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Abstract

Recently, there has been a wide spread of battery-operated embedded computing systems such as mobile and
portable devices. For such systems, energy consumption is one of the most important design constraints because
the battery operation time is a primary performance measure. \oltage scheduling, which adjusts the processor
speed along with the supply voltage dynamically, is an effective technique in reducing the energy consumption
of embedded real-time systems. Although many voltage scheduling algorithms have been proposed, there have
been few research results known on the problem of energy-optimal off-line voltage scheduling for fixed-priority
hard real-time systems. In this paper, we present three new contributions for this under-investigated problem.
First, we prove that the problem is NP-hard. Second, we present a fully polynomial time approximation scheme
(FPTAS) for the problem. For arg/> 0, the proposed approximation scheme computes a voltage schedule whose
energy consumption is at mgst+ €) times that of the optimal voltage schedule. Furthermore, the running time
is bounded by a polynomial function of the number of input jobsgied Third, we extend the FPTAS such that
the average energy consumption is minimized given an on-line voltage scheduling algorithm and a probabilistic
workload of a job set.

1 Introduction

Embedded systems have emerged as one of the fastest growing areas of the computing world. This is most ev-
ident in the growth of battery-operated portable devices such as PDAs, mobile videophones, and cellular phones.
For these devices, the most serious limitation is the available battery lifetime, and the energy consumption is a
critical design constraint. Even for non-portable systems such as high-performance microprocessors, the energy
consumption is still an important design constraint, because large heat dissipations in high-performance micropro-
cessors may result in temperature-related problems such as logic errors or device degradation. As a consequence,
several low-energy design techniques have been developed over a wide range of abstraction levels, including cir-
cuit, logic, architecture, compiler, OS, and application levels.

The dynamic energy consumptiéj which dominates the total energy consumption of CMOS circuits, is given
byEOC, - Ncyde-VSD, whereC_ is the load capacitanctlycie is the number of executed cycles, avigh is the
supply voltage. Because the dynamic energy consumptisrguadratically dependent on the supply voltsgg,
loweringVpp is an effective technique in reducing the energy consumption. However, lowering the supply voltage
also decreases the clock speed, because the circuitTelfyCMOS circuits is given bylp O Vpp/(Vop — Vr)®
[15], whereVr is the threshold voltage amdis a technology-dependent constant.

When a given job does not require the maximum performance of a VLSI system, the clock speed (and its
corresponding supply voltage) can be dynamically adjusted to the lowest possible level that still satisfies the job’s
required performance. This is the key principle of the voltage scheduling technique. With a recent explosive
growth of the portable embedded system market, several commercial variable-speed processors were developed
(e.g., Intel'sXscale [20] AMD’s K6-2+ [19] and Transmeta'€rusoe[11] processors). Targeting these processors,
various OS-level voltage scheduling algorithms [22, 5, 10, 1, 7, 17, 4, 18, 12, 13] have been proposed, especially
for embedded hard real-time systems.

For hard real-time systems, the goal of voltage scheduling algorithms is to fietexgy-efficienvoltage
schedule with all the stringent timing constraints satisfied. A voltage schedule is a function that associates each
time unit with a voltage level (i.e., a clock frequency). In this paper, we consixieat-priority real-time jobs
running on a variable-speed processor.



1.1 Previous Work

Previous investigations on the voltage scheduling problem have focused mainly on real-time jobs running under
dynamic-priority scheduling algorithms such as the EDF (earliest-deadline-first) algorithm [5, 10, 1, 7]. For exam-
ple, the problem of energy-optimal EDF scheduling has been well understood. For EDF job sets, the algorithm by
Yao et al. [22] computes the energy-optimal voltage schedules in polynomial time. Although the EDF scheduling
policy makes the voltage scheduling problem easier to solve, fixed-priority scheduling algorithms such as the RM
(rate monotonic) algorithm are more commonly used in practical real-time systems due to their low overhead and
predictability [8].

Although there exist several voltage scheduling algorithms proposed for fixed-priority real-time tasks (e.g., on-
line scheduling algorithms [17, 4, 10] and off-line scheduling algorithms [18, 4, 12, 13]), there have been few
research results on thaptimal voltage scheduling problem for fixed-priority hard real-time systems; neither a
polynomial-time optimal voltage scheduling algorithm nor the computational complexity of the problem is known.

Up to now, the only significant research result on the optimality issue of fixed-priority voltage scheduling is the
one presented by Quant al. [13], where energy-optimal voltage schedules for fixed-priority jobs are found by an
exhaustivealgorithm. However, Quaet al. did not justify their exhaustive approach. If they had presented the
computational complexity of the voltage scheduling problem, their result would have been much more significant.
Since the worst-case complexity of Quan’s algorithm is of higher order@thih) whereN is the number of jobs,
the algorithm is practically unusable for most real-time applications.

Quanet al. also proposed a polynomial-time voltage scheduling algorithm for fixed-priority hard real-time
systems [12], which is the best known polynomial-time heuristic for the problem. Although efficient, being a
heuristic, this algorithm cannot guarantee the quality of the voltage schedule computed.

1.2 Contributions

In this paper, we give a complete treatment on the energy-optimal voltage scheduling problem for fixed-priority
hard real-time systems. First, as with the work of Qedral. [13, 12], we consider the optimal scheduling
problem where the workload of each job is assumed to be constant, which we ¢&dirikant-Workload Optimal
Scheduling CWOS) problem. The CWOS problem is identical to the one solved byeYad. [22] except that
the priority assignment is changed from the dynamic EDF assignment to the fixed assignment. As illustrated by
Quanet al. [12], the voltage scheduling problem for fixed-priority tasks is much more difficult to solve because
the preemption relationship among the tasks is more complex to analyze.

We first prove that the CWOS problem is NP-hard, which implies that no optimal polynomial-time algorithm
is likely to exist. Then, we presentfally polynomial time approximation schenfr the CWOS problem. A
fully polynomial time approximation scheme (FPTAS) is an approximation algorithm that takes(an@) as an
additional input and returns a solution whose cost is at most a factdr€) away from the cost of the optimal
solution with the running time bounded by a polynomial both in the size of the input instance &yl [l].

Given the NP-hardness of the problem, the proposed approximation scheme is practically the best solution. The
proposed approximation scheme computes a near-optimal voltage schedule in polynomial time. By ahanging
the approximation scheme can find a voltage schedule that is provably arbitrarily close to the optimal solution.

Next, we consider the case where the workloads of jobs are not constant, which is a typical characteristic of
real-world applications. For this case, on-line scheduling is necessary at runtime to exploit workload variations.
Thus, we address the problem of computing an off-line voltage schedule that consumes the nanienage
energy given an on-line voltage scheduling algorithm and a probabilistic workload of a job set, which we call the
Workload-Aware Optimal Scheduli®/AOS) problem. Based on the average-case analysis of on-line voltage
scheduling algorithms, we reduce the WAOS problem to the CWOS problem so that the FPTAS for the CWOS
problem can be used for the WAOS problem with slight modification. As part of the analysis of on-line algorithms,
we propose a generic on-line voltage scheduling algorithm, which is derived from the necessary conditions that
any on-line algorithms should satisfy. The proposed generic on-line algorithm has its own significance in that it
provides a new framework for the research on the on-line voltage scheduling. Experimental results show that our
algorithm outperforms other well-known algorithms in the literature by up to about 40%.

The rest of the paper is organized as follows. In Section 2, we formulate the CWOS problem and characterize
feasible voltage schedules. We describe important properties of an energy-optimal voltage schedule in Section 3,
which provide a basis of later proofs. In Section 4, we present the intractability result for the problem including its
NP-hardness. The FPTAS for the CWOS problem is presented in Section 5. In Section 6, we formulate the WAOS



problem, and present the generic on-line voltage scheduling algorithm and the FPTAS for the WAOS problem.
Experimental results are given in Section 7 and we conclude with a summary and directions for future work in
Section 8.

2 Problem Formulation

Note that only the CWOS problem is formulated in this section and the term “problem” indicates the CWOS
problem up to Section 5; the formulation of the WAOS problem is given in Section 6.

We consider a set = {J1,J,---,J5} of priority-ordered jobs with); being the job with the highest priority.
Ajob J € J is associated with the following timing parameters, which are assumed to be known off-line:

e r3: the release time af.
e dj: the deadline of.
e C;: the number of execution cycles required Jor

We usep; to denote the priority of the job. We assume thakhas a higher priority thadl if p; < py. In the rest

of the paper, we uskinstead ofJ; as a subscript of timing parameters when no confusion arises. riedyand

¢ stand forry,d; andcy.) Note that our job model can be directly applicable to a periodic real-time system by
considering all the task instances within a hyperperiod of periodic tasks.

Since there is a one-to-one correspondence between the processor speed and the supply voltag&t we use
the processor speed, to denote the voltage schedule in the rest of the paper. Given a voltage schedule, the job
executed at timé can be uniquely determined and is denotedjdily( 7, .$,t). A voltage schedulg(t) is said to
befeasibleif $(t) gives each job the required number of cycles between its release time and deadline. (An exact
characterization of a feasible voltage schedule is given in Section 2.1.)

As with other related work [22, 12, 13], we assume that the processor speed can be varied continuously with a
negligible overhead both in time and power. Furthermore, we model that the poweergy consumed per unit
time, is a convex function of the processor speed; given a voltage schedulehe power can be written as a
function of time byP(S(t)). For simplicity, we assume that all the jobs have the same switching activity and that
P is dependent only on the processor speed.

The goal of the voltage scheduling problem is, therefore, to find a feasible scigtuteat minimizes

t
E(S) = [ P(S(H) dt @
wherets andt; are the lower and upper limits of release times and deadlines of the jghsaapectively. For the
rest of this paper, the energy-optimal voltage schedule of a jop isadenoted bysgpt.

2.1 Feasibility Analysis

In this section, we derive a necessary and sufficient condition for a voltage schedule to be feasible, which will
provide a basis for the proofs in Section 3. We first introduce some useful notations and definitions.

W(S, [t1,t2]) is used to denote the number of cycles executed under a voltage scégui®m t; toty, i.e.,
W(S,[t1,t2]) = fttfs(t) dt. AmongW(S, [t1,tz]) cyclesW(S, [t1,t2]) denotes the number of cycles betwégand
to used for executing a set of jobig J,, - - - ,J; whose priorities are higher than or equaptp R; andD represent
the sets of release times and deadlines of the jodsiiespectively, i.e Ry = {r;|J € 7} andD, ={d;|J € 7}. Ty
denotes the union &}, andDy, i.e.,T; = R;UDy. Given a job sey’ C 7, C(J’) represents the total workload
of jobsin?’, i.e,C(J) = Y je g C3. Furthermorel 5 represents the minimum interval that includes the execution
intervals of jobs ing’, i.e.,| y = [minRy,,maxDy]. 77 represents the cartesian producirgfdy s, for 1 <i < |7],
i.e., 77 =[ry,dy] % [rg,,ds,] x -+ x [er,djm]. Given voltage schedules, S>, - - - , S such that

Si(t)=0 forall t¢ [a;,B] forall1<i<n and Bi<aj forall 1<i<n,
the concatenation &y, $2, -+ ,5n IS B85 = S1952P - B S def St Si(t) . Since jobs should be released
before they can be processed, we assume that a voltage sclsediays satisfies the constraint that for any
t>0, W(S,[0t]) < C({J|ry <t}).

The condition for a voltage schedul¢t) to be feasible can be expressed as follows:



Condition I (Feasibility Condition).
There exists &7|-tuple (fy,, fy,,---,fy,) € 77 such that
VI<i<|J] Vre{tteRyAt< f;}
W(S, [ f3]) > C{Ipa<psArie(rfy)}) . (2

For a|J|-tuple (fy, fs,,---, me) € 77, f3 can be considered as a modified deadling, pfvhich is equal to or
precedes the original deadlidg. (The meaning of thé7|-tuple is further clarified in Section 3.) K(t) satisfies
Condition I for a giver 7|-tuple (fy,, fy,,---, fs,) € T7, J completes its execution bfs for all 1 <i <|7|. Such
|7]-tuples are said to bealid with respect ta 7, .5(t)). Theorem 1 gives a proof for the feasibility condition.

Theorem 1 Condition | is a necessary and sufficient condition$¢t) to be feasible.

