
On Energy-Optimal Off-Line Scheduling for Fixed-Priority Hard Real-Time
Systems On a Variable Speed Processor

Han-Saem Yun
School of Computer Science and Engineering

Seoul National University
Seoul, Korea 151-742

hsyun@davinci.snu.ac.kr

Abstract

Recently, there has been a wide spread of battery-operated embedded computing systems such as mobile and
portable devices. For such systems, energy consumption is one of the most important design constraints because
the battery operation time is a primary performance measure. Voltage scheduling, which adjusts the processor
speed along with the supply voltage dynamically, is an effective technique in reducing the energy consumption
of embedded real-time systems. Although many voltage scheduling algorithms have been proposed, there have
been few research results known on the problem of energy-optimal off-line voltage scheduling for fixed-priority
hard real-time systems. In this paper, we present three new contributions for this under-investigated problem.
First, we prove that the problem is NP-hard. Second, we present a fully polynomial time approximation scheme
(FPTAS) for the problem. For anyε > 0, the proposed approximation scheme computes a voltage schedule whose
energy consumption is at most(1+ ε) times that of the optimal voltage schedule. Furthermore, the running time
is bounded by a polynomial function of the number of input jobs and1/ε. Third, we extend the FPTAS such that
the average energy consumption is minimized given an on-line voltage scheduling algorithm and a probabilistic
workload of a job set.

1 Introduction

Embedded systems have emerged as one of the fastest growing areas of the computing world. This is most ev-
ident in the growth of battery-operated portable devices such as PDAs, mobile videophones, and cellular phones.
For these devices, the most serious limitation is the available battery lifetime, and the energy consumption is a
critical design constraint. Even for non-portable systems such as high-performance microprocessors, the energy
consumption is still an important design constraint, because large heat dissipations in high-performance micropro-
cessors may result in temperature-related problems such as logic errors or device degradation. As a consequence,
several low-energy design techniques have been developed over a wide range of abstraction levels, including cir-
cuit, logic, architecture, compiler, OS, and application levels.

The dynamic energy consumptionE, which dominates the total energy consumption of CMOS circuits, is given
by E ∝ CL ·Ncycle·V2

DD, whereCL is the load capacitance,Ncycle is the number of executed cycles, andVDD is the
supply voltage. Because the dynamic energy consumptionE is quadratically dependent on the supply voltageVDD,
loweringVDD is an effective technique in reducing the energy consumption. However, lowering the supply voltage
also decreases the clock speed, because the circuit delayTD of CMOS circuits is given byTD ∝ VDD/(VDD−VT)α

[15], whereVT is the threshold voltage andα is a technology-dependent constant.
When a given job does not require the maximum performance of a VLSI system, the clock speed (and its

corresponding supply voltage) can be dynamically adjusted to the lowest possible level that still satisfies the job’s
required performance. This is the key principle of the voltage scheduling technique. With a recent explosive
growth of the portable embedded system market, several commercial variable-speed processors were developed
(e.g., Intel’sXscale, [20] AMD’s K6-2+ [19] and Transmeta’sCrusoe[11] processors). Targeting these processors,
various OS-level voltage scheduling algorithms [22, 5, 10, 1, 7, 17, 4, 18, 12, 13] have been proposed, especially
for embedded hard real-time systems.

For hard real-time systems, the goal of voltage scheduling algorithms is to find anenergy-efficientvoltage
schedule with all the stringent timing constraints satisfied. A voltage schedule is a function that associates each
time unit with a voltage level (i.e., a clock frequency). In this paper, we considerfixed-priority real-time jobs
running on a variable-speed processor.

1

1.1 Previous Work

Previous investigations on the voltage scheduling problem have focused mainly on real-time jobs running under
dynamic-priority scheduling algorithms such as the EDF (earliest-deadline-first) algorithm [5, 10, 1, 7]. For exam-
ple, the problem of energy-optimal EDF scheduling has been well understood. For EDF job sets, the algorithm by
Yao et al. [22] computes the energy-optimal voltage schedules in polynomial time. Although the EDF scheduling
policy makes the voltage scheduling problem easier to solve, fixed-priority scheduling algorithms such as the RM
(rate monotonic) algorithm are more commonly used in practical real-time systems due to their low overhead and
predictability [8].

Although there exist several voltage scheduling algorithms proposed for fixed-priority real-time tasks (e.g., on-
line scheduling algorithms [17, 4, 10] and off-line scheduling algorithms [18, 4, 12, 13]), there have been few
research results on theoptimal voltage scheduling problem for fixed-priority hard real-time systems; neither a
polynomial-time optimal voltage scheduling algorithm nor the computational complexity of the problem is known.

