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Abstract

The read-disturb problem is emerging as one of the main
reliability issues for future high-density NAND flash
memory. A read-disturb error, which causes data loss,
occurs to data in a page when a large number of reads are
performed to its neighboring pages in the same block. In
this paper, we propose a novel read-disturb management
technique which reduces the frequency of expensive data
migrations needed for avoiding read-disturb errors. Our
technique proactively converts highly skewed read ac-
cesses to a small number of blocks into more balanced
read accesses to a large number of blocks by intelligently
changing data block locations accessed. Our experimen-
tal results show that our technique is effective in handling
the read-disturb problem, reducing the time overhead of
data migrations on average by 50% over an FTL based
on the existing read-disturb management technique.

1 Introduction

As the density of NAND flash memory increases using
advanced process techniques such as shrinking processes
(e.g., 20 nm and below process technology) and multi
leveling (e.g., triple-level cell (TLC)), the read-disturb
problem is expected to emerge as a major reliability con-
cern for future high-density NAND flash memory [7].
When a page P in a block B is read in NAND flash mem-
ory, a read-disturb error may occur to P’s neighboring
pages in the block B. Since NAND cells are serially con-

nected in a string structure, cells in the same string are
unintentionally programmedwhen one of their neighbor-
ing cells is read. As the number of unintentional pro-
grams increases for the same cell, the logic state of the
cell may change. If the number of changed bits by read
disturbs exceeds the number of recoverable bits by an er-
ror correction code (ECC), a read-disturb error occurs.
In order to avoid data corruption by a read-disturb er-

ror, an anticipatory prevention procedure, called read re-
claim (RR), is required. Since a disturbed block B can re-
turn to its initial undisturbed status when it is erased, the
block B is erased during RR when RR decides that the
current level of read disturbance of the block B is suffi-
ciently high. If valid data exist in the erased block B, they
must be moved to other healthier blocks before the block
B is erased. One straightforward RR techniquemaintains
the number of performed read operations per block to
predict the read-disturbance status of a block [5]. When
a block undergoesmore read operations than a preset up-
per bound on the number of read operations allowed per
block, called RR threshold, RR is triggered. (We call this
method baseline.)
Up to 30 nm multi-level cell (MLC) NAND flash

memory, RR is rarely activated because of the strong
read-disturb resistance. However, as the techniques
for increasing the density of NAND flash memory is
evolved, the resistance has been significantly weakened,
resulting in quick decreases in the maximum allowable
read count between two consecutive block erasures. (In
this paper, we call it the maximum read count.) Fig. 1
shows a future trend on the maximum read count for
MLC and TLC NAND flash memories, which is esti-
mated by using an FN-tunneling equation (in a similar
fashion used for forecasting the read-disturb trend of the
MLC flash memory [3]). For a block in TLC NAND
flash memory, the maximum read count may be just
about 40,000. This trend is indicated as a dashed line
with a square symbol (i.e., the min case) in Fig. 1. For
such a small maximum read count, RR will occur quite
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Figure 1: A projected read-disturb trend of future MLC
and TLC devices.

frequently in future TLC NAND flash memory.
Frequent RR operations negatively affect the perfor-

mance of NAND flash memory because of extra data mi-
grations and block erasures during RR invocations. In
our evaluation, baseline technique was quite ineffec-
tive under small maximum read counts even with a 256
MB read buffer. In our observation, for many read dom-
inant applications such as a web search engine server, an
ad server, and a database server, a large number of read
reclaims still occur (even with a large read buffer in a
storage device) because such applications often have a
very large working set for read accesses. On average,
90% of total read requests from host systems are passed
to physical NAND pages when a 256 MB read buffer
was used in the storage device. When the maximum read
count was 40,000, baseline increased overhead time by
about 10 times on average over when no RR was consid-
ered. When an I/O request was overlapped with an RR
procedure, the I/O response time was increased by up
to about 66 times. This significant performance penalty
is mainly because frequently-read data (which we call
read-hot data) are read from a small number of blocks.
Since baseline does not modify the read skewness of a
given workload, it simply moves the same read-hot data
to a different block, thus repeating RR soon.
We propose a novel read-disturb management tech-

nique which reduces the occurrence of RR. Our tech-
nique detects read-hot pages in a partially disturbed
block and proactively moves them to other healthier
blocks before RR is activated. By distributing read re-
quests, our technique reduces RR occurrences. More-
over, by avoiding simultaneous data migrations, our tech-
nique better balances I/O response times under RR acti-
vations. Based on our proposed technique, we have de-
signed a new read disturb-aware flash translation layer
(RedFTL) for high-density NAND flash memory. Exper-
imental results show that RedFTL can reduce the time
overhead of RR on average by 50% over the baseline
technique.

