
FineDedup: A Fine-Grained Deduplication Technique for
Flash-Based SSDs

Taejin Kim, Sungjin Lee, and Jihong Kim

School of Computer Science and Engineering
Seoul National University, Korea

{taejin1999, chamdoo, jihong}@davinci.snu.ac.kr

ABSTRACT

In order to improve the lifetime of flash-based solid state
drives (SSDs), data deduplication is rapidly adopted in re-
cent SSDs. By preventing redundant data from being writ-
ten to flash memory, data deduplication extends the over-
all lifetime of SSDs, avoiding a large number of redundant
writes. Existing deduplication techniques for SSDs, however,
fail to fully exploit potential benefits of data deduplication
because they are typically designed to eliminate redundant
data at a coarse-grained level. In this paper, we propose a
fine-grained deduplication technique for flash-based SSDs,
called FineDedup. By using a more fine-grained deduplica-
tion unit, FineDedup improves the likelihood of eliminating
duplicate data. Using a fine-grained deduplication unit, how-
ever, inevitably increases the memory requirement because
it needs to keep more information in the memory. Further-
more, because of the data fragmentation problem caused by
fine-grained deduplication, the overall read response time is
also significantly increased. FineDedup resolves these techni-
cal difficulties by employing hybrid mapping and defragmen-
tation techniques. Our evaluation results show that FineD-
edup reduces the amount of data written to flash memory
by up to 32% over the existing deduplication techniques,
improving the storage lifetime by the same amount. This
improvement comes with less than 5% read response time
overhead over the existing techniques, requiring a negligible
memory space increase.

1. INTRODUCTION
NAND flash-based solid-state drives (SSDs) have been

widely used in many consumer devices like mobile phones,
laptops, and desktop PCs due to their low-power consump-
tion, high performance, and high shock resistance. As the
price-per-byte of NAND flash memory is rapidly decreasing,
NAND flash-based SSDs are considered to be a viable stor-
age solution even for high-performance enterprise systems.

In NAND flash memory, reads and writes are performed
in a unit of a page. Because of its ‘erase-before-write’ na-
ture, a block consisting of multiple pages must be erased
before programming (or writing) new data to it. Unfortu-
nately, as the semiconductor process is scaled down and the
multi-level cell (MLC) technology is introduced, the num-
ber of program/erase (P/E) cycles allowed for each block
is significantly reduced. For example, 5x nm single-level cell
(SLC) NAND flash memory supports 10K P/E cycles, but
in recent 2x nm MLC NAND flash memory, the number of
P/E cycles is reduced to 3K [1, 2]. The reduction in the
number of P/E cycles seriously limits the overall lifetime of
flash-based SSDs, making it difficult for SSDs to be used in

various computing environments.
In order to prolong the lifetime of flash-based SSDs, data

deduplication techniques have been widely used in recent
SSDs because they reduce the amount of data written to
flash memory by preventing duplicate data from being writ-
ten again [8, 9]. As a result, only non-duplicate data, i.e.,
unique data, are stored in SSDs. In most deduplication schemes
for SSDs, the unit of data deduplication is a single page
whose size is usually 4K-8K. Using a page as a deduplica-
tion unit seems to be reasonable because a page is the unit of
a read or write operation as well. However, this page-based
deduplication technique loses many chances of eliminating
duplicate data. We observed that up to 48% of unique pages
actually contain mostly identical data. The existing tech-
niques, however, cannot completely eliminate the unneces-
sary writes for the duplicate segment in those pages since
they are considered as unique pages. Furthermore, it is ex-
pected that the advantages of the deduplication technique
would significantly diminish as the page size of flash memory
increases to 16KB due to the recent technical trend [3, 4].

In this paper, we propose a fine-grained deduplication
technique for flash-based SSDs, called FineDedup. The pro-
posed FineDedup technique is different from other existing
deduplication techniques in that it increases the likelihood of
finding duplicates by using a finer deduplication unit which
is smaller than a single page (e.g., one fourth of a single
page). With a smaller deduplication unit, many data seg-
ments within a page can be detected as a duplicate one, so
the amount of data written to flash memory can be reduced
greatly regardless of a physical page size.