Up to now, the only significant research result on the optimality issue of fixed-priority voltage scheduling is the
one presented by Quanet al. [13], where energy-optimal voltage schedules for fixed-priority jobs are found by an
exhaustivealgorithm. However, Quanet al. did not justify their exhaustive approach. If they had presented the
computational complexity of the voltage scheduling problem, their result would have been much more significant.
Since the worst-case complexity of Quan’s algorithm is of higher order thanO(N!) whereN is the number of jobs,
the algorithm is practically unusable for most real-time applications.

Quanet al. also proposed a polynomial-time voltage scheduling algorithm for fixed-priority hard real-time
systems [12], which is the best known polynomial-time heuristic for the problem. Although efficient, being a
heuristic, this algorithm cannot guarantee the quality of the voltage schedule computed.

1.2 Contributions

In this paper, we give a complete treatment on the energy-optimal voltage scheduling problem for fixed-priority
hard real-time systems. First, as with the work of Quanet al. [13, 12], we consider the optimal scheduling
problem where the workload of each job is assumed to be constant, which we call theConstant-Workload Optimal
Scheduling(CWOS) problem. The CWOS problem is identical to the one solved by Yaoet al. [22] except that
the priority assignment is changed from the dynamic EDF assignment to the fixed assignment. As illustrated by
Quanet al. [12], the voltage scheduling problem for fixed-priority tasks is much more difficult to solve because
the preemption relationship among the tasks is more complex to analyze.

We first prove that the CWOS problem is NP-hard, which implies that no optimal polynomial-time algorithm
is likely to exist. Then, we present afully polynomial time approximation schemefor the CWOS problem. A
fully polynomial time approximation scheme (FPTAS) is an approximation algorithm that takes anyε (> 0) as an
additional input and returns a solution whose cost is at most a factor of(1+ ε) away from the cost of the optimal
solution with the running time bounded by a polynomial both in the size of the input instance and in1/ε [21].
Given the NP-hardness of the problem, the proposed approximation scheme is practically the best solution. The
proposed approximation scheme computes a near-optimal voltage schedule in polynomial time. By changingε,
the approximation scheme can find a voltage schedule that is provably arbitrarily close to the optimal solution.

Next, we consider the case where the workloads of jobs are not constant, which is a typical characteristic of
real-world applications. For this case, on-line scheduling is necessary at runtime to exploit workload variations.
Thus, we address the problem of computing an off-line voltage schedule that consumes the minimumaverage
energy given an on-line voltage scheduling algorithm and a probabilistic workload of a job set, which we call the
Workload-Aware Optimal Scheduling(WAOS) problem. Based on the average-case analysis of on-line voltage
scheduling algorithms, we reduce the WAOS problem to the CWOS problem so that the FPTAS for the CWOS
problem can be used for the WAOS problem with slight modification. As part of the analysis of on-line algorithms,
we propose a generic on-line voltage scheduling algorithm, which is derived from the necessary conditions that
any on-line algorithms should satisfy. The proposed generic on-line algorithm has its own significance in that it
provides a new framework for the research on the on-line voltage scheduling. Experimental results show that our
algorithm outperforms other well-known algorithms in the literature by up to about 40%.

The rest of the paper is organized as follows. In Section 2, we formulate the CWOS problem and characterize
feasible voltage schedules. We describe important properties of an energy-optimal voltage schedule in Section 3,
which provide a basis of later proofs. In Section 4, we present the intractability result for the problem including its
NP-hardness. The FPTAS for the CWOS problem is presented in Section 5. In Section 6, we formulate the WAOS

2

problem, and present the generic on-line voltage scheduling algorithm and the FPTAS for the WAOS problem.
Experimental results are given in Section 7 and we conclude with a summary and directions for future work in
Section 8.

2 Problem Formulation

Note that only the CWOS problem is formulated in this section and the term “problem” indicates the CWOS
problem up to Section 5; the formulation of the WAOS problem is given in Section 6.

We consider a setJ = {J1,J2, · · · ,J|J |} of priority-ordered jobs withJ1 being the job with the highest priority.
A job J ∈ J is associated with the following timing parameters, which are assumed to be known off-line:

• rJ: the release time ofJ.

• dJ: the deadline ofJ.

• cJ: the number of execution cycles required forJ.

We usepJ to denote the priority of the jobJ. We assume thatJ has a higher priority thanJ′ if pJ < pJ′ . In the rest
of the paper, we usei instead ofJi as a subscript of timing parameters when no confusion arises. (e.g.,r i ,di and
ci stand forrJi ,dJi andcJi .) Note that our job model can be directly applicable to a periodic real-time system by
considering all the task instances within a hyperperiod of periodic tasks.

Since there is a one-to-one correspondence between the processor speed and the supply voltage, we useS(t),
the processor speed, to denote the voltage schedule in the rest of the paper. Given a voltage schedule, the job
executed at timet can be uniquely determined and is denoted byjob(J ,S , t). A voltage scheduleS(t) is said to
be feasibleif S(t) gives each job the required number of cycles between its release time and deadline. (An exact
characterization of a feasible voltage schedule is given in Section 2.1.)

