SyncGC: A Synchronized Garbage Collection
Technique for Reducing Tail Latency in Cassandra

Seungwook Han
LINE
seungwook.han@linecorp.com

Sangwook Shane Hahn
Seoul National University
shanehahn@davinci.snu.ac.kr

ABSTRACT

Data-center applications running on distributed databases
often suffer from unexpectedly high response time fluctua-
tion which is caused by long tail latency. In this paper, we
find that long tail latency of user writes is mainly created
by the interference with garbage collection (GC) tasks run-
ning in various system layers. In order to address the tail
latency problem, we propose a synchronized garbage col-
lection technique, called SyncGC. By scheduling multiple
GC instances to execute in sync with each other in an over-
lapped manner, SyncGC prevents user requests from being
interfered with GC instances, thereby minimizing their neg-
ative impacts on tail latency. Our experimental results with
Cassandra show that SyncGC reduces the 99.99th-percentile
tail latency and the maximum latency by 35% and 37%, on
average, respectively.

1 INTRODUCTION

Modern large-scale data center services are built over a com-
plex distributed system so that their important requirements
such as high availability and high scalability can be efficiently
supported. Although managing a data-intensive system in a
distributed manner has many advantages in practice, appli-
cations often suffer from unexpected response time outliers,
which cause severe degradations on user experience.

Even though there can be many different factors, long tail
latency is considered to be one of the primary sources for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

APSys ’18, August 27-28, 2018, Jeju Island, Republic of Korea

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6006-7/18/08...$15.00
https://doi.org/10.1145/3265723.3265737

Sungjin Lee
DGIST
sungjin.lee@dgist.ac.kr

Jihong Kim
Seoul National University
jihong@davinci.snu.ac.kr

response time variations [4, 10, 12, 13]. In a distributed en-
vironment, when a single user request R is split into multi-
ple subrequests subR; which are processed by several dis-
tributed nodes, the response time of R is decided by the
longest subrequest response time. In other words, long tail
latency occurs when one of the nodes where subrequests
are spread out is not responding quickly over other nodes [1,
11, 14]. Since a user request can be finished only after all the
subrequests are completely served by the nodes, the slowest
node eventually decides the overall system responsiveness.

The fundamental solution that addresses long tail latency
is to assign subrequests to nodes that are ready to serve
new requests immediately [4, 8, 9]. This solution, however,
is infeasible because keeping track of all the available nodes
in large-scale distributed systems is impossible in practice.
As an alternative solution, therefore, optimizing individual
nodes so that they are able to provide consistent response
times is widely studied by many researchers [7, 10, 15].

In this paper, we identify the root cause of long tail la-
tency of a popular distributed database, Cassandra, by profil-
ing its execution behavior from the worst-case latency analy-
sis and propose new optimization techniques to improve tail
latency of Cassandra. Particularly, we focus on analyzing
long tail latency of writes. There have been many attempts
to get rid of tail latency for reads because of their higher
impact on user-perceived response times [15, 16]. However,
as workloads in data centers have shifted to write-oriented
one, eliminating tail latency for writes is becoming a chal-
lenging issue [1, 3, 17]. For example, for every write transac-
tion, Cassandra creates at least three copies of replicas and
distributes them across nodes, along with an additional era-
sure code. The write transaction is finished after the origi-
nal data, the replicas as well as the erasure code are com-
pletely stored in distributed nodes. If one of the nodes is
delayed, the entire write transaction has to be postponed,
which leads applications to experience high fluctuation in
transaction processing.

Our analysis with Cassandra reveals that high fluctuation
of write requests is mainly caused by the lack of free buffer

https://doi.org/10.1145/3265723.3265737

space in the main memory and is further exacerbated by in-
terference with garbage collection (GC) [18]. When write re-
quests come, Cassandra temporary buffers them in the main
memory, which is managed by a Java Virtual Machine (JVM).
While JVM makes it easier to develop application services
in a quick manner, it occasionally triggers JVM-GC in an at-
tempt to create free heap space by removing deleted objects
and performing compaction. JVM-GC stops all the running
Java threads and thus causes long pause times. For example,
if JVM-GC occurs while user writes are being served, the
requests have to be suspended until JVM-GC finishes.