To effectively incorporate fine-grained deduplication into
flash-based SSDs, the following two types of technical issues
must be addressed properly. First, fine-grained deduplica-
tion requires a larger memory space than a coarse-grained
one because it needs to keep more metadata in memory
to find small-size duplicate data. Second, with fine-grained
deduplication, unique data segments from partially dupli-
cate pages can be scattered across several physical pages.
This consequently results in data fragmentation which seri-
ously degrades the overall read performance. The proposed
FineDedup technique is designed to take full advantage of
fine-grained deduplication with small memory overhead as
well as a low read performance penalty. Our evaluation re-
sults show that FineDedup prolongs the lifetime of SSDs by
up to 32% over page-based deduplication while requiring a
negligible memory space increase. This improvement comes
with a read performance penalty less than 5% over page-
based deduplication.

The rest of the paper is organized as follows. In Section 2,

we briefly review the existing deduplication techniques for
SSDs. The motivation of the paper is presented in Section
3. We describe the proposed FineDedup technique in detail
in Section 4, and then evaluate its effectiveness using real-
world traces in Section 5. Finally, Section 6 concludes with
a summary.

2. RELATED WORK
The most well-known approach that improves the storage

lifetime is to optimize flash firmware algorithms. As men-
tioned previously, because of the “erase-before-write” na-
ture of NAND flash memory, flash storage devices employ
a flash translation layer (FTL) that supports address map-
ping, garbage collection, and wear-leveling algorithms [5, 6,
7]. These firmware algorithms incur a lot of extra write/erase
operations, seriously shortening the overall lifetime of a stor-
age device. For this reason, a large number of studies have
been focused on reducing such extra operations to improve
the storage lifetime. The firmware-level optimization has
been effective in improving the lifetime of flash-based SSDs.
However, considering the decreasing lifetime of recent high-
density NAND flash memory [1, 2], more advanced solutions
that further improve storage lifetime are urgently required.

Data deduplication techniques, which are originally devel-
oped for backup systems, are regarded as one of the promis-
ing approaches for extending the storage lifetime because of
their ability that reduces the amount of write traffic sent to
a storage device. Data deduplication techniques can be cate-
gorized into two types, fixed-size deduplication and variable-
size deduplication, depending on their chunking strategies.
Fixed-size deduplication divides an input data stream into
fixed-size chunks [8, 9, 12]. Then, it prevents those dupli-
cate chunks whose data are already stored in flash mem-
ory from being rewritten to flash memory. Unlike fixed-size
deduplication, the chunk size of variable-size deduplication
is not fixed [10, 11]. Instead, it decides a cut point between
chunks using a content-defined chunking (CDC) algorithm
which divides the data stream according to the contents.

In general, variable-size deduplication exhibits a higher
percentage of removed writes than fixed-size deduplication
because it adaptively changes the size of chunks by analyzing
the contents of an input data stream so that more data can
be deduplicated. However, variable-size deduplication works
efficiently when it is adopted at the level of an operating sys-
tem or a file system where the entire data contents as well as
the system-level information are available. Furthermore, the
CDC algorithm often requires relatively high computational
power and a large amount of memory space. Thus, variable-
size deduplication is not appropriate to be employed at the
level of a storage device where computing and memory re-
sources are severely constrained. For this reason, most ex-
isting deduplication techniques for SSDs employ fixed-size
deduplication, which is relatively simple and does not re-
quire lots of hardware resources.

Similar to the existing deduplication technique, the pro-
posed FineDedup technique is also based on fixed-size dedu-
plication. Using a more fine-grained deduplication unit, how-
ever, FineDedup improves the likelihood of eliminating du-
plicate data, complementing existing fixed-size deduplica-
tion techniques which exhibit a relatively low deduplication
ratio in comparison with variable-size deduplication.

3. MOTIVATIONS

0%

20%

40%

60%

80%

100%

PC Synth Sensor Dev

%
 o

f
R

e
q

u
e

st
s

a
cc

o
rd

in
g

 t
o

D
u

p
li

ca
te

d
 C

h
u

n
k

s

4

3

2

1

0

Figure 1: The percentage of the requests according to the
number of duplicate chunks.

