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Abstract Reward-based scheduling has been investigated for flexible applications in which

an approximate but timely result is acceptable. Meanwhile, significant research efforts have

been made on voltage scheduling which exploits the tradeoff between the processor speed

and the energy consumption. In this paper, we address the combined scheduling problem

of maximizing the total reward of hard real-time systems with a given energy budget. We

present an optimal off-line algorithm and an efficient on-line algorithm for jobs with their

own release-times/deadlines under Earliest-Deadline-First (EDF) scheduling. Experimental

results show that the solution computed by the on-line algorithm is no more than 14% worse

than the theoretical optimal solution obtained by the optimal off-line algorithm.

Keywords Dynamic voltage scaling . Variable voltage processor . Reward-based

scheduling

1 Introduction

Reward-based scheduling [2] has been introduced to handle overloaded real-time systems,

for which it is not possible to meet all the timing constraints unless some tasks are allowed

to be skipped entirely or executed partially. In the reward-based scheduling framework, the

workload of each task is divided into a mandatory part and an optional part. The mandatory

part of a task should be completed by its deadline while the optional part can be selectively
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executed before the deadline. The optional part is assumed to follow the mandatory part

in sequence and can be interrupted at any time. A reward function is associated with each

optional part; the more the optional part is executed, the higher the reward is. The reward-based

framework can model various real-time applications that allow approximate results such

as image and speech processing, multimedia, robot control/navigation systems, information

gathering, real-time heuristic search [2]. We call these applications flexible applications [13].

The goal of reward-based scheduling is to find optional parts that maximizes the total reward

while meeting all the deadlines of the tasks composed of the fixed mandatory parts and the

optional parts computed.

Recently, the energy consumption has been one of the most important design constraints,

especially for mobile devices that operate with a limited energy source such as batteries. Be-

cause the dynamic energy consumption, which dominates the total energy of CMOS circuits,

is quadratically dependent on the supply voltage, lowering the supply voltage is effective in

reducing the energy consumption. However, lowering the supply voltage also decreases the

clock speed [17]. When a given application does not require the peak performance of a VLSI

system, in order to save the energy, the clock speed (and its corresponding supply voltage)

can be dynamically adjusted to the lowest level that still satisfies the required performance.

This is the key principle of voltage scheduling technique. With a recent explosive growth

of the portable embedded system market, several commercial variable-voltage processors

were developed (e.g, Intel’s Xscale, AMD’s K6-2+, and Transmeta’s Crusoe processors.)

Targeting these processors, various voltage scheduling algorithms have been developed. The

goal of voltage scheduling is to find an energy-efficient voltage schedule with all the stringent

timing constraints satisfied. A voltage schedule is a function that associates each time unit

with a voltage level (i.e., a clock frequency).

As flexible applications are executed on variable voltage processors, the combined problem

of reward-based scheduling and voltage scheduling, which we call the reward-based voltage
scheduling problem, has been investigated [15, 16]. The reward-based voltage scheduling

problem can be viewed as a generalized version of either reward-based scheduling or voltage

scheduling by adding one more dimension to the solution space of these problems; for the

former, the processor speed as a function of time is additionally computed along with the

optional workloads, while for the latter the optional workload of each task is determined

along with the voltage schedule.

The reward-based voltage scheduling problem involves two-dimensional objectives, maxi-

mizing the total reward (from reward-based scheduling) and minimizing the energy consump-

tion (from voltage scheduling), and can be defined as duals; maximizing the total reward

within a given energy budget or minimizing the energy consumption while providing the

acceptable quality defined by reward functions. By considering different values of the con-

straint and solving the corresponding problem, designers can obtain Pareto-optimal points

which represent the exact trade-off between the solution quality and the amount of energy

required. Without loss of generality, in this paper, we consider the problem of maximizing

the total reward subject to energy constraints.

1.1 Previous work

Reward-based execution model [2] has its origin in the IC (Imprecise Computation) [4,12] and

IRIS (Increasing Reward with Increasing Service) [5] models. In the IC model, an optional

part is associated with a decreasing linear function that indicates the precision error, and the

goal is to minimize the weighted sum of the errors. Several optimal off-line algorithms have

been proposed for aperiodic IC tasks [18]. Note that an IC model can be transformed into
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a reward-based model by substituting increasing linear reward functions for the decreasing

error functions. The IRIS model corresponds to the special case of the reward-based model

without mandatory parts. In [5], an optimal off-line algorithm and an on-line algorithm for

the IRIS aperiodic tasks are presented.

Aydin et al. proposed the generalized reward-based execution model and developed an

optimal off-line algorithm for periodic tasks with concave reward functions [2]. Concave

functions (including linear functions) can model the output quality of several flexible ap-

plications such as multimedia applications, real-time heuristic search, pattern recognition,

and database query processing [2]. They also proved that the problem for convex reward

functions is NP-hard [2]. For firm real-time applications, of which reward is given by step

functions, the reward-based scheduling problem is NP-complete [18].

Voltage scheduling for variable-voltage processors has recently been extensively studied

targeting various system models. Voltage scheduling algorithms are classified into off-line and

on-line algorithms. Off-line algorithms compute static voltage schedules with the assumption

that timing parameters of each job is constant and known a priori while on-line algorithms

dynamically adjust the processor speed along with the supply voltage based on the execution

history.

For static job sets where each job has its own release time, deadline, and workload known

offline,1 Yao et al. proposed an optimal off-line voltage scheduling algorithm assuming EDF

scheduling policy [20]. The off-line scheduling problem for the static job model with ar-

bitrary priority assignment (including RM (Rate-Monotonic) or DM (deadline-monotonic)

assignment) was proved to be NP-hard, and a fully polynomial time approximation scheme

(FPTAS) for the problem was presented [22]. Several on-line voltage scheduling algorithms

have been developed for both EDF periodic tasks [1, 7, 8, 14] and fixed-priority periodic

tasks [6, 9, 14, 19]. Quantitative evaluation of existing on-line algorithms are presented

in [10].

Reward-based voltage scheduling was first addressed by Rusu et al. [15, 16]. In [16],

off-line solutions for frame-based task sets (where all the jobs have identical release times

and deadlines) and periodic EDF task sets with concave reward functions are considered.

They showed that the problem for periodic EDF task sets can be reduced to the problem for

the frame-based task sets. For tasks with identical power functions (i.e., the same switching

activity), they proved that all the tasks run at the same speed under the optimal schedule. Thus,

the problem is simply reduced to the reward-based scheduling problem solved in [2]. They also

developed an efficient off-line heuristic for tasks with different power functions. The reward-

based voltage scheduling problem for frame-based task sets with 0/1 reward functions (i.e., no

reward is given unless the optional part is completely executed.) is proved to be NP-hard and

a heuristic for the problem is presented in [15]. The reward-based voltage scheduling remains

relatively unexplored partly due to the complexity caused by multidimensional solution space

(i.e., one dimension from voltage scheduling and the other from reward-based scheduling).