Furthermore, once the heap space is fully filled with data,
Cassandra tries to make a room in the main memory by
flushing out the dirty data to persistent storage. This flush
operation may also be suspended by another garbage collec-
tor on a storage side. Flash-based SSDs, which are widely de-
ployed in data centers these days, should maintain enough
free NAND space to quickly absorb the data being flushed.
If not, it triggers SSD-GC to reclaim free NAND space. SSD-
GC involves lots of I/Os, so it delays the flush operation for
a long time, causing long tail latency [7].

In order to alleviate the problem above, we propose a
novel synchronized garbage collection technique, SyncGC,
which synchronizes the executions of two GC instances (i.e.,
GC for aJVM and GC for an FTL), so that they execute simul-
taneously during the same period of time. The two GC in-
stances run in separate machines (i.e., in the x86 host and in
the SSD). Therefore, by intentionally scheduling them to run
in an overlapped manner, the probability that the garbage
collectors interfere with the flushing operations can be min-
imized. This simple synchronization, however, causes fre-
quent invocations of GC which particularly have a negative
impact on the lifetime of SSDs. To avoid this, we also pro-
pose a new GC policy that prevents unnecessary garbage
collection on the SSD side.

We have implemented SyncGC in Cassandra on top of a
real-world SSD which is customized to expose synchroniza-
tion interfaces to the host. Our experimental results using
the YCSB benchmark [6] show that 99.99th-percentile and
the maximum latency has been reduce by 35% and 37%, on
average, respectively.

This paper is organized as follows. Section 2 briefly ex-
plains how Cassandra deals with write requests from clients
and gives results showing the problem of long tail latency
in Cassandra. After analyzing why tail latency occurs un-
der write-intensive workloads, in Section 3, we explain the
details of the proposed SyncGC technique. We demonstrate
experimental results with YCSB in Section 4. Section 5 con-
cludes the paper with future directions.

Write request Cassandra

. Memtable

Case @ o |

Response .4

Heap space
Case @ g
P | Memtable §
o0 . < ’—'? 3
) i Allocate é
Response || i | i Free 2
<
9
o
=
S
Case ® B
<
=

~
<
®
3
S

[

S
o

v

Flush
777777777 Allocate
Response | ——————— :l ':

Allocate .
block
—

Data blocks Flush data

2604035 4SS

Commit Log

Fig. 1. Write process in Cassandra

2 ANALYSIS OF TAIL LATENCY

Figure 1 shows how Cassandra handles write requests, par-
ticularly focusing on two system components: a main mem-
ory and an SSD. Cassandra is written in the Java program-
ming language, so its heap space is managed by a Java Vir-
tual Machine (JVM). Cassandra is based on the LSM-tree al-
gorithm [19], so it internally maintains a sorted list of key-
value pairs in the data structure, called a memtable, in the
main memory [2, 3]. When the memtable becomes full or
reaches a certain threshold, key-value pairs are persistently
flushed to the SSD at once.

When a user write request comes, Cassandra writes a log
to the commit log in storage to maintain data consistency,
and then stores the requested data in the previously allo-
cated free space of the memtable. The write request is then
finished, and a result is sent to a client (the case (D in the
Figure 1). If there is no free space available in the memtable,
Cassandra asks more memory space for JVM to create a new
memtable. After the free-space allocation, the requested data
is stored in the new memtable, and the user request is then
finished (2). If Cassandra fails to find any available space
in the heap, it starts to flush pending dirty data kept in the
memtables to the SSD. After the dirty data are persistently
written, the memtables are released, and the allocated mem-
ory returns to the free memory pool in the heap (®). This
flush operation takes a long time because it involves disk
I/Os. Thus, Cassandra runs a flush thread that evicts the
memtables in background when the amount of accumulated
data reaches a configured threshold value.