Existing deduplication techniques for SSDs use a single
page as a chunk for data deduplication [8, 9]. If entire con-
tents of a requested page are the same as those of a certain
page which has been previously written to flash memory,
the requested page is not written to flash memory. On the
other hand, if there is no page in flash memory whose con-
tents are the same as those of requested one, it means that
the requested page is unique. Therefore, the requested page
has to be written to flash memory. The main motivation of
this work is the observational result that many pages which
are regarded as unique ones actually contain many duplicate
data segments that match those of previously written pages.
Thus, in existing techniques, many duplicate data are writ-
ten to flash memory even though they have already been
written before.

In order to support our claims, we analyzed how many
chunks turn out to be redundant when the chunk size is
smaller than a single page. For our evaluation, we used sev-
eral I/O traces collected from a desktop PC and a number of
server systems used for a hardware synthesis, a sensor data
analysis, and a software development. In our evaluation, the
page size is 4 KB and the chunk size is set to 1 KB. Figure 1
shows the percentage of the requests according to the num-
ber of duplicate chunks. If all the chunks within a requested
page are duplicate, it means that there exists a page in flash
memory whose contents are identical to the requested one.
Only in this case, page-based deduplication can eliminate
a duplicate write for that page. However, if the number of
duplicate chunks within a requested page is between 1 and
3, the page-based deduplication will write that page to flash
memory because entire contents are not identical. Note that
we call such pages partially duplicate pages. As shown in
Figure 1, pages with 4 duplicate chunks account for 8% -
88% of the total requested pages. On the other hand, pages
with 1-3 duplicate chunks account for 2% - 34%. This means

 0

 0.2

 0.4

 0.6

 0.8

 1

256B 512B 1KB 2KB 4KB 8KB ReqN
o

rm
a

liz
e

d
 A

m
o

u
n

t
o

f
W

ri
tt

e
n

 D
a

ta

Chunk Size

Figure 2: The amount of data written with varying chunk
sizes in PC workload.

that many duplicate data are unnecessarily written to flash
memory when the size of a chunk is large.

We also investigated the amount of data that can be elim-
inated by data deduplication while varying the chunk size
from 256 B to 8 KB. As shown in Figure 2, when the chunk
size is 1 KB, the amount of data written to flash memory
is reduced by 33% in comparison with that when the chunk
size is 4 KB. In particular, when the size of a chunk is 8 KB
(i.e., when the physical page size is assumed to be 8 KB),
only 10% of requested data are eliminated by data dedu-
plication. This effectively shows that, as the size of a page
increases, the overall deduplication ratio, i.e. the percentage
of removed writes, decreases significantly. As pointed out in
Section 1, the physical page size of NAND flash memory
has been increased as the semiconductor process is scaled
down [3, 4]. Therefore, it is expected that the deduplication
ratio of the existing deduplication technique will be signif-
icantly reduced in the near future. In order to resolve this
problem, the chunk size of deduplication techniques needs
to be smaller than a page size. As depicted in Figure 2, the
deduplication ratio is saturated when the chunk size is 1
KB. Thus, we use it as a default chunk size in the rest of
this paper.

4. FINE-GRAINED DEDUPLICATION
In this section, we describe the proposed FineDedup tech-

nique in detail. We first explain the overall architecture of
FineDedup and describe how FineDedup handles read and
write requests in Section 4.1. We introduce a read perfor-
mance penalty and memory overheads caused by FineDedup
in Sections 4.2 and 4.3 and explain how these problems can
be resolved.

4.1 Overall Architecture of FineDedup
Figure 3 shows the architecture of FineDedup with its

main components and how it handles write requests. Upon
the arrival of a write request, FineDedup stores requested
data temporarily in an on-device buffer, which is managed
by an LRU algorithm. When the requested data are evicted
from the buffer, FineDedup divides the data into several
chunks. Note that the chunk size is 1 KB in this work, but
a different size of a chunk can be used with FineDedup.