1.2 Contributions

In this paper, we consider reward-based voltage scheduling for the general task model used

in [20, 22] unlike the restricted task model (e.g., frame-based task sets used in the previous

work [15, 16]). First, we describe an optimal off-line algorithm under the assumption that

1 Note that the typical periodic task model can be transformed into the static job model by considering all the

task instances within a hyperperiod of periodic tasks.
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the amount of workload (i.e., mandatory part and optional part) of each job is fixed and

known a priori. Second, we present an efficient on-line algorithm which effectively leverages

workload variations to increase the reward within energy budget. Experimental results show

that the on-line algorithm is sufficiently efficient; the quality of solution (i.e., the total reward)

computed by the on-line algorithm is no more than 14% worse than that of the theoretical

optimal solution obtained by the optimal off-line algorithm.

The rest of the paper is organized as follows. We formulate the problem in Section 2. The

optimal off-line algorithm is described in Sections 3. The on-line algorithm is presented in

Section 4. In Section 5, the experimental results are discussed. Section 6 concludes with a

summary and directions for future work.

2 Problem formulation

We consider a set J = {J1, J2, . . . , J|J |} of priority-ordered jobs with J1 being the job with

the highest priority. A job Ji ∈ J is associated with the following attributes, which are

assumed to be known off-line:� ri and di : the release time and the deadline.� mi : the mandatory workload expressed in execution cycles.� ui : the sum of mi and the upper bound of the optional workload. (i.e., the optional workload

(resp. the total workload) is selected between [0, ui − mi ] (resp. [mi , ui ]).)� ρi (·): the reward given as a function of the total workload.

We assume that the job set J follows the EDF priority as in [20]. (A job set J is said to be an

EDF job set if for any 1 ≤ i < j ≤ |J |, di ≤ d j or d j ≤ ri .) A total order on the priorities

can be provided by preferring the job with the earliest release time. For the on-line scheduling

problem, mi and ui are the worst-case values and the actual mandatory workload and upper

bound of the optional workload vary within (0, mi ] and (0, ui − mi ] during runtime.

The total workload of Ji (i.e., the sum of the mandatory and optional workloads of Ji ) is

denoted by oi and is selected between [mi , ui ], i.e., mi ≤ oi ≤ ui . From now on, we call oi

and o = (o1, o2, . . . , o|J |) the workload of Ji and the workload tuple, respectively. Associated

with each optional workload oi is a reward function ρi (oi ), which is assume to be strictly

increasing, concave, and continuously differentiable over the interval [mi , ui ] as in [2, 16].

The derivative of ρi (·) is denoted by ρ ′
i (·).

Given a workload tuple o = (o1, o2, . . . , o|J |), the total reward F , our optimization goal, is

given by F(o) = ∑|J |
i=1ρi (oi ). For a given workload tuple o, the workload of Ji is addressed

by oi [o], or briefly oi when no confusion arises. Particularly, we use m and u to denote

(m1, m2, . . . , m|J |) and (u1, u2, . . . , u|J |), respectively. Note that m and u are the lower and

upper bounds for o, respectively. The solution space of o is written byOJ , i.e.,OJ = {o|m ≤
o ≤ u}.

Since there is a one-to-one correspondence between the processor speed and the supply

voltage, we use S(t), the processor speed, to denote the voltage schedule. Given a workload

tuple o, a voltage schedule S(t) is said to be feasible for o if S(t) gives each job Ji the

required number of cycles oi [o] between its release time ri and deadline di . As with other

related work [20, 22], we assume that the processor speed can be varied continuously2 with

2 In [21], we extend the results to a processor model with a limited number of voltage levels using the simple

transformation between the continuous-voltage version problem and the discrete-voltage version problem

proposed by Kwon and Kim [11].
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a negligible overhead both in time and power. Furthermore, we model that the power P(·),
energy consumed per unit time, is a convex function of the processor speed; given a voltage

schedule S(t), the power can be written as a function of time by P(S(t)). For simplicity, we

assume that all the jobs have the same switching activity and that P(·) is dependent only on

the processor speed.

The energy-optimal voltage schedule for o is a voltage schedule S(t) feasible for o that

minimizes
∫ tf

ts
P(S(t))dt where ts and tf are the lower and upper limits of release times and

deadlines of the jobs in J , respectively. The energy-optimal voltage schedule, written as

S[o], is unique and can be obtained by Yao’s algorithm [20] in polynomial time.

From the fact that each job runs at the constant speed under an energy-optimal voltage

schedule [20, 22], we can easily establish a one-to-one correspondence between S(t) and

the the allowed execution time ai allocated to each Ji ∈ J for a fixed workload tuple o.

Given a feasible voltage schedule S, the corresponding tuple (a1, a2, . . . , a|J |) of the allowed

execution times, called a time-allocation tuple, is uniquely determined. Conversely, given a

time-allocation tuple A = (a1, a2, . . . , a|J |), the corresponding voltage schedule SA can be

uniquely constructed by assigning the constant execution speed oi/ai to Ji .

The solution space of reward-based voltage scheduling consists of the workload tuple

o (from reward-based scheduling) and the voltage schedule S (from voltage scheduling).

Note that the response time of a job Ji is uniquely determined by a time-allocation tuple

A (regardless of o) and the corresponding voltage schedule SA is feasible if and only if the

response time of a job Ji is shorter than or equal to di − ri for all 1 ≤ i ≤ |J |. Thus, in

order to simplify searching the solution space, we consider the time-allocation tuple A and

the feasibility condition in terms of A instead of the voltage schedule S. In the following,

we define the optimization goal (i.e., the total reward) and the constraints (i.e., the feasibility

condition and the energy constraints) in terms of the pair 〈A, o〉, called a schedule. For an

EDF job set J , A = (a1, a2, . . . , a|J |) is feasible if and only if the following condition is

satisfied (See [22] for a proof.):

Condition I (Feasibility Condition).

For any ri < d j (1 ≤ i , j ≤ |J |) ,
∑

k/[rk ,dk ]⊆[ri ,d j ]

ak ≤ d j − ri .

For a given job set J , the set of all feasible A’s is denoted by FJ , i.e., FJ = {A | A =
(a1, . . . , a|J |) satisfies Condition I.}. A schedule 〈A, o〉 is said to be feasible if A is feasible

(i.e., A ∈ FJ ) and o ∈ OJ (i.e., m ≤ o ≤ u). Now, we can specify the solution space of the

problem as the cartesian product FJ × OJ , which is the set of feasible schedules, i.e.,

FJ × OJ = {A | A satisfies Condition I.} × {o | m ≤ o ≤ u}
= {〈A, o〉 | 〈A, o〉 is feasible.}.

