
Reducing Snoop-Energy in Shared Bus-Based MPSoCs by
Filtering Useless Broadcasts

Chun-Mok Chung, Jihong Kim
School of Computer Science and Engineering

Seoul National University
Seoul, Korea

{chunmok, jihong}@davinci.snu.ac.kr

Dohyung Kim
Dept. of Computer Science and Engineering

University of California, San Diego
9500 Gilman Dr., La Jolla, CA 92093

dhkim@ucsd.edu

ABSTRACT
In shared bus-based multiprocessor system-on-a-chips (MP-
SoCs), snoop-based schemes are widely used to maintain
cache coherency. However, many of broadcasts are useless
because remote caches seldom have the matching blocks and
their tag lookups do not supply data. From the energy per-
spective, such tag lookups consume unnecessary energy and
make the system energy wasteful.

In this paper, we propose a broadcast filtering technique
to reduce snoop-energy in both of cache and bus. Broadcast
filtering is achieved by help of snooping cache and split-
bus. The snooping cache checks if matching blocks exist in
remote caches before broadcasting a coherency request. If
no remote cache has the matching block, it eliminates the
broadcast. If broadcasting is necessary, only a part of split-
bus is used so that the request is selectively broadcasted only
to the remote caches that have matching blocks. Simulation
results show that our technique reduces 90%, 50%, and 30%
of cache lookups, bus usage, and snoop-energy, respectively,
with only 2% of degradation in performance. Our technique
reduces more energy than other state-of-the-art techniques.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; C.1.2 [Porcessor Architecture]: Multiple Data Stream
Architecture (Multiprocessors)—Interconnection architectures

General Terms
Algorithms, Design

Keywords
Low-energy cache coherency, Broadcast filtering, MPSoC

1. INTRODUCTION
Advance in silicon technology has made it possible to inte-

grate multiple processors and memories, and multiprocessor
system-on-a-chips (MPSoCs) are now widely used in high-
performance mobile embedded systems [1, 2]. But higher

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07,March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003 ...$5.00.

Table 1: Distribution of snoop-hit count.

Snoop-hit count (%)
Application 0 1 2 3

cholesky 94.6 3.9 1.2 0.3
fft 99.9 0.1 0.0 0.0

lu(cont.) 81.2 18.3 0.3 0.2
lu(non-cont.) 56.5 42.7 0.5 0.3

radiosity 100.0 0.0 0.0 0.0
radix 98.6 1.2 0.2 0.0

raytrace 66.3 17.9 9.4 6.4
volrend 71.9 19.0 6.5 2.6
Average 83.6 12.9 2.3 1.2

performance means that processors consume more power.
Power consumption is a primary constraint in mobile em-
bedded system design, since mobile embedded systems, such
as cellular phones and personal game players, use batteries
as their power sources.

In shared bus-based MPSoC environments, snoop-based
schemes are widely used to maintain cache coherency. When
a local cache requires or modifies data, it broadcasts a co-
herency request message and remote caches snoop on the
broadcast to maintain data consistency. We will define that
a snoop-hit is incurred if any remote cache has the requested
block, and define the snoop-hit count as the number of re-
mote caches which have matching blocks. Table 1 shows
the snoop-hit count for several SPLASH-2 [12] applications,
running on an MPSoC that consists of four processors and
each processor has 32-Kbyte L1 cache that is four-way set-
associative with 32-byte blocks. MESI protocol [14] is used
as the snooping protocol. As the table shows, the ratio that
snoop-hit count is zero is generally high. On the average, it
reaches to 83.6% of all snooping requests. As many of co-
herency requests do not find matching blocks in any remote
cache, the broadcasts and subsequent remote cache lookups
are useless but they still consume energy. If we can know
in advance that a snoop-hit will not occur, we do not need
to broadcast and can save energy. And if we only broadcast
to the remote caches which have matching blocks, we can
further reduce the energy consumed by snoop-operations.