2 Basic Idea

In order to understand how the baseline technique
works for a future high-density NAND flash memory, we
evaluated baseline using read-intensive applications.
Fig. 2 shows to what extent the total overhead execution
time increases during garbage collection (GC) and RR
when baseline is applied. The x-axis denotes various
maximum read counts, and the y-axis represents the nor-
malized total overhead execution times. On the x-axis,
the ∞ maximum read count indicates when no RR is ac-
tivated. Each overhead execution time is normalized to
the total execution time spent for GC for the ∞ case. As
shown in Fig. 2, the smaller the maximum read count is,
the more overhead time is spent because of more frequent
RR activations. In particular, when the maximum read
count was 40,000, data migrations during RR accounted
for 88% of the total overhead execution time. This result
shows that lots of valid pages exist in disturbed blocks,
and the time overhead of moving them during RR can be
considerable if they simultaneously migrate.

From a detailed analysis, we observed that a small
number of heavily read blocks are responsible for fre-
quent RR activations in baseline. Fig. 3.(a) illustrates
why baseline works poorly using an example. Each
block has four pages, and each page is represented with
a rectangle. A tuple (I, N) in a rectangle indicates that
data in a page are read I times per given time period p,
and the data have been read N times since the last block
erasure. Assume that the RR threshold value is 1,400.
As shown in Fig. 3.(a), RR is invoked for Block 0 at time
t1 because the read access count to Block 0 reaches the
RR threshold. As a result, the Pages A, B, C, and D are
copied to Block 1, and Block 0 is erased. Since those
pages are read 1,400 times for every time period p, RR
is invoked for Block 1 once again at time (t1+ p). If the
frequently read Pages A and B had not been migrated to-
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Figure 2: Normalized total overhead execution times for
GC and RR.
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(a) The baseline technique

(b) The proposed one-to-many migration technique

Figure 3: A snapshot comparison of RR using different
data migration techniques.

gether to the same Block 1, the second RR might have
been avoided because more blocks could be evenly read.
Based on this observation, we propose a one-to-many

data migration technique which splits pages in the same
block into multiple groups and moves each group to a
different block. Our technique detects read-hot pages in
a partially disturbed block and moves them to less dis-
turbed blocks during RR. Those moved read-hot pages
are less likely to cause another RR activation because
they have been moved to blocks with small read counts.
In Fig. 3.(b), our technique moves Pages A and C to
Block 1, while Pages B and D are copied to Block 2. In
this case, RR does not occur at time (t1+ p) due to low
read access counts in each block. If Blocks 1 and 2 are
erased by GC or WL before their read access counts get
close to the RR threshold value, their read disturbance
can be fully recovered without RR.
RR also incurs a significant fluctuation of I/O response

times. Fig. 4 shows a snapshot of response time varia-
tions after about 800 million read requests of the web-

search benchmark trace were performed. The x-axis and
y-axis represent the logical read access time and I/O re-
sponse time for a read request, respectively. The logical
read access time increases by one whenever a read op-
eration (to any page) is performed. The maximum read
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Figure 4: A snapshot of response times when websearch
is executed.

count was set to 40,000. In Fig. 4, there are many high
peaks of the response time because of simultaneous data
migrations and block erasures during RR. In our obser-
vation, 85% of pages in a block are moved during RR,
thus taking a long time to complete a single RR activa-
tion. If a block filled with a large number of valid data is
erased during RR, as shown in Fig. 4, the response time
is increased to 332 ms, about 66 times increase over a
normal block erasure response time. If several pages in
those valid pages are moved to other healthier blocks be-
fore an RR activation, there would be less response time
fluctuations.
Based on this observation, we also suggest a proactive

data migration technique as part of our main technique,
which mitigates the fluctuations of I/O response time. By
moving potential read-hot pages in advance before an RR
activation, our technique spreads the time overhead of
data migrations for a longer time period.

3 RedFTL: Read Disturb-Aware FTL

3.1 Overview of RedFTL

Based on two ideas explained in Sec. 2, we have de-
signed a new read disturb-aware FTL, called RedFTL,
for high-density NAND flash memory. Fig. 5 shows an
organizational overview of RedFTL. It consists of com-
mon modules of a typical FTL as well as several special
modules which are specifically designed for read-disturb
management support such as a read-hot page separator,
a good block pool, a migration manager, and a replica
mapping table.
For a given read request for a block, RedFTL first

checks whether RR is likely to be activated soon for the
block or not. If the read access count of the block is
greater than a preset threshold, called the replica cre-
ation threshold, RedFTL detects read-hot pages in the
block and moves them to other healthier blocks in order
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Figure 5: An organization of RedFTL.