Figure 1 shows an example job setJ = {J1, J2, J3, J4, J5} where (r1, d1) = (1, 5), (r2, d2) =
(4, 6), (r3, d3) = (2, 7), (r4, d4) = (9, 11) and (r4, d4) = (0, 13). In Fig. 1(a), jobs are

assigned the allowed execution times A = (a1, a2, a3, a4, a5) = (2, 2, 2, 2, 5) and the

workloads o = (o1, o2, o3, o4, o5) = (4, 6, 4, 4, 5), respectively. Figure 1(b) shows an alter-

native schedule; 〈A, o〉 = 〈(2, 2, 2, 2, 5), (
3
√

102,
3
√

102,
3
√

102,
3
√

102, 5)〉.
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Fig. 1 Examples of schedules for the job set J = {J1, J2, J3, J4, J5} where (r1, d1) = (1, 5), (r2, d2) =
(4, 6), (r3, d3) = (2, 7), (r4, d4) = (9, 11) and (r4, d4) = (0, 13); (a) A = (a1, a2, a3, a4, a5) = (2, 2, 2, 2, 5),

o = (o1, o2, o3, o4, o5) = (4, 6, 4, 4, 5) and (b) A = (2, 2, 2, 2, 5), o = (
3
√

102,
3
√

102,
3
√

102,
3
√

102, 5)

Given a schedule 〈A, o〉, the energy consumption is given by E(〈A, o〉) = ∑|J |
i=1 ai ·

P(oi/ai ). Then, the reward-based voltage scheduling problem is formulated as follows:

Reward-Based Voltage Scheduling Problem
Find a schedule 〈A, o〉 ∈ FJ × OJ that maximizes F(o) = ∑|J |

i=1ρi (oi )

subject to E(〈A, o〉) = ∑|J |
i=1 ai · P(oi/ai ) ≤ Ebudget.

Assume that P(s) = s3, Ebudget = 107 and the reward functions are given by ρi (x) = x for

1 ≤ i ≤ 5. Then, the schedules in Fig. 1 satisfy both the timing contraints (i.e., Condition I)

and the energy constraints. However, the total reward of the schedule in Fig. 1(b) is larger.

(i.e., 4 · 3
√

102 + 5 > 23.)

For a fixed workload tuple o, the energy-optimal voltage scheduling problem is

stated as finding A ∈ FJ that minimizes E(〈A, o)〉. We denote such A by A[o] =
(a1[o], a2[o], . . . , a|J |[o]).3 By using the parameterized expression A[o], we can obtain an

equivalent formulation in which the solution space is given only by OJ :

3 In the rest of the paper, we use S[o] and A[o] interchangeably to denote the energy-optimal voltage schedule

for o.
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Find a workload tuple o ∈ OJ that maximizes F(o) = ∑|J |
i=1ρi (oi )

subject to E(〈A[o], o〉) = ∑|J |
i=1 ai [o] · P(oi/ai [o]) ≤ Ebudget.

The main source of difficulty is that A[o] is not explicitly represented in terms of o =
{o1, o2, . . . , o|J |}, thus making it difficult to explore the solution space implicitly given by a

condition where A[o] is involved (i.e., E(A[o]) ≤ Ebudget). In Section 2.1, we characterize

some useful properties of energy-optimal voltage schedules, which provides a basis of an

optimal off-line algorithm for the problem.

2.1 Characterization of energy-optimal voltage schedules

We first introduce notations which represent attributes of energy-optimal voltage schedules.

In the following, notations are defined for an arbitrary but fixed workload tuple o and its

corresponding energy-optimal voltage schedule A[o] (equivalently, S[o]). si [o] and Ii [o]

denote the (constant) speed of Ji and the union of intervals in which Ji is executed under

A[o], respectively, i.e., ‖Ii [o]‖ = ai [o] and si [o] = oi [o]/ai [o]. We call Ii [o] the execution
interval of Ji . gi [o] is used to denote P ′(si [o])/ρ ′

i (oi [o]) where P ′ is the derivative of P ,

and is called the gradient of Ji .

The voltage schedule in Fig. 1(a) is the energy-optimal voltage schedule for the work-

load tuple o = (4, 6, 4, 4, 5), i.e., A[o] = (a1[o], a2[o], a3[o], a4[o], a5[o], ) = (2, 2, 2, 2, 5).

Under the voltage schedule A[o], s1[o] = s3[o] = s4[o] = 2, s2[o] = 3 and s5[o] = 1;

I1[o] = [1, 3], I2[o] = [4, 6], I3[o] = [3, 4] ∪ [6, 7] and I5[o] = [0, 1] ∪ [7, 9] ∪ [11, 13];

and g1[o] = g3[o] = g4[o] = 12, g2[o] = 27 and g5[o] = 3.

Jk[o] represents the set of jobs scheduled at the k-th iteration of Yao’s algorithm, and

σk[o] denotes the constant speed allocated to jobs in Jk[o]. Note that σk[o] is nonincreasing

with respect to k. iti [o] is used to denote the iteration number k such that Ji ∈ Jk[o], i.e.,

Ji ∈ Jiti [o][o]. The union of execution intervals of jobs inJk[o] is denoted by Ik[o], and called

the execution interval of Jk[o], i.e., Ik[o] = ∪Ji ∈Jk [o] Ii [o] and ‖Ik[o]‖ = ∑
Ji ∈Jk [o] ai [o].

The set {Jk[o] | k = 1, 2, . . .} is a partition of J , and is represented by G[o]. In Fig. 2, Yao’s

algorithm is described by the symbols defined so far.

For the example in Fig. 1(a), J1[o] = {J2}, J2[o] = {J1, J3}, J3[o] = {J4} and J4[o] =
{J5}; σ1[o] = 3, σ2[o] = σ3[o] = 2, σ4[o] = 1; it1[o] = it3[o] = 2, it2[o] = 1, it4[o] = 3

and it5[o] = 4; I1[o] = [4, 6], I2[o] = [1, 4] ∪ [6, 7], I3[o] = [9, 11] and I4[o] = [0, 1] ∪
[7, 9] ∪ [11, 13]; G[o] = {{J2}, {J1, J3}, {J4}, {J5}}.

Jk[o] is partitioned into J 0
k [o] and J +

k [o] such that a job Ji ∈ Jk[o] belongs to J 0
k [o] if

oi [o] = mi and, otherwise, it belongs to J +
k [o], i.e.,

J 0
k [o]

def= {Ji ∈ Jk[o] | oi [o] = mi } and J +
k [o]

def= {Ji ∈ Jk[o] | mi < oi [o] (≤ ui )}.

For jobs in J +
k [o], the smallest ρ ′

i value and the largest gradient are denoted by λk[o] and

∇k[o], respectively, i.e.,

λk[o]
def= min{ρ ′

i (oi [o]) | Ji ∈ J +
k [o]} and ∇k[o]

def= max{gi [o] | Ji ∈ J +
k [o]}

≡ P ′(σk[o])/λk[o] .

When J +
k [o] is empty, ρk[o] and ∇k[o] are set to ∞ and 0, respectively. ∇k[o] is called

the gradient of Jk[o].
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Fig. 2 Yao’s algorithm to compute an energy-optimal voltage schedule

For a gradient g,G〈g〉[o] represents the subset ofG[o] that consists of job sets with gradient

g, i.e.,

G〈g〉[o]
def= {Jk[o] ∈ G[o] | ∇k[o] = g} .