Directory-based protocols have the advantage that co-
herency request is sent only to the remote caches which
have the requested data. However, as a coherency request is
processed as two bus transactions in directory-based proto-
cols - one to access directory, another to access owner cache,
if we simply apply it to shared bus-based MPSoCs, the num-

126

ber of bus transactions for coherency requests is doubled and
the bus energy will be doubled, too. Moreover, if multiple
remote caches have the requested data, the number of bus
transactions is multiplied by the number of containing re-
mote caches, as the request should be sent to them [14].

In this paper, we propose a broadcast filtering technique
to reduce snoop-energy consumed by caches and bus. It
detects that no snoop-hit will occur in remote caches be-
fore broadcasting and prevents unnecessary broadcasts be-
ing sent to remote caches which don’t have the requested
data. Broadcast filtering is achieved by help of snooping
cache and split-bus. When a cache miss happens in the local
cache, the snooping cache checks if snoop-hits are detected.
If no snoop-hit is detected, the snooping cache filters out
the broadcast. If snoop-hits are detected, a part of split-bus
is used so that the request is selectively broadcasted only
to the remote caches which have matching data. Simulation
results show that our technique removes about 90% of cache
lookups and 50% of bus usage at the MPSoC containing 16
processors. Energy consumption is reduced to 70% of the
baseline model on the average. These results show that our
approach is energy efficient and we expect it to be used as
an energy efficient cache coherency scheme for the low-power
MPSoC design.

The contributions of this paper can be summarized into
three aspects. First, we proposed a technique to reduce the
cache coherency energy in shared bus-based MPSoCs by fil-
tering useless broadcasts. In our knowledge, it is the first
approach to reduce both of cache and bus energy in bus-
based MPSoCs. Second, we show an energy-efficient hybrid
(snooping + directory) cache coherency scheme for shared
bus-based MPSoCs. It is based on snoop-based scheme but
uses a directory (snooping cache) to filter out useless broad-
casts. Third, we show the excellence of our technique by
comparison with other state-of-the-art snoop-energy reduc-
tion technique.

The rest of this paper is organized as follows. We describe
related works in Section 2. The target MPSoC platform and
the proposed broadcast filtering technique will be described
in Section 3 and 4, respectively. In Section 5, we evaluate the
snoop-energy reduction achieved by our technique through
simulations, and we draw conclusions of our research in Sec-
tion 6.

2. RELATED WORK
To reduce snoop-energy, cache lookup filtering and serial

cache lookup have been proposed. Jetty [4] is a small struc-
ture attached to each cache. Before cache lookup, Jetty
is first checked and it filters out useless cache accesses. It
was based on the SMP which has a large private L2 cache.
But, Jetty did not save much energy of snooping operations
in single-chip multiprocessor systems because of the energy
overhead by itself [5]. RegionScout [6] saved more energy
than Jetty by using smaller sized filter. Jetty used one en-
try per cache block, whereas RegionScout used one entry per
region, a continuous memory area. This reduced the space
and energy costs of the filter. In these mechanisms, request
were broadcasted to all remote caches and all the filters are
accessed when a broadcast is detected, as there is one filter
per cache and each filter only has its own cache information.

Serial snooping [7] and flexible snooping [8] have been pro-
posed as serial cache lookup techniques. Serial snooping tar-
geted a hierarchical bus and flexible snooping a ring-based

Figure 1: The baseline MPSoC model in case of
containing four processors.

bus. Instead of broadcasting the request to all of the proces-
sors in parallel, remote caches are checked serially, one by
one. This process is based on the assumption that, if a miss
occurs in the local cache, it is possible to find the block in
a nearby remote cache without checking all remote caches.
A snoop packet was sent to the nearest remote cache and,
if the requested block was found in it, the snoop transac-
tion ended. Flexible snooping is an expanded version of se-
rial snooping. Serial snooping used the snoop then forward
scheme, in which snoop transaction was issued to the next
cache when the current snoop completed. However, flexible
snooping adaptively supplemented the forward then snoop
scheme and the forward scheme, which enhanced snooping
performance if a remote cache far away from the requester
had the matching block.