For each chunk, FineDedup computes a fingerprint, using
a collision-resistant hash function. In this work, we use an
MD6 hash function, which is one of the well-known cryp-
tographic hash functions. A fingerprint is used as a unique
ID that represents the contents of a chunk. FineDedup has
to compute more fingerprints than the existing deduplica-
tion schemes because of its small chunk size. To reduce the
hash calculation time, FineDedup uses multiple hardware-
assisted hash engines for parallel hash calculation. In our
observation, the time taken to compute a fingerprint using a
hardware accelerator is about 10 µs. Considering long write
latency (e.g., 1.2 ms) of NAND flash memory, the hash com-
putation overhead is negligible.

After fingerprinting, each fingerprint is looked up in the
dedup table which maintains fingerprints of unique chunks
previously written to flash memory. Each entry of the dedup
table is composed of a key-value pair {fingerprint, location},
where the location indicates a physical address in which the
unique chunk is stored. If the same fingerprint is found, it
is not necessary to write the chunk data because the same
chunk is already stored in flash memory. Instead, FineDedup
updates the mapping table so that the corresponding map-

Figure 3: An overview of the proposed FineDedup technique.

ping entry points to the unique chunk previously written.
Unlike existing page-based deduplication techniques, FineD-
edup handles all the data in the unit of a chunk. For this
reason, FineDedup must maintain a chunk-level mapping ta-
ble that maps a logical chunk address to physical chunk in
flash memory. Because of its finer mapping granularity, the
chunk-level mapping table is much larger than the existing
page-level mapping table. To reduce the memory space for
maintaining the chunk-level mapping table, FineDedup uses
a hybrid mapping strategy, which is described in Section 4.3
in detail.

If there is no matched fingerprint in the dedup table,
FineDedup stores the chunk data in a chunk buffer tem-
porarily. This temporary buffering is necessary because the
unit of I/O operations is a single page. The chunk buffer
stores the incoming chunk data until there are four chunks,
and evicts them to flash memory at once. FineDedup then
updates the mapping table so that the corresponding map-
ping entries indicate the newly written chunks. The new fin-
gerprints of the evicted chunks are finally inserted into the
dedup table with its physical location.

When a read request arrives, FineDedup reads all the
chunks that belong to the requested page from flash mem-
ory, and then transfers the read data to a host system. The
physical addresses of the chunks can be obtained by refer-
ring to the mapping table. In FineDedup, four chunks in the
same logical page can be scattered across different physical
pages. In that case, multiple read operations are required
to form the page data, which in turn significantly increases
the overall read response time. We discuss how FineDedup
resolves this problem in the following subsection.

4.2 Read Overhead Management
FineDedup effectively reduces the number of pages writ-

ten to flash memory by using a small-size chunk for dedu-
plication, but it incurs two types of additional overheads, a
read performance overhead and a memory space overhead,
which are not observed in the existing deduplication tech-
niques. In this subsection, we first introduce why the read
performance overhead happens in FineDedup, and then ex-
plain how FineDedup resolves this problem. In the following
subsection, we describe our memory space overhead reduc-
tion technique in detail.

Figure 4: Data fragmentation caused by FineDedup.

Figure 5: A packing scheme in the chunk buffer.

The main cause of the read performance degradation is
data fragmentation which occurs when chunks belonging to
same logical page are broken up into several physical pages.
Figure 4 illustrates why data fragmentation occurs in FineD-
edup. There are two page write requests Req1 and Req2 in
Figure 4. Req1 consists of four chunks ‘A’, ‘B’, ‘C’, and ‘D’,
and Req2 is also composed of four chunks ‘E’, ‘F’, ‘G’, and
‘H’. Since ‘A’ and ‘B’ are already stored in flash memory,
only ‘C’ and ‘D’ are needed to be written. Suppose that
there is a read request for page data written by Req1. In
that case, FineDedup has to read three pages page1, page2,
and page3 from flash memory to form the requested data.
The read performance penalty also could occur even when
there are no duplicate chunks in the requested page. For ex-
ample, in Figure 4, Req2 has no duplicate chunks in flash
memory, and thus all the chunks belonging to Req2 must be
written to flash memory. Because of write buffer effect, ‘E’
and ‘F’ of Req2 are written to page 3 together with ‘C’ and
‘D’, and ‘G’ and ‘H’ will be written to page 4 in the future,
as shown in Figure 4. Thus, when data written by Req2 are
read later, both page 3 and page 4 must be read from flash
memory.

