
Dewco: Improving File System Performance of Mobile Storage Systems
Using a Copyless Defragmenter

Sangwook Shane Hahn, Cheng Ji∗, Sungjin Lee†, Li-pin Chang‡,
Jeongseok Ryoo, Liang Shi§, Chun Jason Xue∗, and Jihong Kim

Seoul National University, ∗City University of Hong Kong, †Inha University,
‡National Chiao-Tung University, §Chongqing University

When a file system becomes highly fragmented, it has
to allocate multiple storage areas, i.e., extents [1], for a
single file more frequently. In an HDD-based file sys-
tem, accessing such a highly-fragmented file degrades
its performance significantly due to the increased time-
consuming seek operations. In order to mitigate the
performance impact of file system fragmentation, a file
system commonly employs a defragmentation utility [2-
4]. The defragmentation utility rearranges file-to-storage
mappings so that files can be contiguously allocated us-
ing a small number of distinct extents, thus avoiding
expensive future seek operations. Although the defrag-
mentation process may take a long time, most HDD-
based file systems recommend defragmentation to pre-
vent gradual performance degradations caused by file
system fragmentation.

Unlike for HDD-based file systems, defragmentation
is generally not recommended for flash-based file sys-
tems [6-11]. Since flash-based storage does not require
seek operations, it is commonly believed that the ef-
fect of defragmentation on the file system performance
is rather negligible for flash-based storage. Furthermore,
since a large number of files are copied during defrag-
mentation, frequent defragmentation activities can sig-
nificantly waste the limited flash lifetime. This negative
view toward flash defragmentation has been widely ac-
cepted without any quantitative validation study. The
initial motivation of this work, therefore, was to confirm
whether defragmentation for mobile flash storage is re-
ally not needed for performance improvement.

In order to understand the impact of file system frag-
mentation on the performance of mobile flash storage,
we quantitatively evaluated the performance impact of
file fragmentation on the entire mobile I/O stack layers,
from the file system layer to the flash device layer. Our
evaluation results on representative smartphones, how-
ever, revealed somewhat surprising results over the com-
mon wisdom on flash defragmentation: the performance
of flash storage can be significantly degraded when files
are highly fragmented, and defragging flash storage can
substantially improve the performance of mobile devices.

We observed that two main factors contribute the poor
performance of a fragmented file system. First, when
fragmented files are accessed, the number of block I/O
requests is significantly increased. Although there is
nothing new with this observation, as the number of
block I/O requests increases, overhead increases in mo-
bile flash storage had quite different characteristics from
those in HDDs. In HDDs, an increase in the number of
block I/O requests dominantly affects the time spent in-
side the HDD’s storage medium, mainly from increased

seek operations. On the other hand, in mobile flash stor-
age, a processing time increase within a mobile flash
storage was less dominant as the number of block I/O
requests increases. Instead, processing time increases in
the block I/O layer and device driver affected the over-
all I/O performance more significantly [12-15]. Second,
when files were fragmented, the average I/O size of a
block I/O request becomes smaller. Since most flash
management techniques tend to exploit the spatial local-
ity in flash accesses for higher performance, a large num-
ber of scattered small block I/O requests make it difficult
for an FTL to achieve high performance because the in-
ternal I/O parallelism cannot be fully utilized [16-21].

Since we observed that file system fragmentation can
significantly degrade the performance of mobile flash
storage, as the next step, we investigated if file system
fragmentation actually occurs on mobile flash storage.
In order to quantitatively measure if and how files are
fragmented on mobile flash storage, we collected several
Android smartphones which have been used between 6
months and 2 years by engineering graduate students.
Like typical smartphone users, these users’ usage sce-
narios included popular applications for SNS messag-
ing, web surfing, emails and cameras. Even though
the Ext4 file system (which is used for our evaluated
smartphones) employs several schemes for alleviating
file fragmentation, our empirical study showed that files
can be severely fragmented on mobile flash storage [22].

Motivated by our findings from both the empirical
study and performance study on file fragmentation, we
propose a simple but novel flash storage defragmenta-
tion technique, defragger without copies (dewco), which
takes advantage of the flash storage’s internal logical-to-
physical mapping table. Dewco performs flash storage
defragmentation by remapping logical block addresses of
a fragmented file within the flash translation layer’s map-
ping table without physically moving data to new NAND
pages. As a result, the proposed technique barely affects
the lifetime of flash memories.

In order to validate the effectiveness of the proposed
dewco technique, we have implemented dewco on an em-
ulated mobile flash storage, simeMMC and simUFS. Both
simeMMC and simUFS are based on an extended Sam-
sung 843T SSD [23] which supports host-level FTLs. In
order to emulate different mobile flash storage (eMMC
[24] and UFS devices [25]), we limited the internal I/O
parallelism level of the extended 843T so that it can ef-
fectively simulate the bandwidth of mobile flash storage.
Our experimental results on simeMMC and simUFS show
that dewco can improve the throughput of Ext4 by up to
108% without sacrificing the lifetime of flash storage.



References

[1] MANTHUR, A., CAO, M., AND BHATTACHARYA,
S. The New ext4 File System: Current Status and
Future Plans. In Proceedings of Linux Symposium
(2007).