3. TARGET MPSOC PLATFORM
Figure 1 represents a baseline MPSoC which consists of

four processors and shared memory which we will use to
describe our technique, although the technique proposed
in this paper are not restricted to a particular number of
processors. The baseline model has been used in academic
and commercial products, such as ARM MPCore [1] and
Hydra [3]. Each processor contains private L1 cache and
uses a snoop-based cache coherency protocol. Each L1 cache
has duplicated tag to prevent snooping from delaying the
processor. The MPSoC may have a shared L2 cache to en-
hance performance. All processors and shared memory (or
L2 cache) communicate with each other through a shared
bus.

In snoop-based protocol, if a cache miss happens or the
data in local cache is modified, the local cache uses a bus
transaction to keep data consistency with remote caches.
In case of MESI protocol [14], if a read miss happens in
the local cache, the local cache generates a read transaction
(BusRd). The local cache broadcasts a block address and a
BusRd signal to remote caches and memory. Remote caches
snoop the bus transaction and a remote cache containing the
requested data supplies the data to the local cache. If no
remote cache contains the requested data, memory supplies
the data. A write hit is processed as a upgrade transaction
(BusUpgr). The local cache notifies to remote caches that
data was modified. After snooping the BusUpgr, all remote
caches containing the same data block invalidate their cache
blocks. If a write miss occurs, the local cache execute a read
exclusive transaction (BusRdX). The local cache sends a
BusRdX to all remote caches to notify that it will contain
that data block exclusively. A remote cache containing the

127

���������	

��	�������
�����������
�

������	��	����
����	�������������������	

��	������

���
���

���

����� ��!��

�	

��	

�����

�"�

�� #	��$ %�����

�&'

()��*���
�

�����
�	

�����

(+

, , , ,

��

��������������
 ��
����	����������

%-

�"

!"

��

!"

�.

!"

��

!"

Figure 2: Operation and architecture of snooping
cache in the 4-way MPSoC.

requested block transfers the data to the local cache and
all remote caches invalidate their cache blocks. If a cache
block should be evicted and it is dirty, the local cache writes
back the dirty block data into memory using a write-back
transaction (BusWB). As the same block does not exist in
remote caches, remote caches do not perform any operation
after snooping a BusWB.

4. FILTERING USELESS BROADCASTS
In this section, we explain how to detect and filter out

useless broadcasts, if none or some of remote caches have
the requested data.

4.1 Filtering broadcasts
We use a directory, named as snooping cache, to determine

if the requested data is contained in remote caches. With
the snooping cache, a coherency request is processed in two-
hop bus transaction: one hop from the local cache to the
snooping cache and another hop from the snooping cache
to remote caches. Figure 2 (a) shows the two-hop request:
(1) the local cache sends the request to the snooping cache
instead of broadcasting it to remote caches. (2) if a snoop-hit
is detected in the snooping cache, it broadcasts the request
to remote caches. If a snoop-miss is detected in the snooping
cache, there is no broadcast and no remote cache lookup.

The snooping cache has the sharing information per data
block in L1 caches. It is different from conventional directory
which keeps the ownership information per data block in
lower-level memory hierarchy. To contain the data sharing
information in caches, the snooping cache is organized as
a set-associative cache which consists of a tag array and a
flag vector(FV) array. It does not have data array. If an
MPSoC contains P processors and each processor has a W -
way set-associative cache with S sets, the snooping cache is

organized as P ×W ways and S sets. As the snooping cache
should determine if a requested block exists in other caches,
one set of tags contain all tags with the same index in all
L1 caches. We chose a conservative way size, because all
sets having the same index in L1 caches may have different
tags. The length of tag is the same to L1 cache and a flag
vector consists of P flag bits. Each flag bit indicates if a
corresponding L1 cache contains the same tag. Figure 2
(b) shows the snooping cache organization when an MPSoC
consists of four processors (P = 4) and each L1 cache is
direct-mapped (W = 1).

The snooping cache operates like traditional set-associative
cache. If the snooping cache receives a coherency request
with a block address, it selects a set using an index part
of address. After comparing the tag part of address with
tags, it outputs a corresponding flag vector and snoop-hit
information. To keep tag and flag vector up-to-date, the
snooping cache is updated whenever any L1 cache is up-
dated. When a new tag is added to any L1 cache, it is also
added to the snooping cache and the corresponding flag bit
is set. If the tag is already present in the snooping cache,
only the corresponding flag bit is set. When a tag is deleted
from any L1 cache, the corresponding flag bit in the snoop-
ing cache is cleared. If all the flag bits are cleared, the tag
itself is deleted from the snooping cache.