Proof. For the necessary part, suppose th@} is feasible, i.e.Ji completes its execution & < (ry,d;] for all
1<i<|J|. Then, for any € Ry such that < f3, all the higher priority jobs whose release times are wifhify, )
complete their executions biy. So, the total amount of work that should be done withjifi; ] must be greater
than or equal to the sum of workload of the jobs. Thus, we have fdr<ali < |7|:

W(S,Infs]) > C{Ips<py Aty €lrfy)}) -

For the sufficient part, assume that Condition | is satisfied fgi-duple (fy,, f5,,---, f3, ). By induction oni,
we prove that); is given its required execution cycleg within [rj, f;] for all 1 <i < |7|. The base case holds
trivially.

For the induction step, assume that the proposition holds fdr-alll,2,--- ;i — 1. Letr < rj be the earliest
time point inR; such that no lower priority jobs (i.e’s for k > i) are executed withifr,ry], i.e., W(S,[r,r3]) =
W_1(S,[r,r3]). If suchr does not existr is set tory. Then, a higher priority jold’ (i.e., J’s for | < i) released
beforer (i.e., ry < r) must complete its execution beforgotherwise, since any lower priority jobs cannot be
executed withifry,r], we have

W(Sv[rJ’eri]) = W(S,[I’J/,I’])—l—W(S,[I’,I"]iD = .,1(5,[rJ/,r])+V\I,,1(5,[r,rJi]) = |*1<57[r~]/?r\]i])7

which contradicts the definition @f Since only higher priority jobs (i.eJ;’s for | < i) are executed withifr,r;],

the amount of remaining workload of the higher priority jobs (which are released Withi) at timery is

CHXI<k<iAryelnry)}) —W(S,[rr3]). So, we have

W-1(S,[rs. f3]) < C{II1<k<iArgelrry)}) —W(S,[nrg]) + C({I1<k<i ATy €lry, f3)})
= C({I[1<k<iAryelrfy)})—W(S,[rr3]) . (3)

To complete the induction, we only need to show M&LS, [ry, f5]) —W_1(S,[r3, f3]) is not smaller tharcy.
(Note that); preempts any lower priority jobs.) From (3) and the assumption that Condition | is satisfied, we have

W(S, [y, fal) —Wi-1(S, [ra, fa])

> W(S,[r,fy]) — C({X1<k<iAryelfy)}) (From (3).)
> CH{k1<k<iAnreirfy)}) —C({kl1<k<iArye]rfs)}) (From(2).)
= C({‘]i}) =Cy -

A job set is said to be an EDF job set if for adyJ’ € 7 (wherep; < py), d; < dy ordy <rj. When the
priority assignment follows the EDF policy, we can prove that Condition | is simplified as follows:

Condition Il (EDF Feasibility Condition).

Foranyr € R; andd € Dy (wherer < d),
W(S, [rd]) = C({J[[rs,ds] € [r,d]}) .




Lemma 2 Given an EDF job sef, a voltage schedul§(t) of 7 is feasible if and only if Condition Il is satisfied.

Proof. Consider a new job set ={J;,J,--- ,J(j‘} wherery =W(S,[0,r4]), dy =W(S,[0,d;]), ¢y = ¢5 and
py = py forall1<i<|J|. Becaus&V(s,[0,t]) is a monotonically increasing function tf7’ is also an EDF
job set (i.e., for any)/,J, € 7’ wherei <k, dy <dy ordy <ry). LetS'(t) =1 (vt > 0) be the voltage schedule
of 7’. Then, we can easily verify that the index of the jaib( 7,.5,t) is the same as that gbb(7’,.5',W(S,[0,t])).
Therefore,J; € 7 finishes its execution by its deadlidg underS(t) if and only if its corresponding joli € 7
finishes its execution bgly (= W(S,[0,d;])) unders’.

It is well known that all the jobs in an EDF job set meet their deadlines under a constant speed if and only if the
utilization ratio for any time interval is less than or equalt8]. That is, S’ is a feasible voltage schedule gfif
and only if the following is satisfied:

Foranyr' e Ry andd’ € Dy (wherer’ <d'), C({JJe I Alry,dj] C[r,d]}) < d' —r'. (4)

Since (4) is equivalent to Condition II, Condition Il is a necessary and sufficient conditigitfoto be a feasible
voltage schedule of. O

As shown in Conditions | and II, the complexity of fixed-priority voltage scheduling mainly comes from the
inherent exhaustiveness in finding a vdlid-tuple. In the EDF scheduling algorithm, it is sufficient for a single
|.7|-tuple of the original deadlines to be checked if it satisfies Condition II.

3 Some Properties of Optimal Schedules

In this section, we explain several properties for a feasible voltage schedule to be an energy-optimal schedule.
These properties provide a key insight in devising a fast approximation algorithm described in Section 5. The first
property, which was proven by Quanal. [12] is that an energy-optimal voltage schedule should be a piecewise-
constant function.

The existing optimal voltage scheduling algorithm by Qearal. is based on an observation that if a given
job set satisfies the requirement of an EDF job set, the optimal voltage schedule can be easily computed by Yao’s
“peak-power greedy” algorithm [22]. Simply applying Yao's algorithm to a fixed-priority job set may cause some
jobs to miss their deadlines. However, if the deadlines of the jobs are appropriately modified before scheduling,
Yao’s algorithm can yield a feasible optimal schedule as shown in [13]. The efficiency of an optimal voltage
scheduling algorithm is, therefore, dependent on how efficiently the job set is modified to be an EDF job set. To
give a better insight into our approach for solving the voltage scheduling problem, we derive an equivalent result
to Quanet al. [13] using Conditions | and II.

3.1 Properties on |J|-Tuples

Given al|J|-tuplef = (fy,, fy,,---, fy,) € 77, 9" represents the job s¢g}, J;, - -- ,Jfﬂ} wherepy = p;,Cy =
C3,ry =rg anddy = f; forall 1<i<|7|. We say that &7|-tuplef is EDF-orderedif g% follows the EDF priority.
Furthermore ' is said to beEDF-equivalento 7. We first establish a link between Conditions | and II.

Lemma 3 If Condition | is satisfied for a job set by a voltage schedulg and an EDF-orderedj|-tuplef =
(fy, f3,--+, f3,)), Condition Il is satisfied for a job sef by S.

Proof. For anyr € Ry andd € Dy (r < d), we have
re{t[teRy (=Ry) At<d} and d=fy for 35 €Dy (={fs.f,--. Ty, }) -
Furthermore, sincéis EDF-ordered, we have

vhed story(=r) e rd="1)), dy=f,<fy=d if py<py(=ps)
dy =fs>f3=d otherwise.

Thus, we have for all, € J":

Py <py Aty € [rd) < [ry,dy] C [rd]. ()

5



Finally, by substitutingd for f; in (2), we have
WS, Ind) > C{Ied|p<pyarselnd)}) = CHKeT [py < py (= ps) ATy (=13) €[r,d)})
= C({¥ e lry.dy]Crdl}) . (From (5),)
O

Lemma 4 If Condition Il is satisfied for a job set’ by a voltage scheduls wheref = (f,, f3,,---, fy,) is an
EDF-ordered|J|-tuple, Condition | is satisfied for a job sétby S.

Proof. Letr € {t|t e RyAt < f3}. Then, we have
reRyi (=Ry), f3 €Dy (={fy, fy, -, fy,}) andr < f;
and substituting for d in Condition Il gives
W(S, I f3]) = C{ e J'| o dy] S f3]}) -
Sincef is EDF-ordered, we have for alf € 7' (Refer to the proof of Lemma 3.):
Py <py Ary € [nfy) <= [ry.dy) C[rf]. (6)
Therefore, we have

W(Ss, [ fs]) > C({‘]/ € jf’ [ry,dy] C[r, f3]}) = C({‘]II( € ]f |pJ{< < Py (=p3) A ry (=r3) € r,f)})
ClIedlp<psArse(rfy)}) .

O
From Lemmas 3 and 4, we can derive the following useful theorem which states how a feasible voltage schedule
of a job set can be obtained from its EDF-equivalent job sets.

Theorem 5 Given a job sey, let #; be the set of all feasible voltage schedulesfoiThen, 75 = Uscaq,. For
whereZepe is the set of all EDF-orderety/|-tuples for7.

Proof. To show that§ € F5 = § € Uscq,e Fyr , @assume thal; completes its execution dg (< dy) for all
1<i<|J|unders € 7. Letf = (fy, fy,,---, 3, ). Then,7"is an EDF job set. If not, we have for sorifgJ] € 7'
(Wherepy < py)

l‘\]i/< < d‘]I/ (: le) < d‘]{< (: ka) s

which contradicts a fact that once a higher priority job (iJg).js released during the execution of a lower priority
job (i.e.,J)), the higher priority job completes earlier than the lower priority job (fg.< f3). Furthermore, from
Lemma 3,5(t) is a feasible schedule for the EDF job gét Thus, we haveS € Uscq, Fyt -

Conversely, given an EDF-orderéd|-tuple f = (f3,, f3,,---, me), let S € #4 be a feasible schedule for the

EDF-equivalent job set’. Then, from Lemma 4¢ satisfies Condition | fog. Thus, we haves ¢ ;. O

Corollary 6 Given a job set, E(Sgpt) < E(Sg;,t) for any EDF-equivalent job set. Furthermore, there exists an
EDF-equivalent job sef’ such thai;S‘g,:,t = 5g;t.

From Theorem 5, there is a one-to-one correspondence between feasible schedules of a fixed-priority job set
J and feasible schedules gfs EDF-equivalent job sets. Since the energy-optimal scheﬂjil(e‘or an EDF-
equivalent job sefff can be directly computed (in polynomial time) by Yao’s algorithm [22], the problem of
finding an energy-optimal (feasible) voltage schedulg &f reduced to the problem of finding an EDF-equivalent
job set" (or to selecting an EDF-ordered|-tuplef) that minimizedE(Sg;t).

Figure 1 shows an example of EDF-equivalent job sets and EDF-ordgraples. Figure 1.(a) shows the
original job setf = {J1,J.}. In this exampleJ, has a lower priority but earlier deadline thansoJ is not an EDF
job set. (So Yao's algorithm cannot be directly applied/tp In Figures 1.(b) and 1.(c), two job sets are shown,
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Figure 1. An example of EDF-equivalent job sets.

which are EDF-equivalent t@. The job setqJ;,J;} and{J;,J; } are obtained by choosirg,,,d; ) and(dy,,ds,)
as EDF-orderegly |-tuples, respectively. Both job sets follow the EDF priority assignfmand the optimal voltage
schedule for each job set can be computed by Yao's algorithm. (As will be explained below, the energy-optimal
voltage schedule of is equal tqségé’“-'é} or.Sé;%/"Jg depending on the workload df andJ,.)

Now we are to restrict the search space of EDF-ordgfetlples (equivalently, EDF-equivalent job sets). First,
an EDF-orderedl|-tuplef = (fy, f2,---, f;)) does not need to be considered if for another EDF-ordgtetliple
' =(f], 5, f"ﬂ) (#f), fi<f/forall1<i<|J|. Thisis because, for any voltage schedsié) which is
feasible undef, $(t) is also feasible unddf. We define that an EDF-ordergfi-tuplef (or 7) is essentialf such
f' does not exist. (The term ‘essential’ is equivalent to the term ‘NAP’ in [13].) Quan’s optimal algorithm [13]
finds an optimal voltage schedule byhaustivelfenumerating all the essential (or NAP) job sets and then applying
Yao's algorithm for each essential job set. Our fast algorithm avoids the exhaustiveness by carefully enumerating
the essential job sets.

3.2 |J|-Permutations

It is easy to check if &7|-tuple is EDF-ordered (or essential). On the contrary, it is not obvious how|glich
tuples can be enumerated. In this section, we describe how to construct EDF-gridetgades efficiently using a
permutation-based analysis.

Given a|J|-tuple f = (fy, f2,---, fjy), letos : {1,2,---,|7]} = {1,2,---,[J[} be a permutation that maps a
new tuple index when the tuple elements are sorted in a non-decreasing ordeﬁ;,ffi(@).,g fcf—l(z) <. <
f0;1(|ﬂ). Ties are broken by the priority, i.e., & = f; wherei < j, o¢(i) < o¢(j). (From now on, we call
sucho a |J|-permutation.) For example, |&t= (f1, fo, f3, f4) = (4,10,2,10). Then, sincef; < f; < f, = fy,
we haveo(3) = 1, (1) = 2, and (from the tie-breaking rulg)o(2),0(4)) = (3,4). (Equivalently, we have
(07%(1),07%(2),07%(3),07%(4)) = (3,1,2,4).) Note thato~1(i) denotes the index of theth smallest element
inf,i.e., fofl(i) is thei-th smallest element if

The following lemma states that there cannot exist more than one esséptigbles whose 7|-permutations
are the same, that is, each essentigtuple can be uniquely addressed by its correspondifigermutation (and,
obviously, vice versa).