One of the feasible approaches that mitigate the read per-
formance overhead is to employ a chunk read buffer. In
our observation, the access frequencies of unique chunks are
greatly skewed; that is, a small number of popular chunks ac-
count for a large fraction of total accesses to unique chunks in
flash memory. For example, according to our analysis from
real-world workloads, top 10% of the unique chunks serve
more than 70% of the total data read by a host system. By
keeping frequently accessed chunks in a chunk read buffer,
therefore, FineDedup can reduce lots of page read opera-
tions to flash memory.

In order to further reduce the read performance penalty,
FineDedup uses a chunk packing scheme. The key idea of the
chunk packing scheme is to group chunks belonging to the
same logical page in a chunk buffer and then write them to
the same physical page together. Figure 5 shows the example
of our chunk packing scheme when three page write requests
Req1, Req2, and Req3 are consecutively issued from a host
system. Req1 contains two duplicate chunks ‘A’ and ‘B’ and
two unique chunks ‘C’ and ‘D’. As expected, only ‘C’ and
‘D’ out of four chunks are sent to the chunk buffer. The next
request Req2 does not have any duplicate chunks, so all of
them are moved to the chunk buffer. As depicted in Figure 5,
the chunks ‘E’, ‘F’, ‘G’, and ‘H’ belong to the same logical
page and form single page data. Thus, FineDedup writes
them to flash memory together, leaving the chunks ‘C’ and
‘D’ in the chunk buffer. Two unique chunks ‘I’ and ‘J’ are
requested for writing by Req3, and thus there are four chunks
‘C’, ‘D’, ‘I’, and ‘J’ in the chunk buffer. All those chunks can
be written to the same physical page together because every

Figure 6: An overview of the demand-based hybrid mapping
table.

chunk of each request is not broken up into multiple pages.

4.3 Memory Overhead Management
As mentioned in Section 4.1, FineDedup handles requested

data in the unit of a chunk. Therefore, FineDedup must
maintain the chunk-level mapping table that maps a logical
chunk address to a physical chunk address in flash memory.
Since the size of a chunk is smaller than the size of a page,
the chunk-level mapping table is much larger than the nor-
mal mapping table. For example, suppose that the page size
is 4 KB and the chunk size is 1 KB. In that case, the size of
chunk-level mapping table is four times larger than that of
the page-level mapping table.

In order to reduce the amount of memory space required
for the mapping table, FineDedup employs a hybrid map-
ping table which is composed of two kinds of mapping tables:
page-level mapping table and chunk-level mapping table. As
depicted in Figure 1, duplicate pages and unique pages still
account for a considerable proportion of the total pages re-
quested for writing by a host system. For those pages, the
page-level mapping table is more appropriate because those
pages can be directly mapped to corresponding pages in flash
memory. The chunk-level mapping table is only required for
partially duplicate pages.

Figure 6 show the overall architecture of the hybrid map-
ping table in FineDedup. The primary mapping table is the
page-level mapping table and the secondary mapping table
is the chunk-level mapping table. The entry of the primary
mapping table is either the physical page address in the flash
memory or the index of the secondary mapping table. If the
requested page is duplicate one, the corresponding entry of
the primary mapping table directly points to the physical
address of the existing unique page in flash memory. Simi-
larly, if the requested page is unique one, that page is writ-
ten to flash memory. Then, the corresponding entry fo the
primary mapping is updated to point to the newly written
unique page. Finally, if partially duplicate page is requested
for writing, FineDedup allocates a new entry in the sec-
ondary mapping table. As depicted in Figure 6, each entry
is composed of four fields, each of which points to the physi-
cal chunk address in flash memory. FineDedup then updates
the new entry so that each filed points to the physical chunk
address. The corresponding entry of the primary mapping
table indicates the newly allocated entry in the secondary
mapping table.