to avoid an occurrence of RR. The read-hot page sep-
arator classifies read-hot pages in a block based on the
read access pattern of each page. The migration man-
ager copies a replica of a read-hot page to a healthier
block, and the location information of the replica page
is updated in the replica mapping table. When a replica
page is created, if the original read-hot page of a replica
page is immediately invalidated, the block with the orig-
inal page is likely to be selected as a GC victim block
because the number of invalid page was increased. In
order to avoid such GC behavior, the migration manager
makes a copy of the original page instead of moving the
original page. A replica page is invalidated either when
the original page of the replica page is updated or when
the block with the replica page is erased during garbage
collection or wear leveling. RedFTL distributes read re-
quests to more blocks by changing read requests to be
read in a replica page if the replica page exists.
Once replica pages in a block have serviced a signifi-

cant number of read requests, the replica page is perma-
nently moved to the new block by invalidating the orig-
inal read-hot page of that replica page. This is deter-
mined by checking whether the read access count of the
block with a replica page exceeds another preset thresh-
old, called the migration threshold, or not.

3.2 Read-Hot Page Separation

In order to select a read-hot page in a block, the read-
hot page separator compares the read-access rate RP of
a page P with the read-access rate RB of a block B. The
read-access rate RP is defined as rP

tlastP −t f irstP

where rP de-

notes the read access count of the page P, and t f irstP and
tlastP represent the first and the last logical read access
times of the page P, respectively. The read-access rate
RB can be defined similarly by rB

tlastB −t f irstB

where rB indi-

cates read access count of the block B, while t f irstB and
tlastB denote the first and the last logical read access times
of the block B, respectively. The page P is classified as a
read-hot page if RP > α ×RB. The constant parameter α

is used to control the access skewness of read requests in
determining a read-hot page. (In the current version, we
set α with 2 based on several experiments.)
If many pages in the block are continuously read at a

similar pace, they are likely to activate RR frequently if
they remain in the same block together. Thus, if read
accesses to the block B are almost evenly distributed
among its pages, the read-hot page separator selects ran-
domly a half of the valid pages as read-hot pages.

3.3 Good Block Pool Management

RedFTL manages a pool of good blocks, which we call
the good block pool (GBP). GBPmaintains less disturbed
healthy blocks, which are used in allocating the replicas
of read-hot pages. In order to prevent read-hot pages in
a block from being stored in the same block, a read-hot
page is allocated to a healthier block in the GBP accord-
ing to FIFO. If a block stores more replica pages than
a preset maximum number of replica pages per block,
the block is removed from GBP because storing a large
number of replicas in a block may waste too much space.
Moreover, if a replica page is created in a block, this
block is removed from GBP because a block with one
or more read-hot pages may have been already partially
disturbed.

4 Experimental Results

A trace-driven FTL simulator was used in our experi-
ments to evaluate our technique. Tables 1 and 2 summa-
rize various parameters of our simulator and the charac-
teristics of the benchmark traces used for our experiment,
respectively. These parameters are based on the recent
TLC NAND specification [8]. GC was triggered when
the total number of remaining free blocks was less than
4% of the total number of blocks, and it was continued
until 6% of the entire blocks became free blocks. The en-
tire blocks was set to 65,536 except for mds. Since mds

requires more blocks due to its large working set size,

Table 1: Key parameters of the FTL simulator for our
experiments

Flash Setting Value FTL Setting Value

Pages per Block 192 Mapping Page Level
Page Size 8 KB GC Greedy Policy

Page Read Latency 100 us WL Swapping
Page Write Latency 1600 us Buffer Size 256 MB

Block Erasure Latency 5 ms RR Threshold 38,000
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Table 2: Summary of benchmark traces

Benchmark Description
Read Trace Repeat
(%) Interval Count

ads [1] Display ads platform 96 1 day 150
mds [4] Media server 98 1 week 200
tpc-h [6] Accesses to a database 92 10 hours 50

websearch [2] Search engine 100 4 days 100

the number of entire blocks was set to 287,995 which is
five times of the working set size of mds. Furthermore,
migration and replica creation threshold values were set
to 90% and 70% of the maximum read count, respec-
tively. In our simulator, wear leveling is activated if the
difference of P/E cycles between the oldest block and the
youngest block is greater than 40, but it was not triggered
in our experiments.
We used highly read-dominant public benchmark

traces which were collected from actual systems. The
trace interval in Table 2 indicates the length of the time
interval during which a corresponding trace was col-
lected. We repeated the same benchmark trace multi-
ple times to generate enough read requests in our experi-
ment. The number of iterations for each trace is indicated
as the repeat count in Table 2.
Fig. 6 shows normalized overhead execution times for

data migrations and replica copies during RR when 15
pages in each block were used to store replica pages.
The x-axis indicates benchmark traces and applied tech-
niques, and the y-axis denotes the execution time for RR
which is normalized to that of baseline. Since RedFTL
creates the replica pages of read-hot pages and places
them to multiple blocks, an extra time overhead occurs.
In Fig. 6, in the case of tpc-h, many replica pages were
created, but they were vanished by frequent GC proce-
dures, thus increasing the extra time overhead. More-
over, in the case of mds, a significant number of pages
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Figure 6: A comparison of the normalized overhead ex-
ecution times for read reclaim.
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Figure 7: A breakdown of the normalized total overhead
execution times.