4.2 Selective broadcasting
Let’s assume that P2 requests a block which only P3 has

in Figure 2 (a). In a shared bus architecture, as there is
a snoop-hit in the snooping cache, a coherency request is
broadcasted to all remote caches and they look up their
tags. Although P1 and P4 do not have the data, they per-
form unnecessary cache lookups. We know which remote
caches contain the requested data from the flag vector in
the snooping cache. If the snooping cache selectively broad-
casts the request only to P3, we can reduce the number of
cache lookups.

To selectively broadcast the request, we adopted a split-
bus architecture, an extension of Heish et al’s [9] bus seg-
mentation technique. They divided bus lines into two seg-
ments and connected frequently communicating components
into same bus segment to minimize bus energy. We ex-
tended one segmentation model to multiple-segmentation
model, where the number of bus segments is adaptively de-
termined according to the number of processors. Figure 3
shows our split-bus architecture applied to the baseline MP-
SoC. A processor or snooping cache is connected to each bus
segment. A splitter connects two adjacent bus segments and
transfers signals between them only if it is enabled. The
split-bus works like a monolithic bus if all splitters are en-
abled. An arbiter and flag vector control the ON/OFF of the
splitters. If a snoop-hit is detected in the snooping cache,
the bits in flag vector are used to ensure that a request is se-
lectively broadcasted only to the remote caches that contain
the requested data. Detail operations of split-bus will be de-
scribed in next subsection. Besides the selective broadcast-
ing, the split-bus reduces the bus usage in snoop-operations.

4.3 Cache coherency operations with broad-
cast filtering

The operation sequence of bus transaction is modified af-
ter applying broadcast filtering. We describe the operation
sequence of each bus transaction for cache coherency oper-

128

Figure 3: The MPSoC with a split-bus.

ation to show that broadcast filtering technique is available
at all kinds of coherency operations.

BusRd: Figure 4 shows the operation sequence of BusRd,
when P2 requests and only P3 has the data. (1) the local
cache(P2) requests bus use to the arbiter to perform BusRd
transaction. (2) the arbiter permits the bus use. At the
same time, it enables the splitters(S2) between local cache
and snooping cache. (3) the local cache(P2) sends a request
to snooping cache. (4) the snooping cache checks the flag
vector. If remote caches contain the requested block, it en-
ables the splitters(S3) corresponding to those remote caches
and sets the flag bit corresponding to the local cache. (5) if a
snoop-hit is detected, snooping cache broadcasts the request
to remote caches. Otherwise, it sends the request to mem-
ory. (6) remote caches(P3) snoop the request and supplies
the requested data to the local cache(P2).

BusRdX: Its operation is similar to BusRd. It uses Bus-
RdX signal instead of BusRd and the snooping cache clears
flag bits corresponding to remote caches in (4), because re-
mote caches invalidate their cache blocks.

BusUpgr: It operates like BusRdX. But, BusUpgr does
not perform (6), as the local cache already has the data.

BusWB: After performing (1)∼(3) of BusRd, the snoop-
ing cache removes corresponding tag and flag vector, and
sends BusWB to memory to write back the data.

From the perspective of performance, cache coherency op-
eration takes additional time - as much time as one bus
transaction and one snooping cache latency - by broadcast
filtering. It is because coherency request is processed in two-
hop bus transaction and the snooping cache is checked to
know if remote caches contain the requested data. However,
if a snoop-miss is detected in the snooping cache, it does not
broadcast the request to remote caches and no cache lookup
happens in remote caches. In MESI protocol, memory must
wait until it is certain that no cache will supply the requested
data before driving the bus [14]. Therefore, the time taken
during snooping cache lookup can be offset by removed L1
cache lookup time, if the latencies of snooping cache and L1
tag lookup are similar. So, the performance overhead will
be proportional to the snoop-hit ratio. We will evaluate the
performance overhead of broadcast filtering by experiment.