Lemma 7 For any two essentiglj|-tuplef = (fy, fa,---, fj5) andf’ = (1, f5,--, f"ﬂ) (f£1), of # op.
Proof. Supposes; = op and leti (1 <i < |J]|) be the largest integer such tH@ftl(i) % f(;‘l(i)’ i.e.,
f/

forti = f(’yf,,l(k) (= fc/;;l(k)) foralli<k<|7]. (7)

Without loss of generality, we can assurig,fel(i) < fc’,f_/1 . Let us consider a ney|-tuplef” = (f, f5,--- , f/)

(i) 7]

g [ e k=07,
k f,  otherwise

where

From the definition of”, it can be easily seen that» = o; = oy. (We omit the subscripts in the rest of the proof.)
We are now to prove thdt is EDF-ordered, i.e., foran¥ < j <k <|J|,

fil <forfl <ry. (8)

Lin Figure 1.(c),J} need not have an earlier deadline ti¥4rfor the job set to be an EDF job seljy = dyy is sufficient for the job set
to be optimally scheduled by Yao's algorithm [22].



1: f071<u‘> = dchl(U\)

2: for (i:=]J|—1to1)

3; let 77 be {3g-1g| i < k< 9] A 0-2(Kk) < o-1(i) }

4: if (r3, -y, = min({rald € 7} U{f51(41)})) return FALSE
5: elsefg 1) = min({fyaipa),dy, JU{rald € 75}

6: end if

7 end for

Figure 2. The algorithm to builda | J|-tuple from a | J|-permutation.

Sincef is EDF-ordered, (8) holds for all < j < k < | 7| except forj = 0~1(i) or k = 071(i). So, it remains to
show that (8) holds for all < j <o (i) < |7] andl <o (i) <k <|J|.

Case (@) 1< j<o 1(i)<|9| (whenJjhas a higher priority thad, 1 i)

If ' < f(’j’,l(i), (8) trivially holds. So, we only considgrsuch thatf’ > f” iy 1-€ f (= fo1(a(j))) > fc’,,l(i) (>
fg-1)). From the definition ob, we haveod(j) > i. Thus, by substltutl ng(j) for kin Eq. (7), we havefj (=
fj//) — fj’. From the assumptiorf, is EDF-ordered, but we havq =1 > fo,l(i). So, it must be the case that

fc’rl(i) <ry. Therefore, we have

= fo1 <1y -

Case (b) 1< o 1(i) <k<|J| (whenJg has alower priority thad, 1))

First, we can exclude the case whigr= f;-1;). Otherwise, we have(k) > (o~ L(i)) =i. (Recall the tie-breaking
rule.) But, by the definition of, f(’j,l(c(k)) (=f) > f(’j,l(i) and we finally have

fli Z fclffl(l) > fU_l(i) = fk,

which contradicts Eq. (7).
Second, considekl such thatf, < f; o1()- f is EDF-ordered, but we ha\/%-—l(i) > fx. So, it must be the case that
fk < Myt Therefore we have

f|2/ =f < ch_l(i) .
Finally, for k such thatf, > fo-—l(i), we have

foaiy = forp) < fe=f=1.

Thus,f” is EDF-ordered. However, since we have
fo1i) < foagy = foaqy and fi=1f¢ foralll<k#o *(i)<|1],

f is not essential, a contradiction. Therefase# ox. O
The proof of Lemma 7 also implies how to build a unique essential job setdor a

Lemma 8 Given al|f|-permutationo, the algorithm in Figure 2 finds a unique essenti@ltuple foro if such a
|7|-tuple exists. Otherwise, it returns FALSE.

Proof.  First, suppose that the essenti@l-tuple foro exists and denote it bff = (f, f},--- U\) (Note that
f(’j,l(l) < fc’rl( 2 < << fcrl (190) ) We are to prove that; - i) = = fs-135) and the algorithm does not abort in line 4
foralli=17|,|7]|— ,1 by induction on. The base case holds trivially, i. éb“(\ﬂ\) djrlw = fo-1(9))- FOr
the induction step, assume that the proposition holds fér-al| 7|, 7| —1,---,i+1. Let " = {Jo1 | 1<k<

191 A o71(k) <o (i) } (as in line 3 of the algorithm). Note that any jobifi has the higher priority tha, 1,
and thatf/ ()<d3 o andf’ 1) < fl i)

Case (a): 7" =

Suppose thaté,l(i) < djrlm andf(’rl(i) < f(’rlml), that is,

.<f’

A

foa) < < fomagy <min{dy o foagigd < fomyug) <
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Figure 3. An example of |7|-permutations. (a) A job set and its EDF-equivalent job sets for which
(671(3),07%(2),071(1)) = (b) (2,3,1) , (c) (2,1,3) , and (d) (3,2,1) , respectively. ( (c71(3),071(2),071(1)) =
(1,2,3),(1,3,2) and (3,1,2) are not vaI|d J-permutations.)

Letf” = (fy,--, o 14 _q,min{dy 1y fl s |+1} fl f"j‘). Then,f” is EDF-ordered, anfl is not essen-

> oL i)+1 T
tial, a contradiction. Therefore, we have
fé'*l(i) = min{djofl(i) s |+1} = mln{dJ ) 7 *1(i+l)} = f071<i) .
Case (b):jH £0.
For all J5-1( € JH, we havef! 1) < fl s 1K) from the definition ofo (Recall the tie-breaking rule.), an‘g,l(i) <
Irs;. 1 smcef’ is EDF-ordered. Suppose th%t1 <min{r;|Jeg"}, f ) < dy, 1) andfl_, iy < f(’rl(iH), that
fo-1(1) < - < fooagy <min({dy, 1y fo-1i40)t ULrald eI <. sy < < faag) -

Letf” = (f],, foagy_pomin({dy ., fo a0yt ULl ey, fosi)p20 > fls)- Then, it can be easily shown
thatf” is EDF-ordered. Thug’ is not essential, a contradiction. Therefore, we have

g = min({dy . fgp UL €M) = min{dy L foagin) ULnl e sM)) = foag) .

Furthermore, we have for both cases
M1y < fo- 1iy < min({ry|J e]H}U{fc',,l(iH)}) = min({ry]d € 5"} U {fo1i1})

and the algorithm does not abort in line 4 at iteraiiowhich completes the induction.

If the algorithm does not abort, thé|-tuple built by the algorithm is always a correct EDF-ordefg@dtuple,
implying the existence of sudl|-tuple foro. Therefore, if suchJ|-tuple does not exist, the algorithm eventually
returns FALSED
If a | 7]-permutationo has the corresponding EDF-orderghd-tuple f, it is said to bevalid. Furthermore, iff
is essentialg is said to beessential From the above argument, we can establish one-to-one correspondences
between EDF-ordere/|-tuples and valid 7|-permutations, and between essentidttuples and essentiaf|-
permutations. Figure 3.(a) shows a job set with three jobs and Figures 3.(b), 3.(c) and 3.(d) show its EDF-equivalent
job sets with theit 7|-permutations. Amon@!(= 6) possible| 7|-permutations, only three permutations are valid
(and essential).

Based on the algorithm in Figure 2, we describe another way to enuméfdtgples. In the followingr; and
d; are interpreted as symbolic values, not as real numbers. FyenP, has2-|7| distinct symbolic values.
Furthermore, the algorithm in Figure 2 is assumed to assign symbolic values to elemehfs-tfpde with the
following tie-breaking rule in line 5:

@ry=ry(i<j):ry<ry (b)dy=dy (i<j): ry<ry (c)ry=dy: r3<dy.



7 :={},D:={}
foreach (d; €Dy s.t.{(d3) =1)
fii=dy, 7= JU{3} ,D:=DU{dy}
end foreach /* return FALSE here if 9’ does not follow the EDF priority. */
foreach (r; €Ry s.t.{(r3) = 1in a decreasing order)
fi :==max{d €D | 9’ U{J} follows the EDF priority wherep; = py,rj =rj,dj =d}
/* return FALSE here if sucH; does not exist. */
7= J'u{3},D:=DU{ry}
end foreach
foreach (J; s.t. fj is not determined (in any order))
fi :=max{d €D | 9’ U{J} follows the EDF priority wheregp; = pj,ry =rj,dy =d}
/* return FALSE here if sucH; does not exist. */
11: g = 9'u{d}
12: end foreach

o ©xN

Figure 4. The algorithm to build a | J|-tuple from a bit-vector.

Given a|J|-tuplef = (fq, f2,---, f)), let{s : RyUDy = {0,1} be a bit-vector of lengt&- | 7| such that

L) = 1 t=fgforsomel<k<|J|,
"= 0  otherwise

The algorithm in Figure 4 constructg 4-tuple from an arbitrary bit-vectdy: R, UDj; = {0,1}. The correctness
of the algorithm can be proved in a similar manner as the algorithm in Figure 2.

3.3 An Alternative Formulation

The problem formulation given in Section 2 is based on the voltage sché@ylen this section, we describe
an alternative formulation, based on the following intuitive property, which states that each job runs at the same
constant speed if the voltage schedule is an optimal one.

Lemma 9 For an energy-optimal voltage schedWé), S(t1) = S(t2) for anyt; andt, such thatjob(7,5,t1) =
jOb(]757t2)'

Proof.  Given an optimal schedul&(t), suppose thas(t;) # S(t2) for somet; andt, such thatjob(7,S,t1) =
job(7,5,t2). Given thatS(t) is optimal, there exist],t;,S;,S andAt such thatS(t) = S for t] <t <t +At,
St) =S fort) <t <t,+At, andS; # S. LetS(t)’ be defined by

Sty = SI2 <t <t AL <t <th+A,
S(t) otherwise

Then, it is obvious thag(t)’ is feasible and(S’) < E(S), a contradictiond

From Lemma 9, it can be shown that the voltage scheduling problem is equivalent to determining the allowed
execution timey; allocated to eacli. Given a feasible voltage schedulethe corresponding tuple of the allowed
execution timesay, ap, -+ ,a,4|), called atime-allocation tuplecan be uniquely determined. Conversely, given a
time-allocation tupleA = (ag,ap,-- ,ay)), the corresponding voltage schedijecan be uniquely constructed by
assigning the constant execution spegd; to J.. A is said to bdeasibleif the corresponding voltage schedule
is feasible.

Let us now consider the exact condition for a time-allocation tuple (as,a,---,ay|) to be feasible by
rewriting Condition | in Section 2 in terms ¢&f.

Condition Il (Feasibility Condition for Time-Allocation Tuples).
There exists 47 |-tuple (fy,, fy,,---, f3,) € 77 such that
VI<i<|J] Vre{tteRyAt< f;}
ax < fy—r. 9)

I/ P3 <Py Arg €l Ty)

Lemma 10 Condition Ill is a necessary and sufficient condition foto be feasible.
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Figure 5. Solution spaces for (a) an EDF job set and (b) a fixed-priority job set.

Proof.  Given a job sey = {J1,J,---,J)5} and a time-allocation tupl& = (ay,az,--- ,a) for 7, consider a
new job sety’ = {J;,J5,--- ,Jl’]‘} wherech/ =a,ry="ry, dJi/ =d;, and Py = P3 forall1<i<|J|, e, is
identical toJ except for the workload.

LetS’(t) =1 (vt > 0) be the voltage schedule gf. Then, it is obvious that the response timefofinderSa
is the same as that gf unders’. Thus,A is feasible if and only ifs’ is a feasible voltage schedule f@t. After
replacings andc; in Condition | byS” anda;, respectively, we have Condition I

By applying the same argument to Condition Il, we have the following condition for EDF job sets.

Condition IV (EDF Feasibility Condition for Time-Allocation Tuples).
Foranyr € R; andd € Dy (wherer < d),

Z a < d-r .
J/[rj,dJ g[r,d]

Now, the voltage scheduling problem can be reformulated as follows:

Find a time-allocation tuplé = (as,a,--- ,a4|) such thaE(Sa) is mini-
mized subject to Condition 11l (or Condition IV for an EDF job set).