were classified as read-hot pages by the read-hot page
separator because many pages were evenly read at a sim-
ilar pace. Although this time overhead occupied 56% of
the total execution time for RR, RedFTL decreased the
overall execution time for RR, on average, by 50% over
baseline because it reduced the time overhead for data
migrations by 78%.
Fig. 7 illustrates the total overhead execution time for

GC and RR. The x-axis denotes the maximum number
of replica pages per block and benchmark traces, and
the y-axis represents the overhead execution time which
is normalized over baseline. The baseline is rep-
resented by 0 on the x-axis. As shown in Fig. 7, RR
activations were decreased as the maximum number of
replica pages per block gets larger. Since a large number
of replica pages can contribute to evenly distribute the
read skewness of a given workload, the occurrences of
RR was reduced. However, creating replica pages neg-
atively affected performance in the cases of websearch
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Figure 8: CDFs of service times of RR for ads and
websearch in RedFTL and baseline.
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and tpc-h when 5 pages per block are allowed to store
replica pages. A small number of replica pages do not
service many read requests. Furthermore, GC may be
frequently activated because more many blocks are re-
quired to store the same number of replica pages as the
number of replica pages per block decreases. Although
creating replica pages increased total overhead execution
time in the two cases, RedFTL reduced the total overhead
execution time for GC and RR, on average, by 34% over
baseline by reducing the number of RR occurrence.
Fig. 8 shows the cumulative distribution functions

(CDFs) of the service times of RR procedures for ads
and websearch. In both ads and websearch cases, the
proactive data migrations of RedFTL limited most ser-
vice times less than 10 ms. On the other hand, since
baseline does not activate RR until the number of reads
reaches the RR threshold, most of the valid pages in a
disturbed block were simultaneously moved in our ex-
periments, with the peak response time occurring around
332 ms.

5 Conclusion

We have proposed a novel read disturb-management
technique, which can reduce overheads from frequent
read reclaim procedures in high-density NAND flash
memory. Our new technique distributes frequently-
accessed pages in a small number of blocks to multiple
blocks, thus significantly reducing the frequency of read
reclaim procedures. Moreover, our technique spreads the
time overhead of data migrations during read reclaim by
migrating frequently-read pages early. Experimental re-
sults show that our proposed technique can reduce the
overhead execution time for read reclaim by 50% over an
existing read-disturb management technique. Our results
demonstrate that proactively distributing read requests
can be an effective method in managing the read-disturb
problem.
Our technique can be extended into several directions.

For example, the read-hot page separator of RedFTL can
be further improved for more accurate read data separa-
tion. Furthermore, our read-hot page separator needs to
be more tightly integrated with a write data separator of
a typical FTL. Finally, In order to understand real bene-
fit of our technique, we also plan to evaluate RedFTL on
a real storage system based on sub-20 nm NAND flash
memory.

6 Acknowledgments

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Ministry of
Education, Science and Technology (MEST) (No. 2012-

0006417). The ICT at Seoul National University and
IDEC provided research facilities for this study.

References

[1] http://iotta.snia.org/traces/158.

[2] http://traces.cs.umass.edu/index.php/Storage/

Storage.

[3] A. A. CHIEN ET AL. Moore’s Law: The First Ending and A New
Beginning. Tech. rep., 2012.

[4] D. NARAYANAN ET AL. Write Off-Loading: Practical Power
Management for Enterprise Storage. ACM Transactions on Stor-
age 4, 3 (2008), 1–23.

[5] H. H. FROST ET AL. Efficient Reduction of Read Disturb Errors
in NAND Flash Memory, 2010. US Patent 7,818,525.

[6] J. ZHANG ET AL. Synthesizing Representative I/O Workloads for
TPC-H. In Proc. of the International Symposium on High Perfor-
mance Computer Architecture (2004).

[7] M. KANG ET AL. Improving Read Disturb Characteristics by
Self-Boosting Read Scheme for Multilevel NAND Flash Memo-
ries. Japanese Journal of Applied Physics 48, 4 (2009), 04C062–
1–04C062–6.

[8] S.H. SHIN ET AL. A New 3-bit Programming Algorithm Using
SLC-to-TLCMigration for 8MB/s High Performance TLC NAND
Flash Memory. In Proc. of the IEEE Symposium on VLSI Circuits
(2012).

6