0.995

Percentile
o
O
o

0.985
[Normal response
0 Delay by JVM-GC
[0 Delay by SSD-GC —e—
0.98 L .

0 3 6 9 12
Latency (sec)

Fig. 2. Cumulative distributions of long latency

In order to understand the latency characteristic of Cas-
sandra, we collect response times of write requests while the
YCSB benchmark runs [6] and plot the CDF graph of them,
which is shown in Figure 2. We observe that Cassandra seri-
ously suffers from long tail latency. We highlight the graph
with three different colors. The blue-line indicates response
times of the requests that are immediately served by Cas-
sandra with no delays (i.e., the case D in Figure 1). 99% of
the requests are categorized as the blue, and their average
latency is shorter than 0.1 second. The green line represents
response times of the requests which are delayed while allo-
cating more free space in the heap (2)). Overall, the alloca-
tion of free memory space is done quickly, but it sometimes
takes a relatively long time which reaches 2 seconds in the
worst case. Moreover, we observe that few requests (colored
in red) are suspended for a very long time (~ 12 seconds) to
wait for the flush thread to empty the heap space by flushing
out dirty data (®).

After close examinations, we find that two garbage collec-
tors running in the main memory, JVM-GC, and in the SSD,
SSD-GC, cause the tail latency.

2.1 Impact of JVM-GC on Tail Latency

Like many enterprise/distributed systems (e.g., Hadoop [20],
Spark [21], HBase [22], Neo4j [23], Kafka [24], Solr [25], and
ZooKeeper [26]), Cassandra is built upon the Java environ-
ment because of its benefit of faster time-to-market. Cas-
sandra delegates memory management entirely to JVM, en-
abling enterprise developers to easily manage the heap with-
out any concerns about explicit memory free, memory leaks,
and dangling pointers. The most important feature of the
JVM memory management system may be garbage collec-
tion. JVM-GC reclaims memory space occupied by deleted
objects. And, if the heap is severely fragmented, it also per-

forms compaction to create a large and continuous free space.

Since JVM-GC is a time-consuming job, if possible, JVM at-
tempts to run it in background to hide associated overheads.

While it works well in most cases, under memory inten-
sive applications, on-demand JVM-GC is unavoidable. For
example, in Cassandra, Java service logics and the memtable

* Request JVM-GC Flush start # Flush end

)

Latency (sec)
£~

— 1o riru_

222

201 8 . 21
Run time (sec)

Fig. 3. Latency fluctuation caused by JVM-GC

compete for the limited heap space, repeating memory allo-
cation and free, which leads the heap space to be fragmented
severely. To create free heap space by compaction, JVM-GC
has to be invoked in foreground, and it results in the long
suspension of running Java threads, which is often called a
stop-the-world (STW) pause.

Figure 3 illustrates the response time delays occurred while
serving user requests. In Figure 3, the x-axis is the time (unit:
second), and the blue-line represents the response times of
user requests. The red-line indicates whether JVM-GC is
running or not. At around 202, 207, and 213 seconds, JVM-
GCis triggered on demand to reclaim free heap space, which
typically requires 1-2 seconds. Since user requests have to
wait for JVM-GC to finish, they are delayed by the same
amount. Note that Figure 3 shows the start and end times of
the flush operation that will be explained later.

Some might think that the response time fluctuation can
be mitigated by applying better JVM-GC policies. OpenJDK
supports various JVM-GC policies, such as Paralle]l-GC, CMS-
GC, and G1-GC. Parallel-GC utilizes available cores in the
system to run multiple GC instances in parallel, and is used
as a default GC policy. CMS-GC attempts to reduce long
pause times of full JVM-GC by dividing it into multiple sub-
phases. G1-GC further improves CMS-GC to bound pause
times within a specific value and also employs better com-
paction algorithms. Table 1 compares the average pause times
of the three GC policies. CMS-GC and G1-GC show less GC
overheads than Parallel-GC, but still show pretty long pause
times. Moreover, CMS-GC and G1-GC incur more frequent
GC invocations, which means that they often interfere with
user requests. As a result, the latency fluctuation by JVM-
GC cannot be completely removed, regardless of the type of
GC policies.