The energy consumption of the voltage schedidlean be directly computed:

= 57 a-Pa/a) (10)

The set of feasible time-allocation tuples represents the solution space for the voltage scheduling problem stated
in terms of time-allocation tuples. For an EDF job set, the solution space is specified by a conjunction of linear
inequalities which can be directly obtained from Condition IV. However, this is not the case for a fixed-priority
job set; the existential quantifier in Condition Il is not always removable. Conseqguently, the solution space for an
EDF job set is a convex set while the solution space for an arbitrary fixed-priority job set may not be a convex set.

Before we present an intractability result for the voltage scheduling problem in the next section, we illustrate the
inherent complexity of fixed-priority voltage scheduling based on the results explained in this section. Figures 5.(a)
and 5.(b) show the solution spaces for an example EDF job set and an example fixed-priority job set, respectively.
As a fixed-priority job set, we use the job gek,J,} of Figure 1. As an EDF job set, we use the same job set
{J1,32} in Figure 1 with the same timing parameters, but the priority assignment is changed such that it follows
the EDF priority assignment, i.epy, < py,. For the EDF job set, we have the following constraint:

ap<dy—ry A a<dy,—ry, A agtapx<d,—ry,
Similarly, we have the following constraint for the fixed-priority job set:
ap<dy—ry A a<ry—ry (Figurel.(b)) v a;<dy—ry A ar+ax<dy—ry (Figure1l.(c))

In Figures 5.(a) and 5.(b), the solution spaces for the EDF job set and the fixed-priority job set are depicted as a
convex region and a concave region, respectively. (Each pointin the shaded regions represents a feasible schedule.)

11



In general, the solution space of any EDF job set Wtfobs are represented by a convex seRhh whereas the
solution space of a fixed-priority job set is represented by a concave set. Note that for EDF job sets, the objective
function, the total energy consumption, can be efficiently minimized by an optimization technique for a convex set
(as in Yao’s algorithm). However, optimization problems defined on a concave set are generally intractable.

4 Intractability Result

In this section, we present some observations related to the complexity issue of the optimal fixed-priority
scheduling problem. We first show that the decision version of the problem is NP-hard.

Theorem 11 Given a job seff and a positive numbekK, the problem of deciding if there is a feasible voltage
schedules(t) for 7 such thate(S) < K is NP-hard.

Proof.  Without loss of generality, we assume that the energy consumption (per CPU cycle) is quadratically
dependent on the processor speed. That is, the instantaneous power consumption (per time) is cubically dependent
on the processor speed, i.B(t) = $(t)3. (The reduction can be easily modified for other power functions.) We
prove the theorem by reduction from the subset-sum problem, which is NP-complete [3]:

SUBSET-SUM
INSTANCE: A finite setU, a sizes: U = Z™, and a positive integeB.
Question: Is there a subdét C U such thaty .y S(u) = B?

Given an instancéU (= {u,---,Uy}),s,B) of the subset-sum problem, we construct a jobJsahd a positive
numberK such that there is a voltage schedsi(e) of 7 with E(S(t)) <K ifand only if 3U' CU, ¥ ey S(u) = B.
The corresponding job sétconsists oR- |U| + 1 jobs as follows:

J ={h, %, -, hu+1}  where

py =i foral 1<i<2-|U/+1,
i i
rJz-i+1 = S(ui+1) + Z 3-S(Uj) R r-]2Ai+2 = 3'S(Uj) ,
=1 =1
i+1

i
sz.i+1 = Z 3-S(Uj) ) sz.i+2 = 2'S(ui+1) + Z S'S(uj) )

=1 =1
Chi, = 8:Y-S(Uiy1) , Cypyp, = 8-S(Uiy1) forall 0<i<|U[-1, and

[
3
B = 0, dJ2~\UH1 =B+ Zl 3.S(uj) v Chupn = V4B .
i=

wherey is the unique positive solution of the following quadratic equation:

y2+y:1+% (:>%<y<1).
FurthermoreK is set to be
K = (834—f-83)-‘UI s(u) + 2-B.
PR

From the construction of, we have

[hive < Ty (5 M0 +S(Uir1)) < dy, (= +S(Uie)) < dy, (=dy, +SUiv)
[rJZ-i+27dJ2-i+1] C [rJz.\qusz-\qu] forall 0<i<|U|-1 and

(%1205 N [rJz.i’+2’ sz-i/+1] =0 forall0<i#i'<|U[-1.
Letk : {0,1}/Y] = 77 be a function defined by
K((bl,b2,~-- ,b|U‘)) = (fl, fz,--- ,fm) where
foivys = dy .y, foiz2 =1y, ifbi1=0,
f2.i+1 = f2.i+2 = sz.i+2 if bi+]_ =1 forallO<i< |U‘ -1, and

f2-|U|+l = sz.‘qu .

12



Then, the set of essential job setsfak given by:
{7"|f=x(b), be {0,1}V}

To compute the energy consumption of an essential job set by Yao’s algorithm [22], we first compare the intensity
of each interval. Let

I = — iz Chia
rJz.i+1_rJ2.i+z ’ dJZ-i+1_r32-i+1 ’
Chia Chiss + Coiso €01
lg = — 2L |, = 2L T B2 gnd |5(5) = .
d-]2«i+2 I hin dJZ«i+2 i B+d
Then, we have
8-s(Uit1) 8-y-s(Uit1) 3 V4-B
h=—nr12 o8 > p=—T 2 gy > 2> V4 > | and
L7 TSu) 2= 2 S(Uis) Y "~ Btd
8- (1+Y)-s(uit1) 8-y-s(Uit1)
Iy = =4+4y > lzg=————>=8y > I5.
T 2 s(un) YT s Yoo

So, the energy consumptionﬁ(f,:Jt for f = k((by,b,---,by))) can be computed as follows:

U]
ZlE. + E where

3 3
e @b e sy (= R REE) b=o,
1 — 3 .
(1+4v) 8%.s(u) (=38 ((122\(/);)(;&) ) b = and

3

_ Joup+1
T L b s(ur))? < B + 3% b <dJ2.i1—dJ2i>>2>'

Since we have

(1+y)® L 143.y+3. 48 ,
2 8%.s(u) = 2 .8%-s(u)
3
- 1+3'(1+4ﬁ(3'8 DY 62w - <83+Vz3~83>~s<ui> + s(ui) |
we can rewriteE(Sgg,t) as follows:
y3 U] 4.B3 U]

E(Sgg,t) = (83+Z~83)-gl s(u )+x+m where x = i; bi - s(u;)

It can be easily shown thﬁ(Sg;t) has the minimun{82 + V3 -8%)- 5 s(u) + 2-B (=K) atx=B. Thatis,
E(SZ) <K if and only if

3 (by,by,--- b)) € {0, 1Y Zlﬂ bi-s(u) = B, which is equivalent to
Ju eu, > s(u)=B.

uel’
It is obvious that the transformation can be done in polynomial time. Therefore, the problem is NE+hard.

From the NP-hardness proof, the problem seems unlikely to have polynomial time algorithms that compute
optimal solutions. The NP-hardness of the problem strongly depends on the fact that extremely large input numbers
are allowed, as with some other NP-hard problems (e.g., the subset-sum problem and the knapsack problem [3]).
The NP-hardness in the ordinary (but not strong) sense does not rule out possibility of existence of a pseudo-
polynomial time algorithm or an FPTAS. Since our problem is an optimization problem that handles real numbers,
we focus our attention on the FPTAS in the next section.

13



5 A Fast Approximation Scheme

In this section, we present a fully polynomial time approximation scheme (FPTAS) for the problem. We first
consider a dynamic programming formulation that always finds the optimal solution, but may run in exponential
time. Then, the dynamic programming formulation is transformed into an FPTAS by using a standard technique,
therounding-the-input-datéechnique [21]. The technique brings the running time of the dynamic program down
to polynomial by rounding the input data so that sufficiently close input data are treated by a representative data
[14]. The relative error of an approximation scheme depends on how we define the closeness; the smaller the
threshold value for the closeness is, the smaller the relative error is. For a smaller error bound, however, the
computation time becomes longer.

5.1 Algorithm for Optimal Solutions

We first present an exponential-time optimal algorithm based on the properties of optimal voltage schedules
described in Section 3. The exponential-time algorithm essentially enumerates all the essential job sets. How-
ever, unlike Quan’s exhaustive algorithm [13], it enumerates the essential job sets intelligently without actually
enumerating all of them. Furthermore, it is based on dynamic programming formulation so that it can be easily
transformed into an FPTAS by the standard technique.

In formulating the problem by dynamic programming, we first identify appropriate ‘overlapping’ (or reusable)
subproblems to which dynamic programming can be applied iteratively. We note that the ‘optimal substructure’
of our problem is naturally reflected lpJocking tupleswhich are just sequences of time pointsZinin strictly
increasing order. (We formally define the blocking tuples later in this section.) That is, the optimal solution of
the original problem can be built by just merging the optimal schedules of the sub-intervals defined by a blocking
tuple. Figure 6 shows an example job set and its corresponding EDF-equivalent job set whose time interval is
partitioned by a blocking tupléry,rn-3,dn-1,- - - ,r2,d2), which is depicted by a set of the dashed thick lines in
Figure 6.(b). Note that jobs in each sub-interval follow the EDF-priority assignment.

The original problem is partitioned into subproblems by partitioning the overall time interval into sub-intervals
such that jobs in each sub-interval follow the EDF priority assignment. If a job is released within a sub-interval with
its deadline outside the sub-interval, the deadline can be modified to the end of the sub-interval. Each partitioned
interval can be optimally scheduled in polynomial time by Yao's algorithm [22]. The challenge is how to find the
set of sub-intervals whose optimal sub-schedules build an energy-optimal voltage schedule.

5.1.1 Basic Idea: The First Example

We now explain the basic idea of the optimal algorithm by describing the optimal algorithm on a simple but
illustrative job sety = {J1,J2,--- ,In} in Figure 6.(a) wherej;1 < ri < di11 < di for 1 <i < N. (Note that if the
priorities of jobs are reversed, the job set follows the EDF priority.) For this job set, an essential j6k{sath

as one in Figure 6.(b)) is partitioned in#g, 75, - - - , J¢ such that eacti® (1 <i < k) follows the EDF priority
assignment and the unidnof execution intervals of jobs i (i.e., li = Ujeye[r,ds]) does not overlap with

lj (= Uyegelry,dy]) forall 1 <i# j < k. To be more concrete,

forall 1<i<j<k, Wes®dedf, dy<ry.

Therefore, the optimal voltage schedlslgt of 7€ is equal to the concatenation of the optimal voltage schedules of
s, i.e.,

e jie
50pt(t) = 69E(:ljopt(t) .

Note thaLS‘ggt can be directly computed by Yao’s algorithm [22] sinfefollows the EDF priority assignment.
Therefore, the energy-optimal fixed-priority voltage scheduling problem is further reduced to the problem of find-
ing a partition that gives the energy-optimal voltage schedule for the whole time interval.

In defining a partition, we use a blocking tuple. For example, assumdghatselected asy_3 as in Figure
6.(b). Then, bothfy_1 and fy_» should be selected ag_3, so that the job set becomes EDF-equivalent and,
furthermore, essential. As shown in Figure 6.(b), these three jobs are separated from the other jobs by a thick
vertical line at timery_3. These jobs constitutes the first partitioned job&etThe remaining job setg;, - - -, 4°
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Figure 6. An example illustrating the optimal algorithm. (a) An original job set and (b) an essential job

set defined by a |7|-tuple f=(f1,f2,- -, fno3, fn—2, fn1, Tn) = (d2,do, - -+ ;dN—1,N-3,IN—3,N—3). JObS
in each sub-interval between the thick dashed lines follows the EDF priority assignment and can be
optimally scheduled by Yao’s algorithm.

can be constructed by applying the same argument. In this way, any essential job set can be partitioned and
represented by a blocking tuple.
Letb = (bg,bo,---,by) (b1 <by <---<by, bjeTy) be ablocking tuple where

Vi<j<l, dFstbj=ri Abj;1<d
Then, the corresponding EDF-ordergdttuplef = (fq, fo,---, fy) is given by
fu=Dbj s.t.rce[bj_1,bj) forall 1<k<N.