As with other related work [22, 12, 13], we assume that the processor speed can be varied continuously with a
negligible overhead both in time and power. Furthermore, we model that the powerP, energy consumed per unit
time, is a convex function of the processor speed; given a voltage scheduleS(t), the power can be written as a
function of time byP(S(t)). For simplicity, we assume that all the jobs have the same switching activity and that
P is dependent only on the processor speed.

The goal of the voltage scheduling problem is, therefore, to find a feasible scheduleS(t) that minimizes

E(S) =
Z tf

ts
P(S(t)) dt (1)

wherets andtf are the lower and upper limits of release times and deadlines of the jobs inJ , respectively. For the
rest of this paper, the energy-optimal voltage schedule of a job setJ is denoted byS J

opt.

2.1 Feasibility Analysis

In this section, we derive a necessary and sufficient condition for a voltage schedule to be feasible, which will
provide a basis for the proofs in Section 3. We first introduce some useful notations and definitions.

W(S , [t1, t2]) is used to denote the number of cycles executed under a voltage scheduleS(t) from t1 to t2, i.e.,
W(S , [t1, t2]) =

R t2
t1 S(t) dt. AmongW(S , [t1, t2]) cycles,Wi(S , [t1, t2]) denotes the number of cycles betweent1 and

t2 used for executing a set of jobsJ1,J2, · · · ,Ji whose priorities are higher than or equal topJi . RJ andDJ represent
the sets of release times and deadlines of the jobs inJ , respectively, i.e.,RJ = {rJ|J∈ J } andDJ = {dJ|J∈ J }. TJ
denotes the union ofRJ andDJ , i.e.,TJ = RJ ∪DJ . Given a job setJ ′ ⊆ J , C(J ′) represents the total workload
of jobs inJ ′, i.e.,C(J ′) = ∑J∈J ′ cJ. Furthermore,I J ′ represents the minimum interval that includes the execution
intervals of jobs inJ ′, i.e.,I J ′ = [minRJ ′ ,maxDJ ′]. T J represents the cartesian product of[rJi ,dJi]’s, for 1≤ i ≤ |J |,
i.e.,T J = [rJ1,dJ1]× [rJ2,dJ2]×·· ·× [rJ|J | ,dJ|J |]. Given voltage schedulesS1,S2, · · · ,Sn such that

Si(t) = 0 for all t /∈ [αi ,βi] for all 1≤ i ≤ n and βi ≤ αi+1 for all 1≤ i < n ,

the concatenation ofS1,S2, · · · ,Sn is⊕n
i=1Si = S1⊕S2⊕·· ·⊕Sn

de f
= ∑n

i=1 Si(t) . Since jobs should be released
before they can be processed, we assume that a voltage scheduleS always satisfies the constraint that for any
t > 0 , W(S , [0, t]) ≤ C({J|rJ < t}).

The condition for a voltage scheduleS(t) to be feasible can be expressed as follows:

3

Condition I (Feasibility Condition).

There exists a|J |-tuple (fJ1, fJ2, · · · , fJ|J |) ∈ T J such that

∀1≤ i ≤ |J | ∀r ∈ {t|t ∈ RJ ∧ t < fJi}
W(S , [r, fJi]) ≥ C({J |pJ ≤ pJi ∧ rJ ∈ [r, fJi)}) . (2)

For a |J |-tuple (fJ1, fJ2, · · · , fJ|J |) ∈ T J , fJi can be considered as a modified deadline ofJi , which is equal to or
precedes the original deadlinedJi . (The meaning of the|J |-tuple is further clarified in Section 3.) IfS(t) satisfies
Condition I for a given|J |-tuple(fJ1, fJ2, · · · , fJ|J |) ∈ T J , Ji completes its execution byfJi for all 1≤ i ≤ |J |. Such
|J |-tuples are said to bevalid with respect to〈J ,S(t)〉. Theorem 1 gives a proof for the feasibility condition.

Theorem 1 Condition I is a necessary and sufficient condition forS(t) to be feasible.

Proof. For the necessary part, suppose thatS(t) is feasible, i.e.,Ji completes its execution atfJi ∈ (rJi ,dJi] for all
1≤ i ≤ |J |. Then, for anyr ∈RJ such thatr < fJi , all the higher priority jobs whose release times are within[r, fJi)
complete their executions byfJi . So, the total amount of work that should be done within[r, fJi] must be greater
than or equal to the sum of workload of the jobs. Thus, we have for all1≤ i ≤ |J |:

W(S , [r, fJi]) ≥ C({J |pJ ≤ pJi ∧ rJ ∈ [r, fJi)}) .

For the sufficient part, assume that Condition I is satisfied for a|J |-tuple(fJ1, fJ2, · · · , fJ|J |). By induction oni,
we prove thatJi is given its required execution cyclescJi within [rJi , fJi] for all 1≤ i ≤ |J |. The base case holds
trivially.