Table 1: GC pause times and invocation counts of var-
ious JVM-GC policies

| Type | Parallel-GC | G1-GC | CMS-GC |
Pause time (Avg.) 458ms 203ms 59ms
Count 66 123 158

N

- Clean state ——1 1.77
e Dirty state — 1.58
i)
<
1.02
B 1
N
<
£
<)
=z
0 th th i
99.9 99.99 Maximum

Fig. 4. Impact of SSD-GC on tail latency
2.2 Impact of SSD-GC on Tail Latency

Another source that greatly increases overall tail latency is
SSD garbage collection. If Cassandra finds that it is impos-
sible to create sufficient free heap space though JVM-GC, it
begins to empty the memtables by flushing pending data to
the SSD. This flush operation is, however, often delayed by
SSD-GC. To quickly write the data being sent from Cassan-
dra, the SSD should maintain enough free NAND blocks. If
free NAND blocks are exhausted, the SSD triggers GC, sus-
pending the flush operation until enough NAND blocks are
created. For example, in Figure 3, the flush operation starts
at 201 second, but it does not finish until 222 seconds be-
cause of the delay by SSD-GC. Since SSD-GC requires much
longer time than JVM-GC, its impact on tail latency is more
significant. In the above example, the response time of a user
request blocked by SSD-GC increases to 7 seconds.

In order to confirm the impact of SSD-GC, we carry out
additional experiments with a clean SSD and a dirty SSD.
Here, the clean SSD is a fresh-out-of-box (FOB) SSD only
with free NAND blocks. Since enough free blocks are avail-
able, SSD-GC is never triggered while running a benchmark.
The dirty SSD is an SSD that has been used for a long time
and thus has many dirty blocks that require SSD-GC in the
near future. Figure 4 shows that, with the clean SSD, long
tail latency is not observed — the 99.9th and 99.99th per-
centile latency is almost the same as the maximum latency.
On the other hand, compared to the clean SSD, the dirty
SSD shows 1.58x and 1.77x longer latency, respectively, for
the 99.99th percentile and the maximum.

3 DESIGN OF SYNCGC

We have seen that two garbage collectors, JVM-GC and SSD-
GC, badly affect tail latency. The ultimate solution to get rid
of the interventions by GC is to completely hide or eliminate
GC overheads themselves, but it is practically infeasible as
we already dicussed in Section 2.1. Rather than eliminating
GC overheads, SyncGC attempts to minimize its negative
impact by scheduling multiple GC instances to run in an
overlapped manner.

Figure 5 illustrates a basic idea of SyncGC, comparing it
with the conventional Cassandra. As shown in Figure 5a,
JVM-GC and SSD-GC are triggered depending on their own

Request Ack.

Latency
© Delay [‘Delav | ‘ Delay |
5 User Req. User Reg.
] I | I |
c
©
"
w
[0
o
2 SSD-GC SSD-GC
wv
} 1
! T
Time
(a) Baseline
Request Ack.
Latency b |
> ;Y—JI
S oDy, e Reduced
2 K Latency
©
"
"
©
o
[=]
@ SSD-GC
} 1
T —T
Time

(b) SyncGC
Fig. 5. Comparison of baseline and SyncGC

internal conditions, without any awareness of the status of
another garbage collector. Thus, right after user requests are
interrupted by JVM-GC, they are halted by SSD-GC again.
SyncGC hides such frequent GC interruptions by means of
explicitly scheduling SSD-GC in sync with JVM-GC as in
Figure 5b. The negative impact of JVM-GC does not disap-
pear even with SyncGC, but long latency caused by SSD-GC
can be hidden behind JVM-GC.

While it is conceptually simple, in order to realize the idea
of SyncGC in Cassandra with an SSD, the refactoring of the
existing GC modules, in addition to defining new interfaces
for synchronization, is necessary. In the following subsec-
tion, we explain this issue in detail.