We call suchb;_1,bj] anatomic interval For example, the intervalsy,ry—3] and[ry,dy] in Figure 6.(a) are
atomic, but the intervdly, dy—1] is not atomic. (Later, we formally define the term atomic interval in arbitrary job
sets other than this example.) ltgtoe theh-th earliest time point i, and let$, g represent the energy-optimal
voltage schedule defined withjia, tg] for the job setf, g defined by

Jhg= {3113 € [tn,tg)} wherery =r;.cy =cCy, py = py and dy = min{dy,tg} .
Then, we have
E(Sap) = E(Sury)) =

k-1
min{z E(Shjhi) [1=h <hp<---<he=|J| and [ty,tn,]is atomicforallj=1,--- k—1}.
=1

Given an atomic intervaty,,th,, |, Sh; h;,, can be directly computed by Yao's algorithm. In this way, the optimal
voltage scheduling problem is reduced to a variant of the subset-sum problem. That is, for such job sets as in
Figure 6, our problem can be formulated as follows:
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Figure 7. An example of background workload.

Selectatuplé¢hs,hy, - hy) (1=hy <--- <hg=17]) of integers such that the sum

Ohy.hp +0hphg + -+ F Oy by

is minimized subject tdtn,, tn, ] is atomic for alll <i < k wheregy, n,,, denotes
E(Sh; n;.1) (Which can be directly computed by Yao's algorithm).

5.1.2 Basic Idea: The Second Example

The example job set in Figure 6 is illustrative in showing how our problem can be formulated by dynamic pro-
gramming. However, the easily partitionable structure comes from the fact the job set follows the ‘reverse’ EDF
priority. For example, in Figure 6, sindg is set to bea_3, which is within the execution intervals df,_; and

Jn_2, fno1 and fy_2 cannot be larger thafiy (or ry_3) so that the modified job set should be EDF-equivalent.
Furthermorefy_1 and fy_» are set to be the maximum possible valfjg,for the modified job set to be essential.

If the priority pattern is not the same as the example job set in Figure 6, the partitioning becomes difficult.
For example, the essential job sets in Figures 3.(c) and 3.(d) cannot be obtained by the partitioning procedure
just explained. In Figure 7.(aJ, has the lowest priority and the latest deadline, which mdkee bed, for all
essential job sets (Figures 7.(a), 7.(b) and 7.(c)). Therefore, any atomic intervalréerg], [r1,d1] or [r3,ds])
contains partial workload aod4, which we call abackgroundworkload. In the following, we first explain how
to extend the dynamic programming formulation to handlelbhekgroundworkload. Then, we describe how to
explore essential job sets of a given arbitrary job set (as in Figure 3) by dynamic programming.

From Lemma 9, the joBi, in Figure 7 runs at the same speed if the voltage schedule is an optimal one. For the
time being, let us assume that the constant speed is ag&onrd{s1, S, S3}. (For now,: is set to be the set of all
the possible constant speeds in the optimal voltage schedule. In section 5.2, we explain hoBghe sstcted
such that the size d&: is bounded by a polynomial function.) For eaglke S, we first compute the amount of
background workload ad, for each atomic interval, and then find the minimum-energy essential job set (among
those in Figures 7.(b), 7.(c) and 7.(d)) by using the similar procedure to the previous case in Figure 6. However,
unlike the previous case, we discard any job set for which the sum of background workloads executed in overall
time interval is less than the total workloadJaf

Figure 8.(a) shows the atomic intervélsg r1] and[r1,d;], which are obtained from the essential job set in Figure
7.(b). Figures 8.(b), 8.(c) and 8.(d) show the optimal voltage schedules for the atomic intervaldavhaeeat the
speeds;, s; andsg, respectively. The workloads of jolds, J, andJz are denoted by, ¢, andcs, respectively, and
the background workloads are denotedvbyThe amount of the background workload (and the resultant optimal
voltage schedule) for each atomic interval and speed can be easily computed by a slightly modified version of
Yao’s algorithm [22]. That is, when the critical interval is selected, if the speed to be assigned (by the intensity
of the critical interval) is less than or equal to the speed of the background workload, we assign the speed of the
background workload to all the unscheduled time intervals (including the critical interval). Then, the amount of
background workload can be directly computed as in Figure 8.(b), 8.(c) and 8.(d).

Once the background workload and the optimal voltage schedule is computed for each atomic interval, we apply
the same procedure as in the job setin Figure 6 to find the minimum-energy essential job set and the energy-optimal
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Figure 8. An example illustrating the algorithm on a job set with background workload. (a) Atomic
intervals (obtained from the job set in Figure 7.(b)). The optimal schedules for two atomic intervals
where the speeds of background workload of Jgq are (b) 1, (€) S and (d) Ssg, respectively. The voltage
schedules for overall time intervals where the speeds of Jg are (e) 1, (f) 2 and (g) Sz, respectively.

1: f071<"7‘> = d‘chl(U\)

2 bo = (dy,,)

3: for (i:=]J]-1to1)

4 let 77 be{J519l i <k < |9 A o1(k) <o (i) }

5: if (13, 1, =min({rs]J € I U{f51is1)})) retum FALSE
6: elsefoflo) = min({fcfl(wl),djrlm } U {r‘]‘\] S ]H})

7 end if

8: if (foa) < min{rJofl(k)| i <k<|7}) appendfs 1y onto the head obg
9: end if

10: end for

11:

appendnin Ry onto the head obg

Figure 9. The algorithm to build a strongly-blocking tuple from a | 7]-permutation.

voltage schedule. In exploring the solution space, we should discard any infeasible schedules. Figure 8.(e) shows
an infeasible schedule whelgruns ats; and cannot complete its execution until its deadline. The voltage schedule

in Figure 8.(g) is feasible, but not an optimal one. Thus, only the schedule in Figure 8.(f) is not removed in the
pruning procedure and is compared with another schedules obtained from the essential job sets in Figures 8.(c) and
8.(d).

5.1.3 Pultting It Altogether

We now describe the optimal algorithm for arbitrary job sets based on the observations from the example job
sets. First, we formally define the terrssongly-atomic intervalndstrongly-blocking tuple Given a valid| 7 |-
permutationo, the algorithm in Figure 9 builds the corresponding strongly-blocking tbple (by, by, --- ,bk)
whereb; < by < --- <bgandb; € T; forall 1 <i <k. The algorithm is identical to the algorithm in Figure 2
except for lines 2, 8, 9 and 11. In line &1, is selected as an element of a strongly-blocking tuple if it partitions

the execution interval.

Definition 12 Given a valid| J|-permutationo, the tupleb built by the algorithm in Figure 9 is called strongly-
blocking tuple An interval[t,t’] is strongly-atomidf there is a strongly-blocking tuple = (b, by, - - - ,by) such
that [t,t'] = [bj, 1] for somel <i < k. Furthermore, the job sef; | defined by

Tty = {J,’ Jeg, r;e [t,t,)} where ry =rj,Ccy =C3,py = py and dy = min{dj,t’} .

is said to benducedby an intervallt,t’].2

2[t,t'] is not required to be strongly-atomic.
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/* Ty = {tl,tz, 7tN} */
foreach (strongly-atomic intervalt, tj])
gij=E( SZ)[::';P])
end foreach
V= {vq,vo,--- ,Wn}
E = {(vi,vj) | [ti,tj] is strongly-atomi¢
foreach ((vi,vj) € E) w((vi,vj)) :=gjj endforeach /*weight of edges */
Find the shortest path from tovy in G = (V, E). /*Note that G is acyclic. */
I* The shortest path Vg, , Vg, - Vo) (Vgu=V1,Vg=WN) */

. k-1 7l o)
8: return®;—; Sopt

Figure 10. An exponential-time optimal algorithm based on strongly-atomic intervals.

For the job set in Figure 3 not on|ys, 2], [r2,d2] (Figure 3.(b)) andrs,r1] (Figure 3.(c)) but alsér1, do] (Figure
3.(c)) andrs, ds] (Figure 3.(d)) are strongly-atomic. Note that the inter{ialsd,] and|rs, ds] are not covered by the
previous definition in Section 5.1.1. Furthermofe, r2,d2) (Figure 3.(b)),(r3,r1,d2) (Figure 3.(c)) andrs,ds)

(Figure 3.(d)) are strongly-blocking tuples.

Note that for an intervaﬂt,t’], I]M C[t,t'] sincet <rj<d;<t'forallJe Jiv)- Therefore, for a strongly-
blocking tupleb = (by, by, -- -, by), iy 11 Tiping) >+ 1 Iy @F€ disjoint. Now, we prove that a job set can be
partitioned by strongly-blocking tuples as with the ]Ob Setin Figure 6 so that the formulation described in Section
5.1.1 can be extended to cover arbitrary job sets.

Lemma 13 Given a job sey and an essentidly|-tuplef, gf = Ulj(;i]j wherebg, = (by,by,---,bx) andjj is an
EDF-equivalent job set ofy, p, ., forall 1 < j <k

bj+1]

Proof. Let s ={J;,%, ,J(]‘} andlety; = {J €| ry (=ry) € bj,bj41)}. Then {7, %, -+, K1} forms
a partition of 7', i.e.,

g =1y and fingp=0forall1<j+#j <k.

Thus, it suffices to show théj is an EDF-equivalent job set dg, 1, ,  forall 1 < j <k. Letij = max{i| f;1
bj} forall 1 < j <k, and suppose thalgl/ > bj 41 forajobJf € J;. Then, we haves(l) > i1 since
fo—l(o( ) = fi = d‘]l, > bJ_r,_l = f

Li j+1)

From line 8 of the algorithm in Figure 9, we have
bj+1 = f071<ij+1) < min{rjcfl(k)] ij+1 <k< U‘ } < chil(k)|k:0(|) (>ij+1) — ry

which contradicts y (=ry) € [bj,bj+1). Thereforedy € [bj,bj.] for all J € 7;. Furthermore g follows the
EDF priority since it is a subset of the EDF job gét
It remains to show thatj| = | Jp, b,,,)| @nd there is a bijective functiam: Jp, 1, ,,) = Jj such that

VI € Jio bya] s PY = Pa) > € = Cqqyy @nd ry =re(y) - (11)
For the former, we have
19j] = {I € 5" [ry € [b,bj 1)} = HI€T|rs€lo,bj 1)} = |Tp byl -

For the latter, we define such thati(J') = J" iff py = pys. Then, itis clear that is a bijective function and (11)
holds.O

g . . ,
Lemma 14 Let S(t) = 50[” i1 for minRy =t <t, < --- <ty =maxDy (tj € Ty). Then,S is a feasible
voltage schedule of. Furthermore,

h—-1
E(S) = 3 S > E(SL) -
(S) J; (Sopt ") (Sopt)
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Lo o) =iy

2: by = (d‘]‘rl(‘ﬂ))

3: for (i:=]J|—1to1)

4: let 77 be {J, ol T <K< ]I A ofl(k) <o (i)}

5: if (1, 4, = min({rs]3 € S} U{fg1i41)})) return FALSE
6: elsefo vy == min({fg1i11),dy, 4, }u{rJ\Je g1

7 end if

8: if (fo1q) < min{ry[r e 7 appendf;-1;) onto the head obg
9: end if

10: end for

11: appendnin Ry onto the head oby

Figure 11. The algorithm to build a weakly-blocking tuple from a | J|-permutation.

Proof. Letup,y(t) be defined by

1 to<t<ty,
U[to,tél(t) :{ 0 otherwise,

Sincely, v, € [tj:tj+1], S is feasible ifS(t) - uy, v, (t) is a feasible schedule of; ;) for all 1 < j <h. By

J
definition, S(t) - Uy, 1,,,1(t) = Sopt " is @ feasible schedule df, ,,,,; forall 1 < j < h. E(S) = $"-1E(S, o;;t[”ﬂ)
holds trivially fromly, ., € [tj,tj<a]. Finally, sinces is feasible E(S) > E(Sp). O

The following lemma implies how an energy-optimal voltage scheduling problem can be partitioned into sub-

problems.

Lemma 15 Let

E1 = min{ Z E (Sopt Ty ’“ | (by,bg,---,by) is a strongly-blocking tuplé.,
E; = min{ Z E 501 t”l)\ minRy =t <th <--- <ty =maxDy , t; € Ty} and

Es = min{ Z E( Sop’ ”1 ) | Itj,tj+1] is a sub-interval of a strongly-atomic interval for all < j < h} .

Then,E(Sopt) =E = E, = E3.