For the induction step, assume that the proposition holds for allk = 1,2, · · · , i−1. Let r < rJi be the earliest
time point inRJ such that no lower priority jobs (i.e.,Jk’s for k > i) are executed within[r, rJi], i.e.,W(S , [r, rJi]) =
Wi−1(S , [r, rJi]). If such r does not exist,r is set torJi . Then, a higher priority jobJ′ (i.e., Jl ’s for l < i) released
beforer (i.e., rJ′ < r) must complete its execution beforer; otherwise, since any lower priority jobs cannot be
executed within[rJ′ , r], we have

W(S , [rJ′ , rJi]) = W(S , [rJ′ , r])+W(S , [r, rJi]) = Wi−1(S , [rJ′ , r])+Wi−1(S , [r, rJi]) = Wi−1(S , [rJ′ , rJi]) ,

which contradicts the definition ofr. Since only higher priority jobs (i.e.,Jl ’s for l < i) are executed within[r, rJi],
the amount of remaining workload of the higher priority jobs (which are released within[r, rJi)) at time rJi is
C({Jk|1≤ k < i ∧ rJk ∈ [r, rJi)}) − W(S , [r, rJi]). So, we have

Wi−1(S , [rJi , fJi]) ≤ C({Jk|1≤ k < i ∧ rJk ∈ [r, rJi)}) − W(S , [r, rJi]) + C({Jk|1≤ k < i ∧ rJk ∈ [rJi , fJi)})
= C({Jk|1≤ k < i ∧ rJk ∈ [r, fJi)})− W(S , [r, rJi]) . (3)

To complete the induction, we only need to show thatW(S , [rJi , fJi])−Wi−1(S , [rJi , fJi]) is not smaller thancJi .
(Note thatJi preempts any lower priority jobs.) From (3) and the assumption that Condition I is satisfied, we have

W(S , [rJi , fJi])−Wi−1(S , [rJi , fJi])
≥ W(S , [r, fJi]) − C({Jk|1≤ k < i ∧ rJk ∈ [r, fJi)}) (From (3).)

≥ C({Jk |1≤ k≤ i∧ rJk ∈ [r, fJi)}) − C({Jk|1≤ k < i ∧ rJk ∈ [r, fJi)}) (From (2).)

= C({Ji}) = cJi .

2

A job setJ is said to be an EDF job set if for anyJ,J′ ∈ J (wherepJ < pJ′), dJ ≤ dJ′ or dJ′ ≤ rJ. When the
priority assignment follows the EDF policy, we can prove that Condition I is simplified as follows:

Condition II (EDF Feasibility Condition).

For anyr ∈ RJ andd ∈ DJ (wherer < d) ,

W(S , [r,d]) ≥ C({J|[rJ,dJ]⊆ [r,d]}) .

4

Lemma 2 Given an EDF job setJ , a voltage scheduleS(t) of J is feasible if and only if Condition II is satisfied.

Proof. Consider a new job setJ ′ = {J′1,J′2, · · · ,J′|J |} whererJ′i = W(S , [0, rJi]), dJ′i = W(S , [0,dJi]), cJ′i = cJi and
pJ′i = pJi for all 1≤ i ≤ |J | . BecauseW(S , [0, t]) is a monotonically increasing function oft, J ′ is also an EDF
job set (i.e., for anyJ′i ,J

′
k ∈ J ′ wherei < k, dJ′i ≤ dJ′k or dJ′k ≤ rJ′i). Let S ′(t) = 1 (∀t > 0) be the voltage schedule

of J ′. Then, we can easily verify that the index of the jobjob(J ,S , t) is the same as that ofjob(J ′,S ′,W(S , [0, t])).
Therefore,Ji ∈ J finishes its execution by its deadlinedJi underS(t) if and only if its corresponding jobJ′i ∈ J ′
finishes its execution bydJ′i (= W(S , [0,dJi])) underS ′.

It is well known that all the jobs in an EDF job set meet their deadlines under a constant speed if and only if the
utilization ratio for any time interval is less than or equal to1 [8]. That is,S ′ is a feasible voltage schedule ofJ ′ if
and only if the following is satisfied:

For any r ′ ∈ RJ ′ and d′ ∈ DJ ′ (wherer ′ < d′) , C({J|J ∈ J ′∧ [rJ,dJ]⊆ [r ′,d′]}) ≤ d′− r ′ . (4)

Since (4) is equivalent to Condition II, Condition II is a necessary and sufficient condition forS(t) to be a feasible
voltage schedule ofJ . 2

As shown in Conditions I and II, the complexity of fixed-priority voltage scheduling mainly comes from the
inherent exhaustiveness in finding a valid|J |-tuple. In the EDF scheduling algorithm, it is sufficient for a single
|J |-tuple of the original deadlines to be checked if it satisfies Condition II.