[2] E4defrag - Online Defragmenter for Ext4 File Sys-
tem. http://manpages.ubuntu.com/manpages/
trusty/man8/e4defrag.8.html.

[3] Condusiv Diskeeper. http://www.condusiv.

com/products/diskeeper/.

[4] Auslogics Disk Defrag. http://auslogics.com/
en/software/disk-defrag/.

[5] Samsung SSD Performance Enhancement &
Maintenance. http://www.samsung.com/

semiconductor/minisite/ssd/support/

faqs-03.html.

[6] Frequently Asked Questions for Intel Solid State
Drives. http://www.intel.com/content/www/

us/en/support/software/000006110.html.

[7] Crucial SSD and HDD Support & Mainte-
nance. http://www.crucial.com/usa/en/

support-system-maintenance-defragment-

hard-drive.

[8] KEHRER, O. O&O Defrag and Solid State
Drives. http://www.oo-software.com/en/

docs/whitepaper/ood_ssd.pdf.

[9] LIND, A. Auslogics: How to Defrag Disk Drives
The Right Way. http://www.auslogics.com/

en/articles/how-to-defrag/.

[10] Windows 8 TRIM SSD Instead of Defragmenta-
tion. http://www.eightforums.com/
tutorials/8615-optimize-drives-defrag-

hdd-trim-ssd-windows-8-a.html.

[11] Windows 10 TRIM SSD Instead of Defragmenta-
tion. http://www.tenforums.com/tutorials/

8933-optimize-defrag-drives-windows-10-a.

html.

[12] T10, TECHNICAL COMMITTEE OF THE IN-
TERNATIONAL COMMITTEE ON INFORMATION
TECHNOLOGY STANDARDS. SCSI TEST UNIT
READY Command. http://www.t10.org/ftp/

t10/document.06/06-022r0.pdf.

[13] T10, TECHNICAL COMMITTEE OF THE INTER-
NATIONAL COMMITTEE ON INFORMATION TECH-
NOLOGY STANDARDS. SCSI Block Commands
- 3 (SBC-3). http://www.t10.org/ftp/t10/

document.05/05-344r0.pdf.

[14] ANDERSON, D. C., CHASE, J. S., GADDE, S.,
GALLATIN, A. J., AND YOCUM, K. G. Cheat-
ing the I/O Bottleneck: Network Storage with
Trapeze/Myrinet. In Proceedings of the USENIX An-
nual Technical Conference (1998).

[15] AHMAD, I., GULATI, A., AND MASHTIZADEH,
A. vIC: Interrupt Coalescing for Virtual Machine
Storage Device I/O. In Proceedings of the USENIX
Annual Technical Conference (2011).

[16] AGRAWAL, N., PRABHAKARAN, V., WOBBER,
T., DAVIS, J. D., MANASSE, M., AND PANI-
GRAHY, R. Design Tradeoffs for SSD Performance.
In Proceedings of the USENIX Annual Technical
Conference (2008).

[17] KANG, J.-U., KIM, J.-S., PARK, C., PARK, H.,
AND LEE, J. A Multi-channel Architecture for
High-performance NAND Flash-based Storage Sys-
tem. Journal of Systems Architecture: the EUROMI-
CRO Journal (2007).

[18] PARK, S.-H., HA, S.-H., BANG, K., AND
CHUNG, E.-Y. Design and Analysis of Flash Trans-
lation Layers for Multi-channel NAND Flash-based
Storage devices. IEEE Transactions on Consumer
Electronics (2009).

[19] HU, Y., JIANG, H., FANG, D., TIAN, L., AND
LUO, H. Performance Impact and Interplay of SSD
Parallelism Through Advanced Commands, Alloca-
tion Strategy and Data Granularity. In Proceedings
of the ACM International Conference on Supercom-
puting (2011), pp. 96–107.

[20] JUNG, M., AND KANDEMIR, M. T. An Eval-
uation of Different Page Allocation Strategies on
High-Speed SSDs. In Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Systems
(2012).

[21] JUNG, M., WILSON III, E. H., AND KANDEMIR,
M. T. Physically Addressed Queueing (PAQ): Im-
proving Parallelism in Solid State Disks. In Pro-
ceedings of the International Symposium on Com-
puter Architecture (2012), pp. 404–415.

[22] JI, C., CHANG, L., SHI, L., WU, C., LI, Q., AND
XUE, C. J. An Empirical Study of File-System Frag-
mentation in Mobile Storage Systems. In Proceed-
ings of the USENIX Workshop on Hot Topics in Stor-
age and File Systems (2016).

[23] SAMSUNG 843T Data Center Series.
http://memorysolution.de/mso_upload/

out/all/SM843T_Specification_v1.0.pdf.

[24] Embedded MultiMediaCard (e.MMC). http:

//www.jedec.org/standards-documents/

technology-focus-areas/

flash-memory-ssds-ufs-emmc/e-mmc.

[25] Universal Flash Storage (UFS). http://www.

jedec.org/standards-documents/focus/

flash/universal-flash-storage-ufs.

2


