variations by the pro-
posed algorithms. For most kernels tested, the execution times of
the proposed algorithms are less than that of the direct algorithm
without violating the timing constraint. As shown in Figure 6,
SDMKdynamic always takes less times than the direct algorithm.

4. CONCLUSION

We have described two low-power convolution algorithms suitable
for variable voltage processors. Unlike the direct algorithm, the
proposed algorithms intelligently identify and predict the work-
load variations by the modified convolution algorithm. From the

2Note that lowering the clock frequency does not change Ncycle. It in-
creases the clock cycle time.

0

50000

100000

150000

200000

250000

300000

kernel1 kernel2 kernel3 kernel4 kernel5

E
x

ec
u

ti
o

n
 T

im
e

(u
s)

(a) 3 � 3 kernels

0

100000

200000

300000

400000

500000

600000

700000

800000

kernel1 kernel2 kernel3 kernel4

E
x

ec
u

ti
o

n
 T

Im
e

(u
s)

(b) 5 � 5 kernels
direct SDMK static SDMK dyanmic

Fig. 6. Execution time comparisons of three approaches.

actual measurements on the Itsy system, we have demonstrated
that the proposed algorithms achieve an energy reduction of up
to 71% over that of the direct algorithm without any performance
degradation.

5. REFERENCES

[1] T. Sakurai and A. Newton, “Alpha-Power Law MOSEFT
Model and Its Applications to CMOS Inverter Delay and
Other Formulas,” IEEE Journal of Solid State Circuits, vol.
25, no. 2, pp. 584–594, 1990.

[2] T. Burd and R. Broderson, “Processor Design for Portable
Systems,” Journal of VLSI Signal Processing, vol. 13, no. 2,
pp. 203–222, August 1996.

[3] L. Geppert and T. Perry, “Transmeta’s Magic Show,” IEEE
Spectrum, vol. 37, pp. 22–32, May 2000.

[4] Intel Inc, “Intel XScale Technology,”
http://www.intel.com/design/intelxscale.

[5] AMD Inc, “AMD PowerNow!TM Technology Plat-
form Design Guide for Embedded Processors,”
http://www.amd.com/epd/processors.

[6] R. Hamburgen, D. Wallach, M. Viredaz, L. Brakmo, C. Wald-
spurger, J. Bartlett, T. Mann, and K. Farkas, “Itsy: Stretching
the Bounds of Mobile Computing,” IEEE Computer, vol. 34,
no. 4, pp. 28–36, April 2001.

[7] J. Kim and Y. Kim, “Efficient 2-D Convolution Algorithm
with the Single-Data Multiple Kernel Approach,” Graphical
Models and Image Processing, vol. 57, no. 2, pp. 175–182,
March 1995.

[8] M. Viredaz and D. Wallach, “Power Evaluation of a Hand-
held Computer: A Case Study,” Tech. Rep. 2001/1, Comapq
Western Research Laboratory, May 2001.