3 Some Properties of Optimal Schedules

In this section, we explain several properties for a feasible voltage schedule to be an energy-optimal schedule.
These properties provide a key insight in devising a fast approximation algorithm described in Section 5. The first
property, which was proven by Quanet al. [12] is that an energy-optimal voltage schedule should be a piecewise-
constant function.

The existing optimal voltage scheduling algorithm by Quanet al. is based on an observation that if a given
job set satisfies the requirement of an EDF job set, the optimal voltage schedule can be easily computed by Yao’s
“peak-power greedy” algorithm [22]. Simply applying Yao’s algorithm to a fixed-priority job set may cause some
jobs to miss their deadlines. However, if the deadlines of the jobs are appropriately modified before scheduling,
Yao’s algorithm can yield a feasible optimal schedule as shown in [13]. The efficiency of an optimal voltage
scheduling algorithm is, therefore, dependent on how efficiently the job set is modified to be an EDF job set. To
give a better insight into our approach for solving the voltage scheduling problem, we derive an equivalent result
to Quanet al. [13] using Conditions I and II.

3.1 Properties on |J |-Tuples

Given a|J |-tuple f = (fJ1, fJ2, · · · , fJ|J |) ∈ T J , J f represents the job set{J′1,J′2, · · · ,J′|J |} wherepJ′i = pJi ,cJ′i =
cJi , rJ′i = rJi anddJ′i = fJi for all 1≤ i ≤ |J |. We say that a|J |-tuplef is EDF-orderedif J f follows the EDF priority.
Furthermore,J f is said to beEDF-equivalentto J . We first establish a link between Conditions I and II.

Lemma 3 If Condition I is satisfied for a job setJ by a voltage scheduleS and an EDF-ordered|J |-tuple f =
(fJ1, fJ2, · · · , fJ|J |), Condition II is satisfied for a job setJ f by S .

Proof. For anyr ∈ RJ f andd ∈ DJ f (r < d), we have

r ∈ {t | t ∈ RJ (= RJ f) ∧ t < d} and d = fJi for ∃ fJi ∈ DJ f (= { fJ1, fJ2, · · · , fJ|J |}) .

Furthermore, sincef is EDF-ordered, we have

∀J′k ∈ J f s.t. rJ′k (= rJk) ∈ [r,d(= fJi)) , dJ′k = fJk ≤ fJi = d if pJ′k ≤ pJ′i (= pJi)
dJ′k = fJk > fJi = d otherwise.

Thus, we have for allJ′k ∈ J f :

pJ′k ≤ pJ′i ∧ rJ′k ∈ [r,d) ⇐⇒ [rJ′k,dJ′k] ⊆ [r,d] . (5)

5

Finally, by substitutingd for fJi in (2), we have

W(S , [r,d]) ≥ C({J ∈ J |pJ ≤ pJi ∧ rJ ∈ [r,d)}) = C({J′k ∈ J f |pJ′k ≤ pJ′i (= pJi) ∧ rJ′k (= rJk) ∈ [r,d)})
= C({J′ ∈ J f |[rJ′ ,dJ′]⊆ [r,d]}) . (From (5).)

2

Lemma 4 If Condition II is satisfied for a job setJ f by a voltage scheduleS wheref = (fJ1, fJ2, · · · , fJ|J |) is an
EDF-ordered|J |-tuple, Condition I is satisfied for a job setJ by S .

Proof. Let r ∈ {t|t ∈ RJ ∧ t < fJi}. Then, we have

r ∈ RJ f (= RJ) , fJi ∈ DJ f (= { fJ1, fJ2, · · · , fJ|J |}) andr < fJi

and substitutingfJi for d in Condition II gives

W(S , [r, fJi]) ≥ C({J′ ∈ J f | [rJ′ ,dJ′]⊆ [r, fJi]}) .

Sincef is EDF-ordered, we have for allJ′k ∈ J f (Refer to the proof of Lemma 3.):

pJ′k ≤ pJ′i ∧ rJ′k ∈ [r, fJi) ⇐⇒ [rJ′k,dJ′k] ⊆ [r, fJi] . (6)

Therefore, we have

W(S , [r, fJi]) ≥ C({J′ ∈ J f | [rJ′ ,dJ′]⊆ [r, fJi]}) = C({J′k ∈ J f |pJ′k ≤ pJ′i (= pJi) ∧ rJ′k (= rJk) ∈ [r, fJi)})
= C({J ∈ J |pJ ≤ pJi ∧ rJ ∈ [r, fJi)}) .

2

From Lemmas 3 and 4, we can derive the following useful theorem which states how a feasible voltage schedule
of a job set can be obtained from its EDF-equivalent job sets.