5. PERFORMANCE EVALUATION

5.1 Methodology
We evaluated the effect of broadcast filtering through sim-

ulation based experiments. The results of simulation show
the performances of proposed techniques in the perspective
of component activity, energy, and performance. We used
CATS [10], an extended version of SimpleScalar [11] for an

�� �� �� ��

�� �� �� ��

��	
���

�� ��

���� �� �� ��

��

�����
��

�����

��

������������ � � �

��

��

Figure 4: The procedure of BusRd transaction after
applying broadcast filtering.

MPSoC simulation. It supports multiple processors, pri-
vate cache, shared bus, shared memory, and MESI protocol
for cache coherency. We executed programs in SPLASH-
2 [12] with various number of processors (2, 4, 8, and 16)
and generated traces about cache coherency operations such
as request type, address, and cache updates. To estimate
the energy consumption during snooping operations, we de-
signed an energy estimator. With the traces generated from
CATS, it counts the number of snooping cache accesses, re-
mote cache lookups, active bus segments, and active splitters
for each coherency operation. After the analysis of traces, it
estimates the energy consumed in each component by multi-
plying an empirical energy coefficients gained from CACTI
[13] and Heish’s work [9].

5.2 The activities of cache and bus
To evaluate how many of the unnecessary cache lookups

are filtered by our technique, we counted the number of
cache lookups and bus segments usage during cache co-
herency operations before and after using broadcast filter-
ing. Figure 5 shows the number of cache lookups and bus
usage during cache coherency operations as a function of
processor number. The Baseline means the number of cache
lookups without broadcast filtering. The BF Pn indicates
that the broadcast filtering is applied and n indicates the
number of processors. The values are normalized to the
baseline result with the same number of processors.

In all applications, moderate number of cache lookups
are removed after applying broadcasts filtering, regardless
of the number of processors. On the average, the number
of cache lookups is reduced to near the 10% of baseline.
The reduction ratio is proportional to the snoop-miss ratio
of each application, as our technique filters out snooping
requests expected to be snoop-miss. So, in fft, radiosity,
radix, the numbers of cache lookups become near to zero,
as their snoop-miss ratio is almost 100% and our technique
filtered out most of broadcasts. In most of programs, the
relative amount of lookups increases according to the num-
ber of processors, except for lu(non-cont.). It is because of
the unfiltered useless lookups.

Broadcast filtering also reduces the bus segment use in
snooping operations, as it prevents unnecessary broadcast-
ings from using bus segments and makes only necessary bus
segments are used to broadcast snooping requests to the re-
mote caches that have the requested block. The more bus
usage is reduced as the number of processor increases. On
the average, bus segment usage decreases to 52% of baseline
model in the MPSoC which consists of 16 processors.

129

�
�
��
��
��
	

��
��
�
��
�
�
	�
��
�
�
�
�
�

�
�
��
��
��
	

��
�
��
�	
�
�
	
�
��
�
��
�
	

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

cholesky fft lu
(cont.)

lu (non-
cont.)

radiosity radix raytrace volrend average

Baseline BF_P2 BF_P4 BF_P8 BF_P16

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

cholesky fft lu
(cont.)

lu (non-
cont.)

radiosity radix raytrace volrend average

Baseline BF_P2 BF_P4 BF_P8 BF_P16

Figure 5: The number of cache lookups and bus
usage.

5.3 Energy and performance
Figure 6 shows the energy consumed by snooping opera-

tions in the MPSoCs with 2∼16 processors. Snoop means
the energy consumed by cache and bus to perform coherency
operation and Overhead indicates the energy consumed in
snooping cache and splitters to perform broadcast filtering.
All values are normalized to the baseline model with the
same number of processors.