For workload tuples o1 and o2, we write o1 ≈ o2 if G[o1] ≡ G[o2].4 For such o1 and o2,

the shapes S[o1](t) and S[o2](t) are similar in that the speeds rise and sink at the same time-

instants. Because Iiti [o1][o1] ≡ Iiti [o2][o2] for any job Ji in J , A[o2] = (a1[o2], . . . , a|J |[o2])

can be expressed in terms of o2 and A[o1] = (a1[o1], . . . , a|J |[o1]) as follows.

ai [o2] = oi [o2] ·
∑

J j ∈Jk [o1] a j [o1]∑
J j ∈Jk [o1] o j [o2]

(
= oi [o2] · 1

si [o2]

)
where k = iti [o1] . (1)

4 G[o1] ≡ G[o2] does not always imply Jk [o1] ≡ Jk [o2] for all k ≥ 1. However, there exists a permutation

π such that Jk [o1] ≡ Jπ (k)[o2] for all k ≥ 1.
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The relation ≈ is an equivalence relation and forms an (infinite) partition of O. Generally,

A[o] is not explicitly represented in terms of o. However, if A[o′] is available for some o′

such that o′ ≈ o, the analytic expression of A[o] can be obtained from Eq. (1). Our algorithm

in Section 3 exploits this property in searching the optimal solution.

3 Optimal off-line algorithm

In this section, we present an optimal off-line algorithm for the problem. The algorithm

starts by computing the energy-optimal voltage schedule A[u] for the workload tuple u. If

E(A[u]) ≤ Ebudget, the algorithm returns u as the optimal solution since A[u] satisfies the

energy constraint (as well as timing constraints) and F(u) is the upper bound of the total

reward. Otherwise, the algorithm sets o to u and decreases o iteratively (but not beyond m)

until E(A[o]) reaches Ebudget, as with the general descent method used for numerical opti-

mization problems [3]. Figure 3 shows a snapshot of the algorithm progress. The challenges

are how to determine the descent direction which varies continuously during search and how

to make the search complete in polynomial time while guaranteeing the optimality.

A natural choice for the descent direction is the one that minimizes the decrease in F(o)

per unit decrease in E(A[o]) (equivalently, the one that maximizes the decrease in E(A[o])

per unit decrease in F(o)). However, the difficulty lies in the fact that A[o] is not usually

expressed explicitly in terms of o, thus making it difficult to compute the differential of

E(A[o]) in closed form. Furthermore, it is not obvious that the greedy gradient-based search

always converges to the global optimal solution in our problem. The complicated solution

space implicitly described by a condition in which A[o] is involved also makes it difficult

to determine the step size that yields a polynomial bound on the running time while still

keeping the optimality.

To tackle the difficulties, we use the properties of energy-optimal voltage schedules de-

scribed in Section 2.1. The gradient defined for a job Ji and a job set Jk[o] corresponds to

the energy decrease per unit reward decrease, and plays an important role in our algorithm.

The procedure MAXIMIZE REWARD in Fig. 4 describes the overall processing steps of our

algorithm. The search is guided by the global gradient g. Initially, g is initially set to the

largest gradient among those of jobs in ∪k≥1J +
k [u]. At each iteration, g is decreased to the

level determined by the NEXT SEPARATING GRADIENT procedure.

The corresponding workload tuple o〈g〉 is initially set to u and is iteratively adjusted to

the lower level by the procedure DECREASE WORKLOADS (Fig. 5) such that each gi [o〈g〉]
does not exceed the decreased g. (Note that gi [o] decreases with o.) After each invocation of

the procedure DECREASE WORKLOADS, the following invariant on o〈g〉 is preserved, which

concisely describes the behavior of our algorithm:

oi [o〈g − �g〉] =

⎧⎪⎨⎪⎩
oi [o〈g〉] gi [o〈g〉] < g ∨ oi [o〈g〉] = mi ,

oi [o〈g〉] − �oi gi [o〈g〉] = g ∧ oi [o〈g〉] > mi .

where �g is a sufficiently small value and �oi ’s (> 0) satisfy

gi [o〈g − �g〉] = g − �g for all i s.t. gi [o〈g〉] ≥ g ∧ oi [o〈g〉] > mi . (2)
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Fig. 3 A step-by-step snapshot of the algorithm progress

Note that gi [o〈g − �g〉] is not generally given as an analytic expression which is necessary

in solving Eq. (2). Informally, �o = (�o1, �o2, . . . , �o|J |) (�oi is set to 0 for all i such

that gi [o〈g〉] < g or oi [o〈g〉] = mi .) satisfying Eq. (2) represents the search direction at o〈g〉
that results in the biggest decrease in the energy per unit decrease in the total reward.

Let us assume that o〈g − �g〉 ≈ o〈g〉, i.e.,G[o〈g − �g〉] ≡ G[o〈g〉]. Then, we can obtain

an analytic expression for gi [o] in terms of A[o〈g〉] and �o = {�o1, . . . , �o|J |}. From

Eq. (1), si [o〈g − �g〉] is given by

si [o〈g − �g〉] =
∑

J j ∈J ′ (o j [o〈g〉] − �o j )∑
J j ∈J ′ a j [o〈g〉] whereJ ′ = Jiti [o〈g〉][o〈g〉],

and gi [o〈g − �g〉] is given in terms of si [o〈g − �g〉] by

gi [o〈g − �g〉] = P ′(si [o〈g − �g〉])
ρ ′

i (oi [o〈g〉] − �oi )
, (3)
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Fig. 4 The optimal off-line reward-based voltage scheduling algorithm

Fig. 5 The algorithm to decrease the workload tuple for a given global gradient
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which is an explicit expression of �o. Therefore, we can compute �o by solving Eq. (2)

either numerically or analytically. By repeating this process, we can obtain o〈g〉 for all 0 <

g < ∇[u], however, it requires infinitely many steps because �g is assumed to be arbitrarily

small.

To bring the number of steps down to a polynomial, we exploit the fact that an equivalence

class under the relation ≈ covers sufficiently large range of o, i.e., {o〈g〉 | 0 < g ≤ ∇[u]} is

partitioned into a polynomial number of ranges O1,O2, . . . ,On :

{o〈g〉 | 0 < g ≤ ∇[u]} = ∪n
l=1Ol = ∪n

l=1{o〈g〉 | gl−1 < g ≤ gl}.

where g0 = 0 and gn = ∇[u]. We call g1, g2, . . . , gn−1 separating gradients. For the time

being, assume that the number of separating gradients is bounded by a polynomial and that

each one can be found in polynomial time. (We will prove these assumptions later in this

section.) Then, if o〈g〉 can be found for all gl−1 < g ≤ gl in polynomial time, we can obtain

o〈g〉 for all 0 < g < ∇[u] in polynomial time.