Theorem 5 Given a job setJ , let FJ be the set of all feasible voltage schedules forJ . Then, FJ = ∪f∈TEDF FJ f

whereTEDF is the set of all EDF-ordered|J |-tuples forJ .

Proof. To show thatS ∈ FJ ⇒ S ∈ ∪f∈TEDF FJ f , assume thatJi completes its execution atfJi (≤ dJi) for all
1≤ i ≤ |J | underS ∈FJ . Let f = (fJ1, fJ2, · · · , fJ|J |). Then,J f is an EDF job set. If not, we have for someJ′k,J

′
l ∈ J f

(wherepJ′k < pJ′l)

rJ′k < dJ′l (= fJl) < dJ′k (= fJk) ,

which contradicts a fact that once a higher priority job (i.e.,Jk) is released during the execution of a lower priority
job (i.e.,Jl), the higher priority job completes earlier than the lower priority job (i.e.,fJk < fJl). Furthermore, from
Lemma 3,S(t) is a feasible schedule for the EDF job setJ f . Thus, we haveS ∈ ∪f∈TEDF FJ f .

Conversely, given an EDF-ordered|J |-tuple f = (fJ1, fJ2, · · · , fJ|J |), let S ∈ FJ f be a feasible schedule for the

EDF-equivalent job setJ f . Then, from Lemma 4,S satisfies Condition I forJ . Thus, we haveS ∈ FJ . 2

Corollary 6 Given a job setJ , E(S J
opt)≤ E(S J f

opt) for any EDF-equivalent job setJ f . Furthermore, there exists an

EDF-equivalent job setJ f such thatS J
opt≡ S J f

opt.

From Theorem 5, there is a one-to-one correspondence between feasible schedules of a fixed-priority job set

J and feasible schedules ofJ ’s EDF-equivalent job sets. Since the energy-optimal scheduleS J f

opt for an EDF-
equivalent job setJ f can be directly computed (in polynomial time) by Yao’s algorithm [22], the problem of
finding an energy-optimal (feasible) voltage schedule ofJ is reduced to the problem of finding an EDF-equivalent

job setJ f (or to selecting an EDF-ordered|J |-tuplef) that minimizesE(S J f

opt).
Figure 1 shows an example of EDF-equivalent job sets and EDF-ordered|J |-tuples. Figure 1.(a) shows the

original job setJ = {J1,J2}. In this example,J2 has a lower priority but earlier deadline thanJ1, soJ is not an EDF
job set. (So Yao’s algorithm cannot be directly applied toJ .) In Figures 1.(b) and 1.(c), two job sets are shown,

6

(a)

J1

J2

2d2r 1r1 d

1J
/

(b)

2d2r 1r1 d

2J
/

2J
/ /

1J
/ /

(c)

2d2r 1r1 d

Figure 1. An example of EDF-equivalent job sets.

which are EDF-equivalent toJ . The job sets{J′1,J′2} and{J′′1 ,J′′2} are obtained by choosing(rJ1,dJ1) and(dJ2,dJ2)
as EDF-ordered|J |-tuples, respectively. Both job sets follow the EDF priority assignment1 and the optimal voltage
schedule for each job set can be computed by Yao’s algorithm. (As will be explained below, the energy-optimal

voltage schedule ofJ is equal toS {J
′
1,J

′
2}

opt or S {J
′′
1 ,J′′2}

opt depending on the workload ofJ1 andJ2.)
Now we are to restrict the search space of EDF-ordered|J |-tuples (equivalently, EDF-equivalent job sets). First,

an EDF-ordered|J |-tuplef = (f1, f2, · · · , f|J |) does not need to be considered if for another EDF-ordered|J |-tuple
f′ = (f ′1, f ′2, · · · , f ′|J |) (6= f), fi ≤ f ′i for all 1≤ i ≤ |J |. This is because, for any voltage scheduleS(t) which is

feasible underf, S(t) is also feasible underf′. We define that an EDF-ordered|J |-tuplef (or J f) is essentialif such
f′ does not exist. (The term ‘essential’ is equivalent to the term ‘NAP’ in [13].) Quan’s optimal algorithm [13]
finds an optimal voltage schedule byexhaustivelyenumerating all the essential (or NAP) job sets and then applying
Yao’s algorithm for each essential job set. Our fast algorithm avoids the exhaustiveness by carefully enumerating
the essential job sets.

3.2 |J |-Permutations

It is easy to check if a|J |-tuple is EDF-ordered (or essential). On the contrary, it is not obvious how such|J |-
tuples can be enumerated. In this section, we describe how to construct EDF-ordered|J |-tuples efficiently using a
permutation-based analysis.