Proof. Let
S = {EB" 155:;’ Ol | (by,by,---,by) is a strongly-blocking tuplé.

and defineS, and S; similarly. Then, from Lemma 14E; = min{E(S)|S € S} for i = 1,2,3. By definition,
S1 € S C S and consequentli,; < Ez < E;. FurthermoreE(.Sgpt) < Ep from Lemma 14. From Theorem 5 and
Lemma 13,57, € Sy. Thus, we hav&(S3,) > E1, which impliesE(Syy) = Ey = E; = E3. O

Figure 10 shows an optimal algorithm which is based on strongly-atomic intervals. From Lemma 15, is is
obvious that the algorithm in Figure 10 always computes an optimal voltage schedule. The algorithm may work
efficiently for some job sets (e.g., the job set in Figure 6). But, the running time may not be bounded by a poly-
nomial function; For the job set in Figure 7, there are only one strongly-atomic infesyad] and the algorithm
cannot but enumerate all the essential job sets. Furthermore, the algorithm does not have a structure suitable to be
transformed into an FPTAS. So, we consider another optimal algorithm basesbddy-atomidntervals,weakly-
boundingtuples, and the background workload. First, we formally define the terms based on the algorithm in
Figure 11, which is identical to the algorithm in Figure 9 except for the boxed code segment (line 8).

Definition 16 Given a valid| 7|-permutationo, the tupleby built by the algorithm in Figure 11 is calledweakly-
blocking tuple An interval[t,t’] is weakly-atomicif there is a weakly-blocking tuple®” = (by, by, --- ,by) such
thatt,t'] = [bj, bj1] for somel <i < k. Furthermore, the job sef; ¢w defined by

Jrepr = 3eg, nmet,t) A (3he s, py, <psAry, =t Ady€ry,dy))} where
ry =r3,Cy =C3,Py = Py and dy = min{dJ,t’} .
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is said to beweakly-inducedy an intervalft,t’].

Furthermore, given a weakly-blocking tugd® = (by,by,---,by) and the corresponding EDF-equivalent job set
J', any job ing" — Uij(;%][b,-,bm]w is called abackground jolwith respect to the weakly-blocking tud®. The
workload of background jobs are callédckground workload

Note that for an interval,t’], g om © IJH [t,t'] since ;v C Jry). Therefore, for a weakly-blocking tuple
b = (b, bz, - b)), g, s |, - bek s are disjoint.

Lemma 17 Given a weakly-blocking tuple”, let 4% represent the set of background jobs with respedi‘to
Then,j@ = jg’v;v for any weakly-blocking tuplds;’ andbY'.

Proof. Letb} = (by,by,---,bx) andby = (b}, b5,--- ,by,). Assume thad € jb%iv andr; € [bj,bj4+1). From the
definition of a background job, we have

Jk>j+1, dy>bji1 and p; > max{py|J € U:(:_jl+1j[b|,b|+1]w} : (12)
Suppose thal ¢ ]@. From (12), we have

[b]+1,b]+2] (bj 7bj’+1] fOI’ rJ S [b3’7b/j/+l) 5

a contradiction. Soj]bw C ]bw Similarly, we have]bw C g%
Lemma 17 states that we can specify background JObS |rrespect|ve of weakly-blocking tuples. For the rest of
this paper, we usé? to represent the set of background jobs.

Lemma 18 Given a job sey and an essentidly|-tuplef, letbg, = (by, by, ---,bx). Then, for any weakly-atomic
interval [bj,bj41] (1 < j <k) and a background jod, we have the following assuming jobs are executed under
Sopt:

(@)d; € [bj,bj;+1): J completes its execution ky.

(b) ry € [bj,bj+1): I completes its execution iy, 1.

(c) [bj,bj+1] C [rj,d;] executes its partial workload at constant speed.
Furthermore, for any interval,t’] C [bj, bj1], J; ¢+ is an EDF job set.

Proof. ~ Case (a) and Case (b) are obvious from the construction of the weakly-blockingoffipl€ase (c)
follows from Lemma 9. Finally, suppose tht.w is not an EDF job set. Then, we have

A, € Jyppr St pa>py, dy€(ry,dy),

and the algorithm in Figure 11 selects (< (bj,bj; 1)) as an element dif, a contradiction
From Lemma 18, we characterize the optimal schedule in terms of weakly-atomic intervals, weakly-blocking
tuples and background workload.

Lemma 19 Given a job seff and an essentidl/|-tuplef,
Sopt = L Sop (13)
whereby, = (b, by, ,bx) and Jj = Jip, b, U {IP} such that
rp=bj, dp=bjs1, pp=max{pslJ € fip, .} +1 and cp = c? for somec? >0 .
Proof. From Lemma 18, we have

{jOb(j75gpt(t)7t) |t € [bj7bj+1)} = ][bj7bj+1]w U ]/ U j” where
g ={¥ €%y elbjbi)} and 77 = {I € 7%|[bj,bjsa] C [ry,dy]}
From Case (b) of Lemma 18, p, v UJ" = Jp; pj,,)» @nd from Case (c}f” = {Jp}. So, we have

Sapt(t) - Upp, by (1) = o forall 1<j <k,
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which is equivalent to (13)2
From Lemma 19, the voltage scheduling problem is reduced to the problem of finding a weakly-blocking tuple
b" = (bs, by, - -+ ,bx) and the amount of background Workloéﬁlj.bjﬂ] for each weakly-atomic interva;, bj, 1].

To find thebackground spee% bj.a) instead of the amount of background workload makes it possible to exploit
Lemma 9.

Lemma 20 Given a weakly-atomic intervdth, to], let 7' = Jj, ,) U {J°} where

rp="ty, dp="tz, pp=max{ps|J € )} +1 andcp = cﬁl’tz} (>0),

and let 0] be the constant speedlﬁunderSgr;t. Then,
1) = { .5‘0‘“2 t) t st 50‘1‘2 (t) > s?l’tz]
P $ tost Sa3?(t) < B
Furthermore tt0] strictly increases as[t ] increases, and vice versa.

Proof. From Lemmas 18 and 19, both, ;,) and ' follow the EDF priority and their optimal voltage schedules
are obtained by Yao’s algorithm [22]. For an interf@lt}] C [t1,t2] such thatso[tltz]( t) > oL Yao's algorithm
selects the same speed ﬁgff,t . For the other mtervalsﬁopt( ) = Sy sincelty, to] C [ryp,dyp].

BecauseN(Scf,;t, [t1,t2]) strictly increases aﬁ%t increases and[? b = W(Sgi;t, [t1,t2]) — W(Sopt s  [t1,t2]),
cB increases increases. Hence, it follows thﬁ increases a increases (and vice versa).
[t Re ] tl,tz] 1,t2] tl,tz}

Definition 21 Given a job sey and background workload, the job set/ with background workload is defined
as

7c) €' 7 U {3°} where ry =Ry, dy = Dj, py = max{ps|J € 7} +Landcy = c .

Furthermore, given a job set|c], the constant speed of background workload unifé? is called abackground
speedof 7[c| and is denoted bBS 7, c).

The following lemma is an extension of Lemma 20 for arbitrary intervals.
Lemma 22 Given a job se¥/|[c]

q Jb; bi_11[Cil
Sop = @l st

c = zj:l c¢j and BSJp, b,,):Cj) =B Jp, b,,,,C) forall 1< j# j'<cj .

for by, - ,bx€ 7y, by <--- <bx such that

Proof. Directly from Lemmas 19 and &0
Along with Lemma 22, the following lemma implies how the problem can be reduced to a dynamic programming
formulation.

Lemma 23 Givent;,tj,tm € Z; wheret; <ty <t;j, let

j[E,tj]W = Ty Y {J cg? | [r3,ds] C [ti,tj]} and
g = CHIE TP raeltitm)Ady € ftmt] })

I8
and IetS(L' il represents,y;’ . Then,

B
S[t' e { 50“‘”“ "‘m]@.sot;‘t |50t't"'] i is feasible for ][E’tm]w}.
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procedure OPTIMAL _VOLTAGE_SCHEDULE (J)
KT ={t,t, N}, SSi={s1,%,, 5} *
foreach (se &)
V= {V13V27 ° VN}
E:={(vi,Vj) | [ti,tj] is weakly-atomi¢
foreach ((vi,vj) € E)

1
2
3
4
5: w((Vi,Vj)): W(max{50 '(t), s}, [t t]) —W(5f)[;;{”(t), fti,tj]) /*weight of edges */
6: end foreach
7 Find longest paths between all pairs of vertice¥in /* Note thatG is acyclic. */
8 foreach(1<i < j <N s.t. [tj,tj] is a concatenation of weakly-atomic intervals)

* The longest path fromy tovj = (Vg,, Vg, Vg )

9: ¢ := the weight of the Iongest path fromto v;.
10: Ei j[c] := E(@}-} max{ 50p‘q1 9 (1), s} It t])
11: end foreach
12: end foreach
13: for (i:=1toN—-1)
14: for (j:=1toN—i)
15: Ej jti =0T
16: for (k:=j+1toj+i)
17 Ci.jrik:=C({Ieg?|ry € [tj,t) Ady € [t tj+il})
18: Ej,j+ik = EjklCjjtikl +Exjri

. . Tty @ [Ciivin] . B

19: if (Ej,j+i > Ejj+ik and Sopt is feasible for 7y,  w U{J € 77|[r3,du] C [ti, j]})
20: Ejjvi =Ejjtix » hi=kK
21: end if
22: end for
23: Djj+i == {th} U bjhU bpj4i
24: end for
25: end for

g PR = N
*Ein = E(Sopt) and Sopt = Sopt where by N = (b1,bg,---,by) */
26: Jopti=UhL Tlon b U I% where by = (by,bp, -+ ,by)

27: return Sojp‘}”' I* Joptis an EDF job set. So,sojp"{" can be directly computed by Yao’s algorithm */
end procedure

Figure 12. An exponential-time optimal algorithm based on weakly-atomic intervals.

. . 3 ftt] j[ti,tj]W[C[Efi,[j]]
Proof. If all the jobs in{J € 77 | [r5,d;] C [ti,t;]} runs at the same speed undi«é!gt s Sopt. = Sopt :

Otherwise, there must exig}, € ?‘{Jej@ I (C T) such that all the jobs i§J € 7% | ry € [ti,tm) Ad; €
tm,tj] } finish their executions bt, with the same constant speed and all the job&Jig 77 | [rJ,dJ} [tm, 1]}

are not executed befotg underjggt'] (G ) S Sopt ] where oy T ©

feasible for][tBi_tm}w. O

Therefore, we havs([,tl'ot] 50*' i ) is

Corollary 24 Let Ec[,t:o’f‘] denoteE(S[" J]) where.s([," s defined as in Lemma 23. Then,

Eglptj] _ mln({E(Sot.tm [t.tm]])JrEotpm{']“meq}, t < tm <t 50‘”““ "%l s feasible for IR )

Based on weakly-atomic interval, we construct another optimal voltage scheduling algorithm. Figure 12 shows
the optimal algorithm which is based on the dynamic programming formulated by weakly-atomic intervals. The
algorithm identifies weakly-atomic intervals and computes the optimal schedule for the weakly-atomic interval.
(Note that jobs in a weakly-atomic interval follow the EDF priority assignment.) In computing the optimal schedule
for a weakly-atomic interval, we consider the background workload, that is, the algorithm computes the optimal
schedule for each candidate background spe&d.itGiven a job sey, the algorithm first computes the s of
candidates for the speed of background workload. For the optimal algorithm, theisetet to be

_ W)
Z:‘ 1(t|32i+2_tp2i+1)

It is obvious that the speed of the background workload in an optimal voltage schedule is incli&ed(in
the FPTAS which will be presented in Section 5.2, the@ets selected such that the size &f is bounded

|J'Cg, ti<ta< - <tp,, tjeTy}.
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by a polynomial function.) Given the optimal schedules of weakly-atomic intervals, the algorithm searches the
minimum sum of the energy values of the weakly-atomic intervals. The correctness of the algorithm directly
follows from Lemma 23 and Corollary 24. The worst-case running time of the algorithm is not bounded by a
polynomial function, but it can be easily transformed into an FPTAS.