For a given o〈gl〉, we describe how to compute o〈g〉 for gl−1 < g ≤ gl . From the definition

of gl−1 and gl , we have o〈gl〉 ≈ o〈g〉, i.e., G[o〈gl〉] ≡ G[o〈g〉]. Without loss of generality,

we assume that Jk[o〈gl〉] ≡ Jk[o〈g〉] for all k ≥ 1. Then, we have

Ik[o〈gl〉] ≡ Ik[o〈g〉] and
∑

Ji ∈Jk [o〈gl 〉]ai [o〈gl〉] =
∑

Ji ∈Jk [o〈g〉]ai [o〈g〉].

For brevity, Jk , Ik and ‖Ik‖ are used to denote Jk[o〈gl〉], Ik[o〈gl〉] and ‖Ik[o〈gl〉]‖, respec-

tively. For each Ji ∈ Jk , its workload oi [o〈g〉] is set to an explicit expression of hk (hk

represents the decrease in the reward per unit decrease in the workload):

oi [o〈g〉] = γi (hk) where γi (·) is the function defined by (4)

γi (x) =

⎧⎪⎨⎪⎩
ui 0 < x < ρ ′

i (ui ),

ρ ′−1
i (x) ρ ′

i (ui ) ≤ x ≤ ρ ′
i (mi ),

mi x > ρ ′
i (mi ).

hk satisfies the following equation that corresponds to Eq. (2):

P ′( ∑
Ji ∈Jk

γi (hk)/‖Ik‖
)

hk
= g. (5)

Because the left-hand side of Eq. (5) is a strictly decreasing function of hk (from the

concavity of ρi ), hk is uniquely determined, and so are oi [o〈g〉]’s. The procedure DE-

CREASE WORKLOADS takes as inputs o〈gl〉 and g such that o〈gl〉 ≈ o〈g〉 and returns o〈g〉.
We later prove that o〈g〉 always passes through the optimal solution, i.e., the optimal so-

lution oopt is given by o〈gH.−S.Yun and J.Kimopt〉 where gopt is the unique gradient satisfying

E(A[o〈gopt〉]) = Ebudget.

To show that our algorithm runs in polynomial time, we now describe how to compute

each separating gradient in polynomial time and prove that the number of separating points

is bounded by a polynomial. Let us consider necessary conditions for a global gradient g to

a separating gradient. Suppose that g is a separating gradient. Then,
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(a) jobs in Jk1
[o〈g + ε〉] and Jk2

[o〈g + ε〉] are merged into Jk[o〈g − ε〉], or

(b) jobs in Jk[o〈g + ε〉] is divided into Jk1
[o〈g − ε〉] and Jk2

[o〈g − ε〉]
where ε is the infinitesimal. Both cases may occur simultaneously.

The necessary condition for the case (a) to occur is given by

lim
ε→0

σk1
[o〈g + ε〉] = lim

ε→0
σk2

[o〈g + ε〉], which implies

lim
ε→0

∑
Ji ∈Jk1

[o〈g+ε〉] oi [o〈g + ε〉]∑
Ji ∈Jk1

[o〈g+ε〉] ai [o〈g + ε〉] = lim
ε→0

∑
Ji ∈Jk2

[o〈g+ε〉] oi [o〈g + ε〉]∑
Ji ∈Jk2

[o〈g+ε〉] ai [o〈g + ε〉] . (6)

The second case is more complicated. For a job Ji ∈ Jk[o〈g + ε〉], let I ′
i denote Ik[o〈g +

ε〉] ∩ [ri , di ] and let J[r,d] denote {Ji ∈ Jk[o〈g + ε〉] | I ′
i ⊆ [r, d]}. Then, the necessary con-

dition for the case (b) is given by

lim
ε→0

σk1
[o〈g − ε〉] = lim

ε→0
σk2

[o〈g − ε〉], which implies

∃ r , d ∈ {min I ′
i , max I ′

i | Ji ∈ Jk[o〈g + ε〉] },

lim
ε→0

∑
Ji ∈J[r,d]

oi [o〈g + ε〉]
‖Ik[o〈g + ε〉] ∩ [r, d]‖ = lim

ε→0

∑
Ji ∈Jk [o〈g+ε〉]−J[r,d]

oi [o〈g + ε〉]
‖Ik[o〈g + ε〉]‖ − ‖Ik[o〈g + ε〉] ∩ [r, d]‖ . (7)

Provided that the separating gradients gn, gn−1, . . . , gl are identified, the next lower separat-

ing gradient gl−1 can be found by the following procedure:

(a) Replace
∑

Ji ∈Jk1
[o〈g+ε〉] ai [o〈g + ε〉] and

∑
Ji ∈Jk2

[o〈g+ε〉] ai [o〈g + ε〉] in Eq. (6) by∑
Ji ∈Jk1

[o〈gl 〉] ai [o〈gl〉] and
∑

Ji ∈Jk2
[o〈gl 〉] ai [o〈gl〉] , respectively. (Note that the latter

two are known values, since gl is already known.)

(b) Replace Ik[o〈g + ε〉] in Eq. (7) by Ik[o〈gl〉] (Note that the latter is already known.)

(c) Remove lim operators from Eqs. (6) and (7) and replace g + ε by g.

(d) Return the largest g (< gl ) that satisfies the simultaneous Eqs. (4)–(6), or the Eqs. (4),

Eq. (5) and Eq. (7).

The above procedure makes good use of the property that o〈g〉 ≈ o〈gl〉 for

all gl−1 < g ≤ gl and o〈gl〉 ≡ limε→0 o〈gl + ε〉. At each iteration, the procedure

NEXT SEPARATING GRADIENT computes the next lower separating gradient in this way. It

remains to show that the number of separating gradients is bounded by a polynomial. In

proving this property, we exploit the fact that the order on speed levels of jobs is not changed

too frequently. (Refer to [21] for the proof.)

Lemma 3.1. The number of separating gradients within (0, ∇[u]] is bounded by 4 · |J |2.

We now prove that our algorithm always computes a maximum-reward schedule for a given

energy budget. The proof is based on the rationale that the gradient of each job is as uni-

form as possible under an optimal solution. In the following, we formalize the notion of

uniform gradient and establish the link between the uniform gradient and maximum-reward

schedules.
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Definition 3.2. For a schedule 〈A, o〉 = 〈(a1, . . . , a|J |), (o1, . . . , o|J |)〉 ∈ FJ × OJ and g >

0, we say that 〈A, o〉 has a uniform gradient g, written 〈A, o〉 ∇ g, if

(a) ∀Ji ∈ J s.t. oi = ui , gi (ai , oi ) ≤ g,

(b) ∀Ji ∈ J s.t. oi = mi , gi (ai , oi ) ≥ g and

(c) ∀Ji ∈ J s.t. mi < oi < ui , gi (ai , oi ) ≡ g

where gi (ai , oi )
def= P ′(oi/ai )/ρ

′
i (oi ).