3.1 Overall Architecture of SyncGC

Figure 6 shows an overall architecture of SyncGC, along
with its operational flow. A SyncGC module is implemented
as part of Cassandra inside JVM, and is designed to interact
with the two GC modules in the JVM and the SSD. When
JVM-GC is triggered, the SyncGC module is informed that a
new GC operation just started () in Figure 6). Then, SyncGC
decides whether or not SSD-GC is required, and, if so, it esti-
mates how many NAND blocks should be garbage collected.
This is the responsibility of the block reclamation policy in
SyncGC ((2). The number of blocks to be reclaimed is then
delivered to the FTL inside the SSD, and the FTL keeps per-
forming SSD-GC until the required free blocks are obtained
(®). After JVM-GC is finished (@), the SyncGC asks for the

/ Java \ / SyncGC Module \
Garbage Collector

@ Block reclamation policy

MemTable-

@ SyncGC_Enter

JVM-GC
®) SyncGC_Start

Java Virtual Machine
IFIFI«

(@ SyncGC_Return

e
1 Zero ! Required
\ @ END / Blocks Blvckg

y
Address Mapping

Fig. 6. Overall architecture of SyncGC

Extended Garbage
Collector

Storage
SyncFTL

FTL to terminate SSD-GC since JVM-GC stopped and user
requests will be issued soon ((5).

Creating interfaces between the SyncGC and the JVM-
GC modules is straightforward since these are both imple-
mented in the same virtual machine. At the beginning of the
PSScavenge: : invoke() function which is invoked when
JVM-GC starts, we just add few lines of code that call the
function SyncGC_Enter (). Letting the SyncGC module know
when JVM-GC stops can be done in a similar manner. We
add few code lines that invoke SyncGC_Return() at the end
of the PSScavenge: : invoke () function.

Making SyncGC communicate with the SSD FTL is rather
complicated because they run in separate systems. We use
the SCSI generic I/0 (SG_IO) interface that enables user ap-
plications to directly send custom SCSI commands to a de-
vice though the ioct1() system call. For the sake of simplic-
ity, only one custom SCSI command is added, which delivers
the number of NAND blocks to be reclaimed as a command
parameter. This SCSI command is differently encapsulated
by two functions of the SyncGC module, SyncGC_Start ()
and SyncGC_Stop(). For the SyncGC_Start () function, the
parameter value is set larger than 0, so it automatically trig-
gers SSD-GC to create free blocks. On the other hand, the
parameter value is always 0 for SyncGC_Stop(). Since free
blocks are not necessary anymore, the FTL terminates SSD-
GC if it is running. To add the new SCSI command, the mod-
ification of the SSD controller that runs the FTL is required.
We have modified Samsung’s SM843T SSD controller [5],
but there is no serious modification of the existing FTL mod-
ule — it is extended to start or stop garbage collection upon
receiving SyncGC commands.

3.2 Block Reclamation Policy

The block reclamation policy of SyncGC is responsible for
deciding the number of free blocks to be garbage collected

150

Gréedy
Baseline —e—

120

90 T

60

30

The number of free blocks

0

0 30 60 90 120 150 180 210 240 270

Run time (sec)
Fig. 7. Free blocks created by Baseline and Greedy

by SSD-GC. We discuss two possible policies below, compar-
ing their pros and cons.

Greedy policy: It reclaims as many NAND blocks as pos-
sible while JVM-GC runs. The greedy policy is simple yet ef-
fective in terms of minimizing the interventions by SSD-GC.
SyncGC just needs to call SyncGC_Start () with the param-
eter of oo and invoke SyncGC_Stop() to stop SSD-GC. With
the greedy policy, a plenty of free NAND blocks can be re-
claimed, which enables us to complete the flush operation
with minimal delays. Figure 7 shows experimental results
that compare the greedy policy with the baseline (original
Cassandra). While the baseline often experiences the short-
age of free blocks, the greedy policy maintains large enough
free blocks to absorb data being flushed by Cassandra.