Given a |J |-tuple f = (f1, f2, · · · , f|J |), let σf : {1,2, · · · , |J |} ⇒ {1,2, · · · , |J |} be a permutation that maps a
new tuple index when the tuple elements are sorted in a non-decreasing order, i.e.,fσ−1

f (1) ≤ fσ−1
f (2) ≤ ·· · ≤

fσ−1
f (|J |). Ties are broken by the priority, i.e., iffi = f j where i < j, σf(i) < σf(j). (From now on, we call

suchσ a |J |-permutation.) For example, letf = (f1, f2, f3, f4) = (4,10,2,10). Then, sincef3 ≤ f1 ≤ f2 = f4,
we haveσ(3) = 1, σ(1) = 2, and (from the tie-breaking rule)(σ(2),σ(4)) = (3,4). (Equivalently, we have
(σ−1(1),σ−1(2),σ−1(3),σ−1(4)) = (3,1,2,4).) Note thatσ−1(i) denotes the index of thei-th smallest element
in f, i.e., fσ−1(i) is thei-th smallest element inf.

The following lemma states that there cannot exist more than one essential|J |-tuples whose|J |-permutations
are the same, that is, each essential|J |-tuple can be uniquely addressed by its corresponding|J |-permutation (and,
obviously, vice versa).

Lemma 7 For any two essential|J |-tuplef = (f1, f2, · · · , f|J |) andf′ = (f ′1, f ′2, · · · , f ′|J |) (f 6= f′), σf 6= σf′ .

Proof. Supposeσf ≡ σf′ and leti (1≤ i ≤ |J |) be the largest integer such thatfσ−1
f (i) 6= f ′σ−1

f′ (i)
, i.e.,

fσ−1
f (k) = f ′σ−1

f′ (k) (= f ′σ−1
f (k)) for all i < k < |J | . (7)

Without loss of generality, we can assumefσ−1
f (i) < f ′σ−1

f′ (i)
. Let us consider a new|J |-tuple f′′ = (f ′′1 , f ′′2 , · · · , f ′′|J |)

where

f ′′k =
{

f ′k k = σ−1
f (i) ,

fk otherwise.

From the definition off′′, it can be easily seen thatσf′′ ≡ σf ≡ σf′ . (We omit the subscripts in the rest of the proof.)
We are now to prove thatf′′ is EDF-ordered, i.e., for any1≤ j < k≤ |J |,

f ′′j ≤ f ′′k or f ′′k ≤ rJj . (8)

1In Figure 1.(c),J′′1 need not have an earlier deadline thanJ′′2 for the job set to be an EDF job set;dJ′′1 = dJ′′2 is sufficient for the job set
to be optimally scheduled by Yao’s algorithm [22].

7

1: fσ−1(|J |) := dJσ−1(| J |)
2: for (i := |J |−1 to 1)
3: let J H be{Jσ−1(k)| i < k≤ |J | ∧ σ−1(k) < σ−1(i) }
4: if (rJσ−1(i)

≥min({rJ|J ∈ J H}∪{ fσ−1(i+1)})) return FALSE

5: else fσ−1(i) := min({ fσ−1(i+1),dJσ−1(i)
}∪{rJ|J ∈ J H})

6: end if
7: end for

Figure 2. The algorithm to build a | J |-tuple from a | J |-permutation.

Sincef is EDF-ordered, (8) holds for all1≤ j < k≤ |J | except for j = σ−1(i) or k = σ−1(i). So, it remains to
show that (8) holds for all1≤ j < σ−1(i)≤ |J | and1≤ σ−1(i) < k≤ |J |.
Case (a): 1≤ j < σ−1(i)≤ |J | (whenJj has a higher priority thanJσ−1(i).)
If f ′′j ≤ f ′′σ−1(i), (8) trivially holds. So, we only considerj such thatf ′′j > f ′′σ−1(i), i.e., f j (= fσ−1(σ(j))) > f ′σ−1(i) (>
fσ−1(i)). From the definition ofσ, we haveσ(j) > i. Thus, by substitutingσ(j) for k in Eq. (7), we havef j (=
f ′′j) = f ′j . From the assumption,f′ is EDF-ordered, but we havef ′j = f j > f ′σ−1(i). So, it must be the case that

f ′σ−1(i) ≤ rJj . Therefore, we have

f ′′σ−1(i) = f ′σ−1(i) ≤ rJj .

Case (b): 1≤ σ−1(i) < k≤ |J | (whenJk has a lower priority thanJσ−1(i).)
First, we can exclude the case whenfk = fσ−1(i). Otherwise, we haveσ(k) > σ(σ−1(i)) = i. (Recall the tie-breaking
rule.) But, by the definition ofσ, f ′σ−1(σ(k)) (= f ′k) ≥ f ′σ−1(i) and we finally have

f ′k ≥ f ′σ−1(i) > fσ−1(i) = fk ,

which contradicts Eq. (7).
Second, considerk such thatfk < fσ−1(i). f is EDF-ordered, but we havefσ−1(i) > fk. So, it must be the case that
fk ≤ rJσ−1(i)

. Therefore, we have

f ′′k = fk ≤ rJσ−1(i)
.