Assume that the job J5 in Fig. 1 has u5 = 5. Then, we can easily check that the schedule

in Fig. 1(b) has a uniform gradient 3 · (51/4)2/3. However, the schedule in Fig. 1(a) does not

have a uniform gradient (i.e., g1(a1, o1) = 12 �= g2(a2, o2) = 27). Note that both schedules

consume the same amount of energy but the total reward of the schedule with the uniform

gradient in Fig. 1(b) is larger. Intuitively, uniform gradient is to maximizing the total reward

what flat speed is to minimizing the total energy consumption.

Let H denote the set of maximum-reward schedules for varying values of the energy

budget e:

H def= {〈A, o〉 ∈ FJ × OJ
∣∣ ∃ E(〈A[m], m〉) ≤ e ≤ E(〈A[u], u〉) ,

〈A, o〉 is the maximum-reward schedule for e.}
≡ {〈A, o〉 ∈ FJ × OJ

∣∣ ∀〈A′, o′〉 ∈ FJ × OJ s.t. E(〈A′, o′〉) ≤ E(〈A, o〉),
F(o′) ≤ F(o)

}
.

We will prove that 〈A, o〉 ∈ H if and only if A ≡ A[o] and 〈A, o〉 has a global gradient,

and then develop an algorithm that takes g > 0 as an input and computes the schedule with

the uniform gradient g. To begin with, we consider the necessity part of the condition for

〈A, o〉 ∈ H. (Refer to [21] for the proof.)

Lemma 3.3. For any schedule 〈A, o〉 = 〈(a1, . . . , a|J |), (o1, . . . , o|J |)〉 ∈ H, A ≡ A[o] and
〈A, o〉 has a uniform gradient.

For a schedule 〈A, o〉 such that 〈A, o〉 ∇ g, we can derive the following relationship

between A and o from Definition 3.2. (Refer to [21] for the proof.)

Lemma 3.4. Let 〈A, o〉 = 〈(a1, . . . , a|J |), (o1, . . . , o|J |)〉 ∈ FJ × OJ be a schedule such
that 〈A, o〉 ∇ g. Then, ai ≡ μi 〈g〉(oi/ai ) for all 1 ≤ i ≤ |J | where

μi 〈g〉(x)
def=

⎧⎪⎨⎪⎩
ui/x x ≤ (P ′)−1(g · ρ ′

i (ui )),

(ρ ′
i )

−1(P ′(x)/g)/x (P ′)−1(g · ρ ′
i (ui )) < x < (P ′)−1(g · ρ ′

i (mi )),

mi/x x ≥ (P ′)−1(g · ρ ′
i (mi )).

We are ready to show that the converse of Lemma 3.3 also holds, implying that 〈A[o], o〉
is a maximum-reward schedule if and only if 〈A[o], o〉 has a uniform gradient. (Refer to [21]

for the proof.)
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Lemma 3.5. Given g > 0, there is a unique o ∈ OJ such that 〈A[o], o〉 ∇ g.

Lemma 3.6. For any schedule 〈A[o], o〉 ∈ FJ × OJ with a uniform gradient, 〈A[o], o〉 ∈
H.

Proof: Consider a schedule 〈A[o], o〉 such that 〈A[o], o〉 ∇ g for some g > 0. Suppose

to the contrary that 〈A[o], o〉 /∈ H. Then, there must exist o′ ∈ OJ such that o′ �= o and

〈A[o′], o′〉 ∇ g, which contradicts Lemma 3.5. Therefore, 〈A, o〉 ∈ H. �

Finally, we prove the optimality of the algorithm in Section 3.

Theorem 3.7. The procedure MAXIMIZE REWARD in Fig. 4 always returns an optimal so-
lution.

Proof: Consider o〈g〉 computed by the algorithm in Section 3. We would like to show that

〈A[o〈g〉], o〈g〉〉 ∇ g.

For Ji ∈ J such that oi [o〈g〉] = ui , it must be the case that ρ ′
i (ui ) ≥ hk . Then,

gi (ai [o〈g〉], oi [o〈g〉]) = P ′(si [o〈g〉])/ρ ′
i (ui ) ≤ P ′(si [o〈g〉])/hk = g.

Similarly, gi (ai [o〈g〉], oi [o〈g〉]) ≥ g for Ji ∈ J such that oi [o〈g〉] = mi . Finally, for Ji ∈ J
such that mi < oi [o〈g〉] < ui , it must be the case that ρ ′

i (ui ) < hk < ρ ′
i (mi ). Thus,

gi (ai [o〈g〉], oi [o〈g〉]) = P ′(si [o〈g〉])/ρ ′
i (γi (hk)) = P ′(si [o〈g〉])/ρ ′

i (ρ
′−1

i (hk))

= P ′(si [o〈g〉])/hk = g,

and we finally have 〈A[o〈g〉], o〈g〉〉 ∇ g. Consequently, from Lemma 3.6, 〈A[o〈g〉],
o〈g〉〉 ∈ H, and 〈A[o〈g〉], o〈g〉〉 is the maximum-reward schedule for the given energy

budget Ebudget.

�

4 On-Line algorithm

The off-line algorithm described in Section 3 is based on the assumption that the exact

workloads (i.e., the mandatory workload and the upper bound of the optional workload)

are known in advance. Thus, the off-line algorithm can be applied to the case when all the

jobs finish at their worst-case execution cycles. Furthermore, it can be used to compute

the theoretical lower bound with the complete execution trace information (i.e., the actual

workloads), which is useful in evaluating the performance of on-line scheduling algorithm.

However, the workload of each job varies, sometimes by a large amount, which cannot be

adequately handled by off-line scheduling alone. On-line scheduling is effective in leveraging

workload variations, and we consider an on-line algorithm for the reward-based voltage

scheduling problem.

On-line reward-based voltage scheduling differs from conventional on-line voltage

scheduling in that the energy consumption is not given as an optimization goal, but as a

constraint. Furthermore, the optimization goal is to maximize the sum of rewards associated

with optional workloads. Therefore, our on-line algorithm manages energy slack as well as

time slack. Informally, the energy slack is the residual energy reserved by an unexpected
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lower speed or idle time. For example, assume that the energy required by an off-line sched-

ule within the interval [0, t] is given by E(t) and the energy actually used at runtime is given

by E ′(t) where E ′(t) ≤ E(t). Then, the amount of energy slack reserved at time t is defined

to be E(t) − E ′(t). The energy slack is much easier to manage than time slack because it can

be directly detected and distributed among jobs executing next while for the time slack the

preemption driven by the priority makes the analysis complicated.

With regard to time slack management, conventional voltage scheduling consists of two

parts: slack estimation and slack distribution. The goal of the slack estimation part is to

identify as much available time as possible while the goal of the slack distribution part is

to distribute the time slack so that the resulting voltage schedule is as flat as possible. For

the time slack estimation, we adopt the existing method for fixed-priority tasks developed

by Gruian [6], which is based on the priority-based slack stealing method [10]. However,

in distributing the slack, we consider both the energy slack and the time slack, and try to

increase the reward as much as possible by fully utilizing the energy slack as well as time

slack.