The major drawback of the greedy policy is that it results
in a quick wear-out of NAND flash, shortening the SSD life-
time. This is because it forces the FTL to select premature
NAND blocks as victims for GC. For example, suppose that
an NAND block with hot data (which are frequently up-
dated) is selected as a victim. The hot data in the block are
moved to other NAND blocks, but they are likely to be in-
valided soon after their movement. Consequently, moving
the hot data turns out to be useless, and extra writes per-
formed for moving them just waste the limited P/E cycles
of NAND blocks.

Memtable-aware policy: In order to solve this problem,
we propose an alternative approach, called a memtable-aware
policy. This policy is based on an idea that if there exist suf-
ficient free NAND blocks to accommodate the memtables
that will be flushed by Cassandra, it is unnecessary to re-
claim more free NAND blocks. For example, if the total size
of the memtables is 3 GB, at most 3 GB free space needs to be
prepared on the SSD side. In other words, reclaiming more
free blocks are unnecessary and just wastes the SSD lifetime.
However, if free NAND space smaller than the memtables
is maintained, the performance degradation caused by on-
demand SSD-GC is unavoidable.

Therefore, a key challenge with the memtable-aware pol-
icy is how to accurately estimate the amount of the pending

Baseline =2
i Greedy mmm
e p— 12 Memtable-Aware mmm—m o,
e I3
1063
0.999
@ Iy 9
= [
=) 755756
8 = 86694
$ 0.998 2
o IJ g 6
©
S
0.997
) 3
Baseline 2.072.052.01
Greedy
0.996 Memtable-Aware
0 3 6 9 12

0

Latency (sec)

999" 99.99" Maximum

(a) CDF of response times (b) 99.9/99.99/Max latency

Flush time (sec)

25 T T T 490

23 465

460

N
=

430

[
©

409

Reclaimed blocks

403
400

=

15 370
Baseline Greedy Memtable-Aware

(c) Memtable flush times

Baseline Greedy Memtable-Aware

(d) Block erase counts

Fig. 8. Experimental results with SyncGC

data accumulated in the memtables which will be evicted
soon from the main memory. This is done by keeping track
of the status of the memtable management module of Cas-
sandra. We can easily monitor how many data are newly
written to the memtables. The size information is delivered
to the SyncGC module, so that it uses this number as the
parameter for SyncGC_Start().

4 EVALUATION

In order to evaluate the effectiveness of SyncGC, we have im-
plemented the SyncGC module in Cassandra 2.2.8 running
in the Linux kernel 4.4.0-38. Our host machine is equipped
with an Intel i7-2600 CPU with 16 GB DRAM. The storage
device we use is Samsung’s SM843T, which is customized
to support the synchronization interface for SyncGC. Open-
JDK 1.8.0 is set to have 12 GB of the heap space, and Parallel-
GC is used as a default garbage collector. The maximum
memtable size is 3.33 GB.

We have used YCSB (Yahoo! Cloud Serving Benchmark)
to generate workloads. Since we are interested in optimizing
the tail latency of write requests, we select the Workload A
of YCSB which is an update heavy workload. To create more
intensive workloads, four threads run simultaneously which
issue 50,000 requests each.

Impact on tail latency: Figure 8a shows a CDF graph
that compares tail latency of the three policies, Baseline,
Greedy, and Memtable-Aware, which represent the origi-
nal Cassandra, SyncGC with the greedy policy, and SyncGC
with the memtable-aware policy, respectively. As shown in
the figure, Greedy and Memtable-Aware effectively elimi-
nate the tail latency. We further analysis the latency of the
three policies for the 99.9th, 99.99th percentiles, and maxi-
mum latency in Figure 8b. As expected, two techniques em-
ploying SyncGC outperform Baseline — they show 35% and
37% shorter latency for the 99.99 percentile and the maxi-
mum, respectively. This is due to the fact that SyncGC elim-
inates the intervention by SSD-GC while flushing out the
memtables, thereby enabling us to create free space quickly.