5.2 Approximation Algorithm

First, we prove a miscellaneous property which is useful in bounding the error of our approximation algorithm.
Lemma 25 Given a functiorP : R™ = R™ and a constan® < € < 1, if

€-log2 _ P

D<xg < x< <1+ max{r](x)x>0}> -x; where n(x) = P X,

then P(xp) < (1+¢€)-P(x1) .
Proof. From the condition, we have

€-log2 €-log2

logxs —logx; < log (1+ max{r](x)|x>0}> < max{n)x> 0} ° (14)

Lety; =logx; andy,; = logxz. Then we have
log P(x2) — log P(x;) = log P(€2) — log P() < (y2—y1) -max d(ILI%eV))} )

dy
From (14) and
d(log P(¢")) _ P'(¢")
dy P(e)

we have
€-log2

maxnxs o) N0 x>0} = e-log2.

log P(xp) — log P(x1) <

It follows that
Pxo) < €'992.P(x;) < €919 .p(xy) = (1+¢€)-P(x1) .
O
For a power functio®(s) = a - s", we havea(s) = n. In the following, we us@p to denotdog 2/max{n(x)|x > 0}.
From Lemma 25, we can construct an FPTAS as in Figure 13. The FPTAS is slightly different from the algorithm
in Figure 12. To bring the running time down to polynomial, we 8sénstead ofX::
& = {min{&}-(1+¢&-pp)¥|k=0,1,---,1 where
min{S}-(1+¢-pp) < max{Sc} <min{Sc}-(1+¢&-pp) } .
Theorem 26 APPROX VOLTAGE_SCHEDULE is a fully polynomial time approximation scheme for the voltage
scheduling problem.

Proof. Lets; ands; be elements o such that, =s;- (1+¢€-pp). Given a weakly-atomic intervét, t;], we
have fort; <t <t;:

Tt Tt
max{Sypt” (), %2} < (1+&-pp)-max(Son (t),51} -

Thus, from Lemma 25, we have for<t <t;

T 1. it o
P(max{Sogt‘t‘](t),SQ}) <(1+¢)- P(max{jogt‘t”(t),sl}) , Which implies
T i Tt
E(max{Sopt” (), 52} [t 1)]) < (1+8) - E(max{Sopi” (1), 51} [t 1)) -
Letus compar€; «[c] inline 21 of APPROXVOLTAGE_SCHEDULE andE; [C;j ji k] in line 18 of OPTIMAL _VOLTAGE
_SCHEDULE. Lets ands be the corresponding elements3pn and S, respectively. Then, from the definition of
&, we haves < (1+¢€-pp) - s, which impliesE; k[¢'] < (1+€) - Ejk[cj j+ix]- ThereforeEyn < (1+€)-E(Sop)-
Finally, since we have

S = 14 [10gy, e oy (MaX({Sc}/min{Sc})] < 24+ C9MaXSe)/min{Sc))

e-log(1+pp)

: (15)

the running time is bounded a polynomial function sfandl/c. O
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procedure APPROXVOLTAGE_SCHEDULE (7,€)
P Ty = {tr,ta, -, tn} ¥/
* & ={min{&}- (1+8)Kk=0,1,---, [logy, s(max{Sc}/min{Sc})] whered =€ - pp*/
1 Initialize G j := {} for 1 <i < j <N.
2 foreach(se &)
3 V= {vq,V, -+ N}
4: E = {(vi,vj) | [ti,tj] is weakly-atomi¢
5: foreach ((vi,vj) € E)
6 W((Vi,V})) :=W(max 5?,‘;;” (t), s}, [ti,tj]) —W(sﬂ[g{i] (t), ti,tj]) /= weight of edges */
7 end foreach
8 Find longest paths between all pairs of vertice¥in /* Note thatG is acyclic. */
9 foreach (1 <i < j <N s.t. [tj,tj] is a concatenation of weakly-atomic intervals)
* The longest path fromy tovj = (Vg,,Vg,, - Vg )

10: c:=the weight of the longest path fromto v;.
Titg: tq;
11: Eijlc = E(@ld max{ Sopt (1), 8}, i, t;])
12: Ci,j =G ju{c}
13: end foreach
14: end foreach
15: for i:=1toN-1)
16: for (j:=1toN—i)
17: Ej j4i =00
18: for (kK:=j+1toj+i)
19: Cjjrik:=C{I€I? [ry€ [tj,t) Ady € [t tj+i]})
20: ¢ :=min{ceCjlc>cj ik}
21: Ejjtik:= Ej,k[C/]-l-Ek"j_H
22: if (Ej,j+i > Ejj+ix and
Titi W [Cijtik] | .
50[;;{"‘] Ciied is feasible for 7,  w U {J € 78|[ry,dy] C [ti,t]})
23: Ejjri =Ejjtik » hi=kK
24: end if
25: end for
26: Bj j+i == {th} U Dbj hU bn ji
27: end for
28: end for

I Ein < (14€) ESep) ¥/
29: Je = Ulh_:ji j[bh.,bhu]w U ,793 where bl,N = (by,bp,---,by)

30: return Sojpet /* j¢is an EDF job set. So.sojpst can be directly computed by Yao’s algorithm */
end procedure

Figure 13. The fully polynomial time approximation scheme.

6 Workload-Aware Optimal Off-Line Scheduling

The off-line voltage scheduling algorithm described in Section 5 is based on the assumption that the workload of
each job is constant. Off-line algorithms can be applied to the case where each job runs at its worst-case execution
time (WCET). However, the execution time of each job varies, sometimes by a large amount, which cannot be
adequately handled by off-line scheduling alone. Therefore, rescheduling by an on-line scheduling algorithm is
necessary during runtime. On-line scheduling is effective in leveraging the execution time variation, but it should
not spend much computation time due to the runtime overhead.

Consequently, both the off-line scheduling and the on-line scheduling are needed in realizing the full potential
of energy saving with sophisticated static analysis while exploiting the workload variation appropriately without
incurring much runtime overhead. A naive approach to combine the off-line scheduling and the on-line scheduling
is to decouple the off-line and on-line decisions. That is, the off-line scheduler assumes that each job runs at
its WCET, and is unaware of either the workload variation or the behavior of the on-line scheduler. This policy
makes the off-line scheduling problem easier, but the off-line schedule may lead to a poor energy efficiency once
rescheduled by the on-line scheduler during runtime.

Given an off-line voltage schedule = (aj,ay, - - ,am)3 and an on-line voltage scheduling algorittin we

3For the rest of this paper, we use a time-allocation tépler S) instead ofS (a function from time to the processor speed) to denote
an off-line voltage schedule, because an off-line scheduka more appropriate representation for an off-line voltage schedule from the
viewpoint of an on-line voltage scheduler.
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use A(A, (X1,%2,--+,X5))) to represent the on-line voltage schedule obtainedibyhen the actual workloads

of Jy,Jp, -+, Jjy @rexy, xz,- -+, X5 (X € (0,ci]), respectively. Given a feasible off-line schedAlehat satisfies
Condition 1ll, an on-line voltage scheduling algorithfnis required to give each job the actual workload between
its release time and deadline. Conversely, sif¢é, (C1,Cz, -+ ,Cjy|)) = Sa, an off-line schedule must satisfy
Condition Ill. Therefore, the solution space for the WAOS problem (stated in terms of time-allocation tuples) is
the same as that for the CWOS problem, and the WAOS is formulated as follows:

Given workload probability distribution®;, 7, -- - , P4 and an on-line scheduling algorithm find
an off-line schedul& = (ay,az,--- ,a4|) such that the average energy consumption

/'C.]:.L“/CJU‘ (ﬂT - . 4 g
o o ﬂ '(X')) ECA(A, (X1, X)) dXyp -~ dx (16)

is minimized subject to Condition Il (or Condition IV for an EDF job set).

Note that the CWOS problem is the special case of the WAOS problem where the worklhasl afvaysc; for
all1<i<|g|.

The difficult of the CWOS comes mainly from how to express the integral (16) in terms of an off-line schedule
A = (a3,a, -+ ,ay|), because it requires an analysis on the runtime behavior of an arbitrary on-line scheduling
algorithm. For this, we propose a generic on-line scheduling algorithm in Section 6.1. Then, we give an average-
case analysis of the generic on-line algorithm, which gives an analytic expression of the integral (16) in terms of an
off-line schedule. The analytic expression can be minimized by a modified version of the algorithm for the CWOS
problem in conjunction with standard convex optimization technique [2].

6.1 A Generic On-Line Algorithm

In this section, we characterize on-line fixed-priority scheduling based on the behavior of the existing on-line
voltage scheduling algorithms for fixed-priority job sets [17, 10, 4]. From the characterization, we construct a
generic on-line voltage scheduling algorithm, which will be used as the base on-line scheduling algorithm for our
workload-aware off-line scheduling algorithm in Section 6.2.

On-line algorithms use the “run-calculate-assign-run” strategy to determine the on-line voltage schedule: (1)
run a current job, (2) when the job is completed, reclaim the unused processor time, cabtatkhe3) pass a
part of the accumulated slack on to the next job, (4) calculate the speed of the next job, and (5) run the next job.
Existing on-line algorithms differ only in step (3), and can be characterized by how much slack is given to a job at
its release time or resumption.

A generic on-line voltage scheduling algorithm is given in Figure 14. An on-line algorithm can be directly
obtained by implementing procedufe. LOCATE_SLACK appropriately. For example, Gruian’s algorithm can be
obtained by adopting the ASAP policy in allocating the slack, i.e., giving all the accumulated slack time to the next
activated job. On the other hand, Shin’s algorithm [17] and Pillai’s algorithm [10] are based on the ALAP policy.

Figures 15 and 16 illustrate the off-line and on-line scheduling, respectively. Initially, & by is given
an allowed execution timg; which is determined by the off-line scheduler. Figures 15.(a) and 15.(b) show an
example job set and its off-line schedule, respectively. (For simplicity, we select an off-line schedule with a
constant processor speed.) In Figure 15JandJs are preempted by higher priority jobs, and their execution
intervals are split into sub-intervals. For example, the execution intervd afe split into sub-intervals with
lengthsas 1 andas > whereas 1 + a5 2 = as. Figure 15.(c) shows the actual workload of each job and slack times,
which are not known off-line.

On-line scheduling algorithms reclaim the slack times and distribute them into jobs when the jobs are released
or resumed as shown in Figure 16. Figure 16.(a) shows the on-line schedule obtained by Shin’s algorithm [17]
or Pillai's algorithm [10]. Note that no slack time is givenJgat its release time and at its resumption. The
on-line schedule in Figure 16.(b) obtained by Gruian’s algorithm [4] is flatter than the schedule in Figure 16.(a).
Under the ASAP policy in allocating the slack, a job starts with a lower speed than under the ALAP policy and,
consequently, the on-line schedule tends to be flatter resulting in the lower energy consumption.
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procedure INITIALIZE
(a1,ap, - ,aw) := a feasible off-line schedule;
slack:= 0; /*accumulated slack */
for (i:=1to9)
workloadleft :=¢;;
time.used ;= 0; /* the total amount of CPU time used By*/
slackused := 0; /* the total amount of slack given ti */
end for
end procedure

procedure DURING_IDLE _TIME
decremenslackby the idle time.
end procedure

procedure UPON_RELEASED.OR_RESUMED (J;)

slackallocated::’ ALLOCATE_SLACK (J;) ‘;

decremenslackby slack allocated

allowedtimeleft := g + slackused — time_used;

incrementslack used by slack allocated

runJ; at the speedvorkloadleft / (slackallocated+ allowedtime.left).
end procedure

procedure DURING_EXECUTION (J;)
decrementworkload.le ft;.
incrementime.usegd.

end procedure

procedure UPON.COMPLETE(J;)
[* reclaim the slack time left by; */
incrementslackby a; + slack useg — time_useg.
end procedure

Figure 14. The generic on-line voltage scheduling algorithm. On-line algorithms are characterized by
procedure ALLOCATE_SLACK, which allocates a part of the accumulated slack to a job released or
resumed.

6.2 Workload-Aware Off-Line Scheduling

Based on the average-case analysis, we reduce the WAOS problem to the CWOS problem so that the FPTAS for
the CWOS problem can be used for the WAOS problem with slight modification. Recall that it suffices to consider
an algorithm that minimizes the integral (16) for an EDF job set; then, the FPTAS for the WAOS problem (with
fixed-priority job sets as the problem instances) can be directly obtained.