In distributing two kinds of slacks, we exploit two properties that an optimal off-line

schedule exhibits (see Lemma 3.3.). First, the voltage schedule (as a function of time) should

be as flat as possible; a maximum-reward schedule for a given energy budget is also a

minimum-energy schedule among those with the same workload tuple. Second, the gradients

of jobs (i.e., P ′(si )/ρ
′
i (oi )) should also be as uniform as possible.

Assume that the time slack �t and the energy slack �E are available at t and can be

distributed among jobs Ji1
, Ji2

, . . . , Jin in the ready queue. Let ai j and si j be the allowed

execution time and the speed, respectively, determined by the off-line scheduler. Then, the

on-line scheduler tries to obtain an approximate solution for the following problem:

Find �ai j and �si j for j = 1, 2, . . . , n such that

P ′(si j + �si j )

ρ ′
i j

((si j + �si j ) · (ai j + �ai j ))
(8)

is as uniform as possible subject to

�t ≥
n∑

j=1

�ai j and �E ≥
n∑

j=1

P(si j + �si j ) · (ai j + �ai j ) − P(si j ) · ai j . (9)

From the convexity of P and the concavity of ρ, the gradient of Ji j given by Eq. (8) increases

both with �ai j and with �si j . Thus, it is natural to assign larger �ai j and �si j to a job with

lower gradient. Our on-line algorithm first distributes �t by incrementing �ai j ’s iteratively

until
∑n

j=1 �ai j reaches the available slack time �t and then increments �si j ’s to distribute

the remaining energy slack as in Fig. 7.

Figure 6 showan overall implementation of the on-line scheduler. The scheduler manages

the following time-varying state variables associated with each job:� time lefti : the remaining execution time of Ji .� workloadi and workload lefti : the total workload and the remaining workload of Ji .� speedi : the speed of Ji . The scheduler always updates speedi to workload lefti/ time lefti .� energy lefti : the remaining energy that can be used by Ji . The scheduler always updates

energy lefti to time lefti · P(speedi ).
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Fig. 6 The on-line scheduling algorithm

The on-line scheduler starts with a feasible off-line schedule 〈A, o〉 = 〈(a1, . . . , a|J |),
(o1, . . . , o|J |)〉. (Note that a task-level schedule (e.g., as in [16]) can be substituted for the

job-level schedule 〈A, o〉 in our on-line algorithm.) When a job Ji is released, the associated

state variables are initialized according to the off-line schedule by the UPON RELEASE pro-

cedure. During the execution of Ji , the variable time lefti is decreased at the same rate as

time passes and workload lefti and energy lefti are updated accordingly (as in the procedure

DURING EXECUTION). When Ji finishes its execution, the procedure RECLAIM SLACKS is in-

voked to collect the unused time (i.e., time lefti ) and energy (i.e., energy lefti ). Then, the time

slack and the energy slack are distributed among jobs in the ready queue by the procedure
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Fig. 7 The algorithm to distribute the time slack and the energy slack

DISTRIBUTE SLACKS; it gives a portion of the time slack to a job Jj in the ready queue by

incrementing time left j and further allocates additional energy by incrementing speed j , as

well as updating the other state variables accordingly.

The variable energy slack keeps track of the available energy that can be additionally used

by jobs executing next. As in [6], the time slack consists of several levels of slacks, each of
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which corresponds to each different priority level. The slack in each priority level represents

a cumulative value, i.e., the sum of the unused processor time left by the jobs with higher

priorities. A job can utilize the unused time of completed higher-priority jobs and contributes

to the lower priority slacks, which is called slack degradation [6]. For an EDF job set (e.g.,

obtained from a periodic EDF task set), the number of different priorities needed to completely

reflect the preemption relationship can be as large as the number of jobs |J |, while for a job

set obtained from a periodic fixed-priority task set T, only |T| levels of priorities are sufficient.

For the time being, we describe a simple (but computationally expensive) implementation

where |J | levels of slacks time slacki (1 ≤ i ≤ |J |) are managed, and then present an

equivalent, low-overhead implementation (i.e., in Fig. 8). energy slack and time slacki (1 ≤
i ≤ |J |) are initially set to zero, and updated according to the following slack management

policy:� When Ji finishes its execution, energy slacki is incremented by Ji ’s unused energy

energy lefti . Furthermore, the lower-priority time slacks, i.e., time slack j (i + 1 ≤ j ≤
|J |), are incremented by Ji ’s unused time time lefti . (See the procedure RECLAIM SLACKS.)� During the idle interval, time slack j ’s (1 ≤ j ≤ |J |) are decremented by the idle time, but

not to below zero. (See the procedure DURING IDLE TIME.)� When the time slack and the energy slack are distributed among jobs Ji1
, Ji2

, . . . , Jin

(i1 < i2 < . . . , in) in the ready queue by incrementing time lefti j
and energy lefti j

by �ai j

and �ei j (1 ≤ j ≤ n), respectively, �ai j ’s and �ei j ’s should satisfy

k∑
j=1

�ai j ≤ time slackik for all 1 ≤ k ≤ n and

n∑
j=1

�ei j ≤ energy slack.

(10)

Then, energy slack is decremented by
∑n

j=1�e j and time slack j ’s (1 ≤ j ≤ |J |) are

decremented by
∑n

j=1�a j , but not to below zero. (See the procedure DISTRIBUTE SLACKS.)� When Ji starts or resumes its execution, reset time slack j (1 ≤ j ≤ i) to zero. (see the

procedure INVALIDATE time SLACK.)

As in other algorithms which are based on the priority-based slack stealing method [1,6],

we incorporate the method presented in [19] into the time-slack management policy; when

there is only one job Ji ready for execution, Ji can exclusively use the processor until the

closest event, i.e., di or the next release time of a job. (See the procedure STRETCH TO NTA.)

This additional policy makes it possible for a job to use the lower priority time-slack, further

improving the solution quality. The following lemma states that the on-line scheduling algo-

rithm preserves deadline and energy constraints provided that the initial schedule obtained

by an off-line algorithm meets those constraints. (Refer to [21] for the proof.)

Lemma 4.1. Given a feasible off-line schedule 〈A, o〉 = 〈(a1, . . . , a|J |), (o1, . . . , o|J |)〉, all
the jobs meet their deadlines and Eon(t) ≤ Eoff(t) for all t under the on-line scheduling
algorithm in Figs. 6–7 where Eon(t) is the cumulative energy consumption of the on-line
schedule up to t and Eoff(t) is the total energy required to complete jobs released no later
than t under the off-line schedule 〈A, o〉, i.e., Eoff(t)

def= ∑
ri ≤t ai · P(oi/ai ).
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Fig. 8 An efficient algorithm to manage the time slack

Figure 8 shows a low-overhead implementation of the time-slack management. The ra-

tionale behind the efficient implementation is that the number of different values in the

time slack is much less than the number of priority levels and it is sufficient to keep

track of different values only by dynamically creating and destroying program variables.