In case of the 99.9th percentile, however, all three methods
show similar response times. This is because, even though
SyncGC prevents user requests from being delayed by SSD-
GC which is quite long, the interference with JVM-GC can-
not be avoided.

Reduced flush time: We compare the memtable flush
times of the three policies in Figure 8c. Both Greedy and
Memtable-Aware greatly reduce the time taken for flushing
the memtables - the average flush time of Baseline is 19.77
seconds, while those of Greedy and Memtable-Aware meth-
ods are 16.42 and 16.41 seconds, respectively. Particularly,
we also observe that the flush time becomes much more sta-
ble with SyncGC. The standard deviation of Baseline is
about 2.27 seconds, while Greedy and Memtable-Aware is
0.36 and 0.32 seconds, respectively.

Impact on block erasure count: Finally, we measure
the number of block erasure counts that are performed by
Baseline, Greedy, and Memtable-Aware, which is illustrated
in Figure 8d. In case of Baseline, SSD-GC is executed at the
moment only when no blocks are available to write data.
That is, in Baseline, the execution of SSD-GC is delayed
as much as possible until SSD-GC is actually necessary. Un-
like Baseline, Greedy creates as many free blocks as pos-
sible by performing SSD-GC whenever JVM-GC runs. This
aggressive GC policy, however, results in the largest num-
ber of block erasures among all of the evaluated policies.
Memtable-Aware shows the similar block erasure count as
Baseline by reclaiming only the limited number of free
blocks that will be used soon. Even if Memtable-Aware in-
tentionally regulates SSD-GC, it is not badly affected from
the lack of free NAND blocks because it always keeps large
enough free blocks to absorb data being flushed. For exam-
ple, in Figure 8b, the tail latency of Memtable-Aware is al-
most equivalent to that of Greedy.

5 CONCLUSION

In this paper, we analyzed long tail latency of Cassandra
and found that user writes were often delayed by garbage

collectors running in the main memory and the SSD, which
resulted in high fluctuation of write response times. To alle-
viate the problem of long tail latency, we proposed SyncGC
that simultaneously performed JVM-GC and SSD-GC, hid-
ing SSD-GC overheads behind JVM-GC. Our experiments
showed that SyncGC reduced the 99.99th-percentile latency
and the maximum latency by 35% and 37%, respectively. As
our future work, we plan to combine SyncGC with better
JVM-GC policies, such as G1-G1 and CMS-GC, which offer
shorter pause times but require a fine-grained GC synchro-
nization control and evaluate the reduction of tail latency in
a distributed Cassandra environment.

6 ACKNOWLEDGMENTS

We would like to thank anonymous referees for valuable
comments that greatly improved our paper. This work was
supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (Ministry of
Science and ICT) (NRF-2015M3C4A7065645 and NRF-2018R
1A2B6006878.) The ICT at Seoul National University pro-
vided research facilities for this study. Sungjin Lee was sup-
ported by the NRF grant funded by the Korea government
(Ministry of Science and ICT) (NRF-2017R1E1A1A01077410)
and the DGIST R&D Program of the Ministry of Science and
ICT (18-EE-01). (Corresponding Author: Jihong Kim)

REFERENCES

[1] G. DeCandia et al., “Dynamo: Amazon’s Highly Available Key-value
Store," in Proc. of the Symposium on Operating Systems Principles, pp.
205-220, 2007.

[2] F. Chang et al., “Bigtable: A Distributed Storage System for Structured
Data," ACM Transactions on Computer Systems, vol. 26, Issue. 2, 2008.

[3] A. Lakshman et al., “Cassandra: A Decentralized Structured Storage
System," ACM SIGOPS Operating Systems Review, vol. 44, Issue. 2, pp.
35-40, 2010.

[4] Y. Xu et al., “Bobtail: Avoiding Long Tails in the Cloud," in Proc. of the
Networked Systems Design and Implementation, pp. 329-341, 2013.