First, we derive the average energy consumption in the integral (16) as a function of an off-line s¢hedule
(a1,82,--+,a4)), based on the behavior of the generic on-line scheduling algorithm described in Section 6. Figure
17 shows an on-line schedule of a jab Initially, J is giveng as its allowed execution time by an off-line
scheduler.J; may be preempted by higher priority jobs, and its execution interval is splitninsoib-intervals
li1,li2,---,lin with lengthsa 1,8 2,--- ,a pn, respectively, wherey = z?i:lam. Furthermorey; j is used to
denote the slack time given th at its j-th activation. WhenJ; starts its execution, the available time fris
a +U; 1 and the speesd 1 for |; 1 is set toc; /(& + u; 1). Consequently, the amount of workload executed within
is given by
Ui+a1

Ui+a

Similarly, we can derive a recurrence for the spegdn I j and the amount of workload; j executed inlj ;.

At J’s j-th invocation, the available execution timeuig + a — zija,;k and the amount of workload executed is
511w . Therefore, we have

Wit=s1-(Ui1+a1)=¢-

j—1
_ Ci— Th_1 Wik
_ Mr
Uij+a — i 1aik

S.j Wij =S (Uij+a) -
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Figure 15. Off-line voltage scheduling examples; (a) an example job set, (b) an off-line schedule, and
(c) the actual workload of each job. (<« represents slack time.)
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Figure 16. On-line voltage schedules obtained by (a) Shin’s algorithm [18] or Pillai’s algorithm [13],
(b) Gruian’s algorithm [5].

Solving the recurrence gives
g _ G 8-tk o Uitd) o & Tk
) — : ) [ i I : .
T uata ||1 Uijr1+ai—Skoiaik : Ui,1+ 3 ||1 U1 +a — Shoiaik
Let x; be the actual workload &k (X < ¢;) such that
- .
Z|J(:1Wi,k <X < Z|J(:1Wi,k -

Then, the total CPU timg used byJ; is given by

j—1

i—1
it oy X i Wik
ti = Z|<::|_(ul,k—|_al,k)‘i‘3_77j R
and the energy consumed fyis given by
BiOa,x, %) = ziip(svk)'(uhkjLatk) - P<S~,J)'(ti_zlj(;i(ui,k‘i‘ai,k)) ~

Now, it remains to derivey j in terms of an off-line schedulgay,ay, - - ,am) and the actual workload of each
job. In addition to these parametets, is dependent on the behavior of the base on-line scheduling algorithm,
i.e., on how the slack is distributed by procedAne. OCATE_SLACK in Figure 14. In this paper, we use the ASAP
policy explained in Section 6, which showed the best energy efficiency in our experimer¥, denote the job
that completes its execution &ts j-invocation. Theny; j is given by

n;.
U= g (U k+ai ) =t
We can now rewrite the average energy consumgiiga(i.e., the integral (16)) as follows:

71 171

iz/oc{l,./ocu (ﬂflhi(xi)> Ei(Xa, X, Xg) dXg) oo dxg
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Figure 17. On-Line scheduling examples.

Note that the average energy consumption given in (17) can be proved to be a convex fun@ioaof- - ,a ).
Furthermore, sincéay,az,- - ,ay|) is a convex set iRl?|, the global minimum can be found by standamhvex
optimizationtechnique [2]. As explained in Section 5, the FPTAS for the WAOS problem is directly obtained by
substituting the convex optimization algorithm to minimize the average energy consumption for Yao’s EDF voltage
scheduling algorithm in the FPTAS for the CWOS problem.

7 Experimental Results

We evaluated the proposed algorithms for the CWOS problem and the WAOS problem. For both settings, we
implemented the FPTAS in Section 5. We also implemented Yao’s algorithm [22] and the convex optimization
algorithm [2] for the CWOS problem and the WAOS problem, respectively. For the base on-line scheduling
algorithm for the WAOS problem, we used the ASAP policy.

7.1 Evaluation of FPTAS for CWOS Problem

We first evaluated the FPTAS for the CWOS problem. For a comparison, we also implemented Quan’s heuristic
[12], which is currently the best polynomial-time voltage scheduling algorithm for fixed-priority real-time tasks.
We compared the energy efficiency and computation time between two algofithmsur experiments, we as-
sumed that the energy consumption is quadratically dependent on the supply voltage. For a given supply voltage
V, the corresponding clock frequenéys proportional toVpp — VrH)® /Vop, whereVry anda are assumed to be
0.5V and 1.3 [15].

We constructed test job sets from periodic task sets of three real-world applications: MPEG4 Videophone [16],
CNC [6] and Avionics [9]. Table 1 summarizes the experimental results for these job sets. In each experiment, the
execution time of each job (i.e., task instance) was randomly drawn from a Gaussian disttiittiimthe range
of [WCET/10,WCET] of each task. Results were normalized over the energy consumption of each application
scheduled by the proposed FPTAS wath 0.1%. As shown in Table 1, the FPTAS outperforms Quan'’s algorithm
spending reasonable CPU times. In the experiments, actual errors were always less theis. dMénomit CPU
times for MPEG4 Videophone because they are less@liaseconds.)

We also performed experiments using synthesized job sets with the varying number of jol&Eftom60Q
We conjectured that one of the key parameters affecting the performance of Quan’s algorithm is the degree of
interferences among jobs. Since the degree of interferences is mainly dependent on the lengths of the execution
intervals of the jobs, we generated three classes of job sets as follows: For the first class of jOlassty,(the
release time and the length of the execution interval of a job are selected under the uniform distribution within
[0,1000] and [50,100], respectively. The workload of each job was randomly selected from a uniform distribution
within [0.2,1.0]. (Note that it is sufficient to consider only the relative values of workloads since the maximum
processor speed can be always appropriately adjusted.) For the second class@igjgh8 @nd the third class

4We have implemented the exhaustive optimal algorithm by Guah [13] as well for experiments. This algorithm, however, takes an
excessive amount of time. For example, it took more than a day Wher25. Therefore, we cannot include the experimental results for
this algorithm.

Swith the mearm = %O’LWCET

and the standard deviatian= %\’VCEWIO.
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Normalized Energy CPU Time(s)

Applications MPEG4 | CNC | Avionics || CNC | Avionics
# jobs 22 289 1372 289 1372
€=0.1% 1 1 1 || 44.71| 4506.63

£=05% | 1.003| 1.004| 1.003| 11.67| 1021.48
FPTAS [ €=1.0% | 1.006 | 1.008| 1.007| 6.12| 63L.15
€=15% | 1.012| 1.013| 1.011| 516| 512.32
£=2.0%] 1.017| 1.018| 1.018| 3.81| 313.15
Quan [12] 1.041| 1.062| 1.059| 4.76| 580.32

Table 1. Experimental results for three real-world real-time applications.

of jobs (Class 3, we used [100,300] and [300,500] (instead of [50,100]) for the length of the execution interval,
respectively. Note thatlass 1 Class 2andClass 3correspond to job sets with low, medium and high degrees of
the interferences among the jobs. Tables 2, 3 and 4 show the experimental restiés$al, Class 2andClass 3

As shown in tables, in general, the higher the degree of interferences becomes, the larger the improvement of our
algorithm over Quan’s algorithm becomes.

Normalized Energy

Job sets N Y3 J3 Ja Js Js
#jobs 50 100 200 400 800 | 1600
e=0.1% 1 1 1 1 1 1

€=05% || 1.003 | 1.003 | 1.004 | 1.004 | 1.003 | 1.003
FPTAS [ €=1.0% || 1.008 | 1.007 | 1.009 | 1.009 | 1.008 | 1.009
€=1.5% || 1.013 | 1.012 | 1.012 | 1.014 | 1.014 | 1.014
€=2.0% || 1.016 | 1.016 | 1.019 | 1.018 | 1.019 | 1.019
Quan [12] 1.044 | 1.047 | 1.051 | 1.054 | 1.052 | 1.071

Table 2. Experimental results for synthesized jobs ( Class J.

Normalized Energy

Job sets Y T J3 Ja s Y3
#jobs 50 100 200 400 800 | 1600
€=0.1% 1 1 1 1 1 1

€=0.5% || 1.004 | 1.004| 1.003 | 1.004 | 1.003 | 1.004
FPTAS | €=1.0% || 1.009 | 1.007 | 1.007 | 1.008 | 1.009 | 1.009
€=15% | 1.013| 1.012| 1.014| 1.014 | 1.013 | 1.014
€=2.0% || 1.018| 1.016| 1.018| 1.018 | 1.019 | 1.019
Quan [12] 1.055| 1.062| 1.070 | 1.079 | 1.103 | 1.127

Table 3. Experimental results for synthesized jobs (  Class 3.

7.2 Evaluation of FPTAS for WAOS problem

We next evaluated the performance of the workload-aware off-line scheduling algorithm, i.e., the FPTAS for the
WAOS problem. For a comparison, we experimented with three strategy. For the first st@iedgdy 1), we
used the workload-aware off-line scheduling algorithm and the base on-line scheduling algorithm as described in
Section 6.2. The second strate@trategy 2 is identical toStrategy 1 except that the workload-aware off-line
algorithm is replaced by the FPTAS for the CWOS problem, which does not exploit the workload variation at
off-line. For the third oneS$trategy 3, we implemented the approach proposed by Pillai and Shin [10], which we
believe is the best-known approach in the literature.

The real-world applications used in Section 7.1 was also used in the experiments and the results are collected in
Table 5. In each experiment, the workload of each job (i.e., task instance) was randomly drawn from a Gaussian
distributiorf within the range of [BCET,WCET] of each job where BCET is the best case execution time. We
performed the experiments by varying BCET from 10% to 90% of WCET for each application. Results were
normalized over the energy consumption of each application schedulsttdiggy 1 As shown in Table 5, our
workload-aware algorithm outperforms other approaches by up to about 40%.

Swith the mearm = BEETHWCET and the standard deviatian— WCET_BCET,
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Normalized Energy

Job sets N Y3 I3 Ja Js Js
#jobs 50 100 200 400 800 | 1600
e=0.1% 1 1 1 1 1 1

€=0.5% || 1.004 | 1.004 | 1.004 | 1.003 | 1.004 | 1.004
FPTAS | €=1.0% || 1.009 | 1.007 | 1.007 | 1.009 | 1.008 | 1.009
€=15% | 1.014| 1.013| 1.014 | 1.013| 1.014| 1.014
€=2.0% (| 1.018 | 1.017| 1.019| 1.018 | 1.019 | 1.019
Quan [12] 1.094 | 1.114| 1121 | 1.134| 1.142 | 1.137

Table 4. Experimental results for synthesized jobs ( Class 3.

Strategy 2 Strategy 3
Applications MPEG4 | CNC [ Avionics [| MPEG | CNC [ Avionics
0.1 1.221 | 1.321 1.352 1.207 | 1.420 1.361
0.3 1.117 | 1.214 1.193 1.124 | 1.311 1.252
BCET/WCET | 0.5 1.053 | 1.126 1.113 1.085 | 1.189 1.231
0.7 1.019 | 1.046 1.041 1.022 | 1.098 1.071
0.9 1.000 | 1.004 1.003 1.000 | 1.007 1.012

Table 5. Experimental results for average-case optimal FPTAS.

8 Conclusions

We investigated the problem of energy-optimal voltage scheduling for fixed-priority real-time systems imple-
mented on a variable voltage processor. First, we proved the NP-hardness of the problem. Our complexity analysis
provided an important new insight into the problem. Knowing the NP-hardness of the problem, as the best practical
solution, we described a fully polynomial time approximation scheme (FPTAS) for the problem. That is, for any
€ > 0, the proposed approximation scheme computes a voltage schedule whose energy consumption is bounded by
(1+¢) times that of the optimal voltage schedule with the running time bounded by a polynomial function of the
number of input jobs antl/¢.

Furthermore, we present a workload-aware off-line scheduling approach which takes the workload variation
and the behavior of an on-line scheduling algorithm into account. As part of the analysis of on-line algorithms,
we propose a generic on-line voltage scheduling algorithm, which has its own significance in that it provides a
new framework for the research on the on-line voltage scheduling. Experimental results show that our algorithm
outperforms other well-known algorithms in the literature by up to about 40%.

While the proposed approximation scheme is efficient for general fixed-priority job sets, the proposed scheme
can be further extended in several directions. For example, we are interested in devising more efficient algorithms
for more specialized job sets such as job sets from periodic task sets. In addition, we plan to modify the proposed
approximation scheme to work under a more realistic processor model with a limited number of voltage levels and
voltage transition overheads.
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