Since the energy consumption is proportional to the num-
ber of cache lookups and bus usage, the snooping energy
decreases after broadcast filtering is applied. The more en-
ergy is saved as the number of processors increases, because
the number of useless broadcasts increases with more proces-
sors. The more energy is saved, with the lower snoop-hit ra-
tio - such as fft, radix, radiosity, because more useless cache
lookups and bus usage are eliminated. raytrace consumes
more energy than the baseline model in case of two proces-
sors because of overhead, but energy reduction excels the
overhead with more processors. In the MPSoC containing
16 processors, snooping energy is reduced to 47% in maxi-
mum, and to 68% on the average, compared to the baseline
model. Overhead occupies about 10% of cache coherency
energy and the amounts are bigger in the applications hav-
ing the lower snoop-miss ratios, because the overhead is not
reduced, although the snoop-energy is reduced, and its rel-
ative amount becomes large.

As previously described, if a snoop-hit is detected, broad-
cast filtering has the performance overhead due to two-hop
request broadcast and snooping cache latency. To evaluate
the performance overhead, we calculated the average cache
coherency operation latencies (the times from local cache’s
sending a coherency request to its receiving the data) of two
cases, when bus latencies are one cycle (B1) and 10 cycles
(B10). The latencies of data cache and snooping cache are
assumed to be one cycle in both cases - we estimated the
latencies using CACTI [13] and verified that there was little
difference and they can be performed in one cycle. If we as-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

B
as

el
in

e
B

F_
P2

B
F_

P4
B

F_
P8

B
F_

P1
6

cholesky fft lu (cont.) lu (non-
cont.)

radiosity radix raytrace volrend average

Sn
oo

pi
ng

 e
ne

rg
y

Overhead

Snoop

�
�
��
��
��
	

��

�
�
�
�	

	�
�
�

Figure 6: The snoop-energy and overhead by broad-
cast filtering.

sume LBaseline and LBF are the latencies before and after
applying broadcast filtering, the performance overhead can
be calculated as follow:

TOverhead =
(LBF − LBaseline)× snoop-hit ratio

LBaseline

Table 2 shows the performance overhead of broadcast fil-
tering in the MPSoC which has four processors. The first
and second columns mean the applications and their snoop-
hit ratios. The third and fourth columns represent the over-
heads of two cases. In all applications, the overhead is small
and latencies increase only 3.3% and 2.0%, on the average.
The reason of such small overhead can be explained in two
characteristics. First, as the snooping cache broadcasts the
coherency request to remote caches only when a snoop-hit
is detected, the overhead is proportional to the snoop-hit
ratio. Second, as the cache coherency latency is mainly oc-
cupied by the bus transactions for data copy, the overhead
by two-hop request is small.

Table 2: The performance overhead of broadcast
filtering.

Application Snoop-hit TOverhead (%)
ratio (%) B1 B10

cholesky 5.4 1.1 0.7
fft 0.1 0.0 0.0

lu(cont.) 18.8 3.8 2.3
lu(non-cont.) 43.5 8.7 5.3

radiosity 0.0 0.0 0.0
radix 1.4 0.3 0.2

raytrace 33.7 6.7 4.1
volrend 28.1 5.6 3.4
Average 3.3 2.0

5.4 Comparison with RegionScout
To evaluate the excellence of broadcast filtering to pre-

viouse techniques, we compared the activity and energy of
snoop-operation. There were Jetty and RegionScout that
reduced snooping energy for shared bus based system. As
RegionScout showed its superiority to Jetty, we selected

130

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
as

el
in

e

R
S

B
F

P2 P4 P8 P16

N
or

m
al

iz
ed

 a
ve

ra
ge

 s
no

op
-e

ne
rg

y

Cache Bus Overhead

�
�
��
��
��
	

��

�
�
�
�	

	�
�
�

Figure 7: The snooping energy in baseline, with Re-
gionScout(RS), and with broadcast filtering(BF).

RegionScout as our comparison target. We chose the Re-
gionScout which consists of 16KB-Regions, 16-entry direct-
mapped NSRTs, and 256-entry CRHs, as this configuration
was used for the energy efficiency experiment in original pa-
per [6].