Using the hybrid mapping table, FineDedup can reduce
the amount of memory space for keeping a mapping table.
The problem of this hybrid mapping approach is that the size
of the mapping table greatly varies according to the charac-
teristics of workloads. For example, if some workloads have
many partially duplicate pages, the secondary mapping table
size becomes huge. On the other hand, for workloads with

Trace Description
Written Read
Data Data

PC
Web surfing, emailing and

3.1 GB 40 MB
document editing, etc.

Sensor
A sensor data collected during

2.6 GB 660 KB
a semiconductor fabrication process

Synth
Synthesizing

2.5 GB 170 KB
hardware modules

Dev
Coding and compiling the

4.8 GB 86 MB
Linux kernel source

M-media
Downloading and playing

3.2 GB 36 MB
multimedia files

Table 1: A summary of traces for evaluation.

only unique pages or duplicate pages, the secondary map-
ping table size can be very small. Thus, the hybrid map-
ping table cannot be directly adopted in real SSD devices
whose DRAM size is usually fixed. To overcome such a lim-
itation, FineDedup uses a demand-based mapping strategy;
the entire chunk-level mapping table is stored in flash mem-
ory while keeping only a fixed number of popular entries in
the DRAM memory. Demand-based mapping requires extra
page read and write operations. For instance, if a mapping
entry for a chunk to be read is not found in the in-memory
mapping table, that entry must be read from flash memory
while evicting a victim entry to flash memory. As pointed
out in Section 4.1, since a relatively small number of popu-
lar chunks are frequently accessed, the performance penalty
caused by extra reads or writes is not so high even when the
in-memory mapping table is small.

5. EXPERIMENTAL RESULTS
In this section, we first describe our experimental settings

and explain benchmarks used for the evaluation in detail. We
then assess the effect of the proposed FineDedup technique
on the SSD lifetime. Finally, we analyze the read perfor-
mance penalty and the memory overhead caused by FineD-
edup.

5.1 Experimental Settings
In order to evaluate the effectiveness of FineDedup, we

performed our evaluation using a trace-driven simulator with
I/O traces collected from various systems. The trace-driven
simulator modeled the basic operations of NAND flash mem-
ory, such as page read, page write and block erase opera-
tions, and included several flash firmware algorithms, such as
garbage collection and wear-leveling. The proposed FineD-
edup technique and the existing deduplication techniques
were also implemented in our simulator.

For trace collection, we modified Linux kernel 2.6.32 and
collected I/O traces at the level of a block device driver.
All the I/O traces include the detailed information about
I/O commands sent to a storage device (e.g., the type of
requests, logical block address (LBA), the size of requests,
and etc.) and the contents of data sent to or read from a
storage device. We recorded I/O traces while running various
real-world applications. The detailed descriptions of the I/O
traces are summarized in Table 1.

5.2 Effectiveness of FineDedup
Figure 7 shows the amount of data written to flash mem-

ory by FineDedup and the existing scheme. The results shown
in Figure 7 are normalized to Req, which represents the total
amount of data written to flash memory without data dedu-
plication. We assume the page-based deduplication tech-
nique as a baseline case. The baseline is denoted by the

 0

 0.2

 0.4

 0.6

 0.8

 1

PC Sensor Synth Dev M−mediaN
o
rm

al
iz

ed
 A

m
o
u
n
t

o
f

W
ri

tt
en

 D
at

a

FD(4KB)
FD(8KB)
BL(4KB)
BL(8KB)
Req

Figure 7: The amount of reduced data with various chunk
sizes.

 0

 0.5

 1

 1.5

 2

 2.5

PC Sensor Synth Dev M−mediaN
o
rm

al
iz

ed
 N

u
m

b
er

 o
f

R
ea

d
 P

ag
es

BL
PS
RB
Com
Req

Figure 8: The number of page read operations.

BL(4KB) for 4KB flash page and BL(8KB) for 8KB flash
page. Our FineDedup technique is denoted by FD(4KB) and
FD(8KB) for 4KB flash page and 8KB flash page, respec-
tively. The chunk size in FineDedup is set to 1KB for 4KB
flash page and 2KB for 8KB flash page.