In Fig. 8, the set time slack keeps representative levels of the time slack, i.e., for a variable

time slacki ∈ time slack at some time-instant t0, the value of time slacki is the same as the

value of the same variable in the original implementation (i.e., Figs. 6–7). Furthermore, if
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the variables in Figs. 6–7 satisfy at t0

∀1 ≤ j < n , time slacki j = time slacki j +1 = · · · = time slacki j+1−1 < time slacki j+1

where 1 = i1 < i2 < · · · < in = |J |, the set time slack must keep the variables

time slacki j (1 ≤ j ≤ n) at t0. Using these properties, it can be easily checked that the

new implementation is equivalent to the original implementation. We now derive the upper

bounds on the size of the set time slack. (Refer to [21] for the proof.)

Lemma 4.2. Let K be the length of the longest path in the directed graph G〈V, E〉 given by

V = {v1, v2, . . . , v|J |} and E = {(vi , v j ) | i < j ∧ ri > r j }. (11)

Then, the number of variables in time slack is always no larger than K + 1.

Especially, the upper bound for a job set obtained from a periodic task set can be easily

obtained:

Lemma 4.3. Let J be a job set obtained from a periodic EDF task set T = {τ1, . . . , τ|T|}
Then, the length of the longest path in the directed graph G〈V, E〉 defined by Eq. (11) is no
larger than |T| − 1.

Proof: Without loss of generality, assume that τ1, τ2, . . . , τ|T| are sorted in an increasing

order of the lengths of their relative deadlines. Note that (vi , v j ) ∈ E implies (di − ri ) <

(d j − r j ), i.e., Ji and Jj are instances of tasks τi ′ and τ j ′ , respectively, such that 1 ≤ i ′ <

j ′ ≤ |T|. Therefore, the length of any path in G〈V, E〉 is bounded by |T| − 1. �

5 Experimental results

In order to evaluate the performance of the proposed algorithms, we performed several

experiments with a test job set constructed from a periodic task set, whose timing parameters

are given in Table 1. (The task set is borrowed from [2].) The task set consists of 11 flexible

periodic tasks whose maximum utilization (mandatory + optional) utilization is 2.3 assuming

the uniform processor speed of 1. The test job set consists of 393 task instances. (One

hyperperiod of the task set in Table 1 has 393 task instances.) Each job (i.e., task instance) is

associated with three types of reward functions: exponential (i.e., ρ
exp

i (x)), logarithmic (i.e.,

ρ
log

i (x)), and linear (i.e., ρ linear
i (x)) functions. In our experiments, we assumed that the energy

consumption (per CPU cycles) is quadratically dependent on the processor speed. That is, the

instantaneous power consumption (per time) is cubically dependent on the processor speed;

P(t) = S(t)3.

First, we implemented the polynomial-time optimal off-line algorithm described in

Section 3, and collected the maximum achievable total reward value for each energy budget

value using the optimal off-line algorithm. Figure 9 showsthe Pareto-optimal curve for the

amount of available energy and the achievable total reward for the test job set. The energy and

reward values were normalized over the maximum achievable total reward (i.e., F(u)) and the

energy consumption for the job set with the maximum optional workload (i.e., E(〈A[u], u〉)),
Springer
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Table 1 A flexible periodic task set (borrowed from [2])

Reward functions (x : opt. workload)

Periodic

task Period

Relative

deadline

Hyperperiod

/Period

Mandatory

workload

Max. opt.

workload ρexp(x) ρlog(x) ρlinear(x)

τ1 20 10 108 4 6 15(1 − e−x ) 7 ln(20x + 1) 5x
τ2 30 25 72 6 12 20(1 − e−3x ) 10 ln(50x + 1) 7x
τ3 40 30 54 2 3 4(1 − e−x ) 2 ln(10x + 1) 2x
τ4 60 30 36 1 1 10(1 − e−x/2) 5 ln(5x + 1) 4x
τ5 60 50 36 1 1 10(1 − e−x/5) 5 ln(25x + 1) 4x
τ6 80 40 27 6 6 5(1 − e−x ) 3 ln(30x + 1) 2x
τ7 90 60 24 3 15 17(1 − e−x ) 8 ln(8x + 1) 6x
τ8 120 90 18 12 3 8(1 − e−x ) 4 ln(6x + 1) 3x
τ9 240 160 9 9 19 8(1 − e−x ) 4 ln(9x + 1) 3x
τ10 270 180 8 40 20 12(1 − e−x/2) 6 ln(12x + 1) 5x
τ11 2160 1890 1 120 180 5(1 − e−x ) 3 ln(15x + 1) 2x

Fig. 9 Pareto-optimal curve for energy and reward obtained by the optimal off-line scheduling algorithm

respectively. As shown in Fig. 9, the achievable total reward is a nearly concave function

of the energy budget for each type of reward functions. The rate of the decrease in the total

reward is very slow around the maximum energy budget; for exponential reward functions,

even with 70% of the maximum energy budget, more than 90% of the maximum total reward

can be achieved.

Next, we evaluated the energy-reward performance of the on-line algorithm in Section 4.

For a comparison, the optimal off-line algorithm computes the theoretical lower bound with

the complete execution trace information. In each experiment, the actual mandatory workload

and the upper bound of the optional workload of each job was randomly drawn from a uniform

distribution within the range of [n·WCET/10,WCET] of each task for 1 ≤ n ≤ 9. The energy

budget Ebudget was set to be E(〈A[u], u〉)/2. Results were normalized over the total reward of

each job set scheduled by the off-line algorithm. Figure 10 showsthe relative performance of
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Fig. 10 Evaluation of on-line scheduling algorithm with the varying degree of workload fluctuation

on-line algorithm. For experiments, initial off-line schedules were computed by the off-line

scheduling algorithm in 4. As shown in Fig. 10, the on-line algorithm is sufficiently efficient;

the result obtained by the on-line algorithm is, even in the worst case (i.e., BCET/WCET =
0.1), only 14% worse than the theoretical lower bound.

6 Conclusion

We investigated the problem of reward-based voltage scheduling for the general task model

where each job has its own release time and deadline. With the increasing importance of

battery-operated embedded systems and flexible applications, considerable research efforts

have been made on both voltage scheduling and reward-based scheduling. However, the

combined scheduling problem of maximizing the total reward subject to energy constraints

has been relatively unexplored.

First, we present a polynomial-time optimal off-line algorithm for the problem. In order

to search the complicated solution space efficiently, we exploit properties of energy-optimal

voltage schedules. Second, we propose a low-overhead on-line algorithm based on the ob-

servations from the optimal off-line algorithm. Despite its simplicity, the on-line algorithm

is sufficiently efficient in terms of energy-reward performance. Experimental results show

that the quality of solution computed by the on-line algorithm is no more than 14% worse

than that of the optimal off-line solution.

The proposed algorithms can be further extended in several directions. As our immediate

future work, we are interested in a more realistic processor model with static energy con-

sumption and transition overheads in time and energy and . Furthermore, In addition, we plan

to develop off-line and on-line algorithms for fixed-priority real-time systems.
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