[5] SAMSUNG 843T Data Center Series, http://www.samsung.com/global
/business/semiconductor/file/media/SM843T Product_Overview-
0.pdf

[6] B.-F. Cooper et al., “Benchmarking Cloud Serving Systmes with YCSB,'

in Proc. of the ACM Symposium on Cloud Computing, pp. 143-154, 2010.

S.Yan et al., “Tiny-Tail Flash: Near-Perfect Elimination of Garbage Col-

lection Tail Latencies in NAND SSDs," in Proc. of the USENIX Sympo-

sium on File and Storage Technologies, pp. 15-28, 2017.

A. Vulimiri et al., “Low Latency via Redundancy," in Proc. of the ACM

Conference on Emerging Networking Experiments and Technologies, pp.

283-294, 2013.

L. Suresh et al, “C3: Cutting Tail Latency in Cloud Data Stores via

Adaptive Replica Selection," in Proc. of the Networked Systems Design

and Implementation, pp. 512-527, 2015.

[10] J. Dean et al., “The Tail at Scale,” ACM Communications, vol. 56, no. 2,
pp. 74-80, 2013.

[11] M. Alizadehdeh et al., “Data Center TCP,"” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 4, pp. 63-74, 2010.

7

—

8

[

[9

—

[12] M. Kambadur et al., “Measuring Interference Between Live Datacen-
ter Applications,’ in Proc. of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pp. 51, 2012.

[13] J. Li et al, “Tales of the Tail: Hardware, OS, and Application-level
Sources of Tail Latency," in Proc. of the ACM Symposium on Cloud Com-
puting, pp. 1-14, 2014.

[14] V. Jalaparti et al,, “Speeding up Distributed Request-response Work-
flows," ACM SIGCOMM Computer Communication Review, vol. 43, no.
4, pp. 219-230, 2013.

[15] W. Reda et al, “Rein: Taming Tail Latency in Key-Value Stores via
Multiget Scheduling," in Proc. of the European Conference on Computer
Systems, pp. 95-110, 2017.

[16] D. Zats et al., “DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks," in Proc. of the ACM SIGCOMM conference on Ap-
plications, technologies, architectures, and protocols for computer com-
munication, pp. 139-150, 2012.

[17] R. Sumbaly et al., “Serving Large-scale Batch Computed Data with
Project Voldemort," in Proc. of the USENILX conference on File and Storage
Technologies, pp. 18-30, 2012.

[18] A.Liljencrantz et al., “How Not to Use Cassandra,’ Cassandra Summit,
2013. https://www.youtube.com/watch?v=0u-EK]BPr;j8.

[19] P. O'Neil et al., “The Log-structured Merge-Tree (LSM-tree)," Acta In-
formatica, vol. 33, no. 4, pp. 351-385, 1996.

[20] V.-K. Vavilapalli et al., “Apache Hadoop Yarn: Yet Another Resource
Negotiator," in Proc. of the Symposium on Cloud Computing, no. 5, 2013.

[21] M. Zaharia et al., “Apache Spark: a Unified Engine for Big Data Pro-
cessing," ACM Communications, vol. 59, no. 11, pp. 56-65, 2010.

[22] HBase. https://hbase.apache.org, accessed May 28, 2018.

[23] Neod4j. https://neo4j.com, accessed May 28, 2018.

[24] Kafka. https://kafka.apache.org, accessed May 28, 2018.

[25] Solr. https://lucene.apache.org/solr/, accessed May 28, 2018.

[26] ZooKeeper. https://zookeeper.apache.org, accessed May 28,
2018.

https://hbase.apache.org
https://neo4j.com
https://kafka.apache.org
https://lucene.apache.org/solr/
https://zookeeper.apache.org

	Abstract
	1 Introduction
	2 Analysis of Tail Latency
	2.1 Impact of JVM-GC on Tail Latency
	2.2 Impact of SSD-GC on Tail Latency

	3 Design of SyncGC
	3.1 Overall Architecture of SyncGC
	3.2 Block Reclamation Policy

	4 Evaluation
	5 Conclusion
	6 Acknowledgments
	References