As we can see in Figure 7, duplication of data is highly
workload dependent. The amount of data eliminated by the
deduplication technique notably increases as the chunk size
decreases in three traces, PC, Sensor, and Synth. When we
set the chunk size to one fourth of the flash page size, FineD-
edup removes more duplicate data by 14%, on average, and
up to 32% (PC) over the existing technique for 4KB flash
page. For the 8KB flash page, it also removes more dupli-
cate data by 23%, on average, and up to 50% (Dev) over the
existing technique. As expected, the benefit of FineDedup
mainly comes from the decreased chunk size because it in-
creases the probability of finding and eliminating duplicate
data.

In the Dev trace, the existing deduplication technique for
4KB flash page can effectively remove duplicate data be-
cause the slightly modified source codes are repeatedly com-
piled. However, when the 8KB flash page is used, the prob-
ability of finding duplicate data is highly decreased. In the
M-media trace, it is extremely difficult to find duplicate data
because the data were already compressed. Thus, the exist-
ing deduplication techniques and FineDedup are not effec-
tive to reduce data to be written.

5.3 Read Overhead Evaluation
As explained in Section 4.2, fine-grained chunking in FineD-

edup increases the number of page read operations. In FineD-
edup, we also have proposed the optimization techniques,
such as the packing scheme and the chunk read buffer to
reduce the additional page read operations.

Figure 8 shows the normalized number of page read oper-
ations compared with the number of read requests. The Req
refers to the number of page read requests and the BL refers
to the baseline which means the number of page read opera-

tions when no optimization technique is applied. Moreover,
the rest legends represent the number of read operations
when the optimization technique is applied, i.e. PS for the
packing scheme, RB for the chunk read buffer and Com for
the both of techniques combined. The size of the chunk read
buffer is set to the value when the effectiveness of enlarging
cache size begins to decrease for each workload. The value
for PC, Dev and M-media is 8 MB and for Sensor and Synth

is 64 KB.
As shown in Figure 8, employing the chunk read buffer

is much effective than the packing scheme for reducing the
additional page read operations in most workloads. This is
because the packing scheme can only be effective for the re-
quests containing no duplicate chunks while the chunk read
buffer can absorb the read requests to frequently accessed
chunks. FineDedup with the combined technique for the read
overhead shows only the additional read operations less than
5%, on average, compared to the existing deduplication tech-
nique.

5.4 Memory Overhead Evaluation
As explained in Section 4.3, large memory space is re-

quired to handle the partially duplicate pages. In FineD-
edup, we have proposed the demand-based hybrid mapping
table to reduce and effectively handle the required memory
size for the mapping table. In Figure 9, the effectiveness
of the proposed mapping table is evaluated in terms of the
hit ratio and the additional written data with various mem-
ory sizes for the cache. Since the primary mapping table in
FineDedup is page-level, we assume that DFTL, which is
well known demand-based scheme to exploit the page-level
mapping, is used as the baseline mapping scheme. Thus, the
target of this evaluation is only the secondary mapping ta-
ble.

Figure 9(a) shows the hit ratio of the cached SEC MT.
With 120KB-sized cache, more than 95% of the mapping
table accesses are absorbed. In addition, Figure 9(b) shows
the additional written data caused by the evicted page of
entries from the SEC MT cache. Since the mapping table
accesses occur in the middle of the read/write operations,
reducing the written data due to the eviction is important
in terms of read/write performance. Similar to the hit ratio,
the overhead due to the eviction becomes almost negligible
when the cache size is set to 120KB-sized cache in most
workloads.

Note that the memory overhead in the Dev and the M-

media traces is not as significant as the PC trace when the
cache size is small although all of them have the similar
number of read requests. It is mainly because the former
traces do not benefit from the fine-grained chunking. Since
most of data in the Dev trace are duplicate ones and the
M-media trace contains unique data. As a result, FineDedup
does not incur significant memory overhead when the fine-
grained chunking method is not effective.