Figure 7 depicts the energy consumed in cache coherency
operations with two techniques. It shows the classified en-
ergy consumed by cache, bus, and overhead. Overhead
means the energy consumed by additional components of
each technique. Broadcast filtering (BF) reduces more en-
ergy than RegionScout (RS) and the reduction gab becomes
larger with more processors, because it reduces not only
cache energy but also bus energy. Broadcast filtering reduces
more cache energy than RegionScout, because the former
uses exact tag information (snooping cache) and the latter
uses region-based approximated hashing table (CRH). Also,
our technique reduces more bus energy than RegionScout.
Because it uses a part of split-bus, when a snoop-hit count
is less than the number of remote caches. However, Region-
Scout broadcasts the coherency request to all remote caches
and uses all bus lines.

6. CONCLUSIONS
We have proposed a broadcast filtering technique to re-

duce snoop-energy consumed by cache and bus. It detects
a snoop-miss before broadcasting and prevents unnecessary
broadcasts being sent to remote caches which do not have
the requested data. The broadcast filtering technique is
achieved by a snooping cache and a split-bus. The snooping
cache checks if a snoop-hit is detected. If a snoop-miss is
detected, the snooping cache filters out the broadcast. If a
snoop-hit is detected, a part of split-bus is used so that the
request is selectively broadcasted only to the remote caches
which have the matching data.

Simulation results show that our technique removes about
90% of cache lookups and 50% of bus usage at the MP-
SoC containing 16 processors. Due to the activity reduc-
tion, snoop-energy is reduced to about 70% of the baseline
model on the average. These results show that our approach
is energy efficient and we expect it to be used as an energy
efficient cache coherency scheme for the low-power MPSoC
design.

7. ACKNOWLEDGEMENTS
This work was supported in part by MIC & IITA through

IT Leading R&D Support Project, by the Brain Korea 21
Project, and by the MIC, Korea, under the ITRC support
program supervised by the IITA. The ICT at Seoul National
University provided research facilities for this study.

8. REFERENCES
[1] J. Goodacre and A. N. Sloss, “Parallelism and the

ARM instruction set architecture,” IEEE Computer,
July 2005.

[2] D. Courtright, “MIPS32 M4K core for multi-CPU
applications,” Embedded Processors Forum, April
2002.

[3] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu,
M. Chen, K. Olukotun, “The Stanford Hydra CMP,”
IEEE Micro, March-April 2000.

[4] A. Moshovos, G. Memik, B. Falsafi, and A.
Choudhary, “Jetty: filtering snoops for reduced energy
consumption in SMP servers,” Proc. of the 7th
International Symposium on High–Performance
Computer Architecture, January 2001.

[5] M. Ekman, F. Dahlgren, and P. Stenström,
“Evaluation of snoop-energy reduction techniques for
chip-multiprocessors,” Proc. of the First Workshop on
Duplicating, Deconstructing, and Debunking, May
2002.

[6] A. Moshovos, “RegionScout: exploiting coarse grain
sharing in snoop-based coherence,” Proc. of the 32nd
International Symposium on Computer Architecture,
June 2005.

[7] C. Saldanha and M. Lipasti, “Power efficient cache
coherence,” Workshop on Memory Performance
Issues, in conjunction with ISCA, June 2001.

[8] K. Strauss, X. Shen, and J. Torrellas, “Flexible
snooping: adaptive forwarding and filtering of snoops
in embedded-ring multiprocessors,” Proc. of the 33rd
international Symposium on Computer Architecture,
June 2006.

[9] C. T. Heish and M. Pedram, “Architectural energy
optimization by bus splitting,” IEEE Transactions on
Computer–Aided Design of Integrated Circuits And
Systems, April 2002.

[10] D. Kim, S. Ha, and R. Gupta, “CATS:Cycle Accurate
Transaction-driven Simulation with Multiple
Processor Simulators,” Proc. of Design Automation
and Test in Europe, April 2007.

[11] D. Burget and T. Austin, “The SimpleScalar tool set
version 4.0,” http://www.simplescalar.com/v4test.html.

[12] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, “The SPLASH-2 programs: characterization
and methodological considerations,” Proc. of the 22nd
Annual International Symposium on Computer
Architecture, June 1995.

[13] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: an
integrated cache timing, power, and area model,”
WRL Research Report 2001/2, August 2001.

[14] D. E. Culler, J. P. Singh, and A. Gupta, Parallel
computer architecture: a hardware/software approach,
Morgan Kaufmann Publishers, 1999.

131