6. CONCLUSIONS
In this paper, we propose a fine-grained deduplication

technique for flash-based SSDs, called FineDedup. By using
a fine-grained deduplication unit, the proposed FineDedup
technique increases the amount of data eliminated by data
deduplication by up to 32% over the existing page-based
deduplication technique, extending the SSD lifetime by the
same amount. FineDedup inevitably increases the overall
read response time because of data fragmentation. By em-

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

4KB 12KB 20KB 40KB 80KB 120KB

S
E

C
_

M
T

 C
a

c
h

e
 H

it
 R

a
ti
o

SEC_MT Cache Size

PC
Sensor

Synth
Dev

M-media

(a) Hit ratio of SEC MT cache

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

4KB 12KB 20KB 40KB 80KB 120KBN
o

rm
a

liz
e

d
 A

d
d

it
io

n
a

l
D

a
ta

 d
u

e
 t

o

S
E

C
_

M
T

 C
a

c
h

e
 E

v
ic

ti
o

n

SEC_MT Cache Size

PC
Sensor

Synth
Dev

M-media

(b) Normalized written data due
to eviction

Figure 9: The effectiveness of the demand-based hybrid map-
ping table in FineDedup.

ploying a chunk read buffer and a chunk packing scheme,
the read performance overhead is limited to less than 5%
in comparison with the existing deduplication technique. To
reduce the memory space required for a chunk-level mapping
table, FineDedup adopts the hybrid mapping scheme. Our
evaluation results show that FineDedup achieves a great life-
time improvement, requiring 120 KB more memory space.

7. ACKNOWLEDGMENTS
This research was supported by WCU(World Class Uni-

versity) program through the National Research Foundation
of Korea funded by Ministry of Education, Science and Tech-
nology (R33-2012-000-10095-0). This work was supported
by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MEST) (No. 2012-0006417).
The ICT at Seoul National University provided research fa-
cilities for this study.

8. REFERENCES
[1] B. You and et. al, “A High Performance Co-design of 26 nm

64 Gb MLC NAND Flash Memory using the Dedicated NAND
Flash Controller,” Journal of Semiconductor Technology and
Science, vol. 11, no. 2, pp. 121-129, 2011.

[2] Y. Koh, “NAND Flash Memory Scaling Beyond 20 nm,” in Pro-
ceedings of the IEEE International Memory Workshop, 2009.

[3] H. Kim and et. al, “A 159mm 32nm 32Gb MLC NAND-Flash
Memory with 200MB/s Asynchronous DDR Interface,” in Inter-
national Solid-State Circuits Conference, 2010.

[4] Y. Li and et. al, “128Gb 3b/Cell NAND Flash Memory in
19nm Technology with 18MB/s Write Rate and 400Mb/s Toggle
Mode,” in International Solid-State Circuits Conference, 2012.

[5] J. Kim and et. al, “A Space-Efficient Flash Translation Layer
for Compact Flash Systems,” IEEE Transactions on Consumer
Electronics, vol. 48, no. 2, pp. 366-375, 2002.

[6] S.-W. Lee and et. al, “A Log Buffer Based Flash Translation
Layer Using Fully Associative Sector Translation,”ACM Trans-
actions on Embedded Computing Systems, vol. 6, no. 3, 2007.

[7] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based Storage Sys-
tems,”ACM SIGOPS Operating Systems Review, 2008.

[8] F. Chen, T. Luo, and X. Zhang, “CAFTL: A Content-Aware
Flash Translation Layer Enhancing the Lifespan of Flash Mem-
ory Based Solid State Drives,” in Proceedings of the USENIX
Conference on File and Storage Technologies, 2011.

[9] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam,
“Leveraging Value Locality in Optimizing NAND Flash-Based
SSDs,” in Proceedings of the 9th USENIX Conference on File
and Storage Technologies, 2011.

[10] D. Meister and A. Brinkmann, “dedupv1: Improving Dedupli-
cation Throughput using Solid State Drives,” in Proceedings of
IEEE Symposium on Mass Storage Systems and Technologies,
2010.

[11] W. Dong and et al, “Tradeoffs in Scalable Data Routing for
Deduplication Clusters,” in Proceedings of the 9th USENIX
Conference on File and Storage Technologies, 2011

[12] K. Srinivasan and T. Bisson, G. Goodson, K. Voruganti, “iD-
edup: Latency-aware, Inline Data Deduplication for Primary
Storage,” in Proceedings of the 10th USENIX Conference on
File and Storage Technologies, 2012.