Finally, for k such thatfk > fσ−1(i), we have

f ′′σ−1(i) = f ′σ−1(i) ≤ f ′k = fk = f ′′k .

Thus,f′′ is EDF-ordered. However, since we have

fσ−1(i) < f ′σ−1(i) = f ′′σ−1(i) and fk = f ′′k for all 1≤ k 6= σ−1(i)≤ |J | ,

f is not essential, a contradiction. Therefore,σf 6= σf′ . 2

The proof of Lemma 7 also implies how to build a unique essential job set for aσ.

Lemma 8 Given a|J |-permutationσ, the algorithm in Figure 2 finds a unique essential|J |-tuple forσ if such a
|J |-tuple exists. Otherwise, it returns FALSE.

Proof. First, suppose that the essential|J |-tuple for σ exists and denote it byf′ = (f ′1, f ′2, · · · , f ′|J |). (Note that
f ′σ−1(1) ≤ f ′σ−1(2) ≤ ·· · ≤ f ′σ−1(|J |).) We are to prove thatf ′σ−1(i) = fσ−1(i) and the algorithm does not abort in line 4

for all i = |J |, |J |−1, · · · ,1 by induction oni. The base case holds trivially, i.e.,f ′σ−1(|J |) = dJσ−1(|J |) = fσ−1(|J |). For

the induction step, assume that the proposition holds for allk = |J |, |J |−1, · · · , i +1. Let J H = {Jσ−1(k) | i < k≤
|J | ∧ σ−1(k) < σ−1(i) } (as in line 3 of the algorithm). Note that any job inJ H has the higher priority thanJσ−1(i)
and thatf ′σ−1(i) ≤ dJσ−1(i)

and f ′σ−1(i) ≤ f ′σ−1(i+1).

Case (a):J H = /0.
Suppose thatf ′σ−1(i) < dJσ−1(i)

and f ′σ−1(i) < f ′σ−1(i+1), that is,

f ′σ−1(1) ≤ ·· · ≤ f ′σ−1(i) < min{dJσ−1(i)
, f ′σ−1(i+1)} ≤ f ′σ−1(i+1) ≤ ·· · ≤ f ′σ−1(|J |) .

8

3r r1

J3

3d1dr2 2d

J1

J2

3r r1 3d1dr2 2d

f 2

f 1

f 3

3r r1 3d1dr2 2d

f 1

3r r1 3d1dr2 2d

f 2

f 3

f 1

f 2

f 3

(a) (b)

(c) (d)

Figure 3. An example of |J |-permutations. (a) A job set and its EDF-equivalent job sets for which
(σ−1(3),σ−1(2),σ−1(1)) = (b) (2,3,1) , (c) (2,1,3) , and (d) (3,2,1) , respectively. ((σ−1(3),σ−1(2),σ−1(1)) =
(1,2,3),(1,3,2) and (3,1,2) are not valid J -permutations.)

Let f′′ = (f ′1, · · · , f ′σ−1(i)−1,min{dJσ−1(i)
, f ′σ−1(i+1)}, f ′σ−1(i)+1, · · · , f ′|J |). Then,f′′ is EDF-ordered, andf′ is not essen-

tial, a contradiction. Therefore, we have

f ′σ−1(i) = min{dJσ−1(i)
, f ′σ−1(i+1)} = min{dJσ−1(i)

, fσ−1(i+1)} = fσ−1(i) .

Case (b):J H 6= /0.
For all Jσ−1(k) ∈ J H , we havef ′σ−1(i) < f ′σ−1(k) from the definition ofσ (Recall the tie-breaking rule.), andf ′σ−1(i) ≤
rJσ−1(k)

sincef′ is EDF-ordered. Suppose thatf ′σ−1(i) < min{rJ|J∈J H} , f ′σ−1(i) < dJσ−1(i)
and f ′σ−1(i) < f ′σ−1(i+1), that

is,

f ′σ−1(1) ≤ ·· · ≤ f ′σ−1(i) < min({dJσ−1(i)
, f ′σ−1(i+1)}∪{rJ|J ∈J H})≤ f ′σ−1(i+1) ≤ ·· · ≤ f ′σ−1(|J |) .

Let f′′ = (f ′1, · · · , f ′σ−1(i)−1,min({dJσ−1(i)
, f ′σ−1(i+1)}∪{rJ|J ∈J H}), f ′σ−1(i)+1, · · · , f ′|J |). Then, it can be easily shown

thatf′′ is EDF-ordered. Thus,f′ is not essential, a contradiction. Therefore, we have

f ′σ−1(i) = min({dJσ−1(i)
, f ′σ−1(i+1)}∪{rJ|J ∈J H}) = min({dJσ−1(i)

, fσ−1(i+1)}∪{rJ|J ∈J H}) = fσ−1(i) .

Furthermore, we have for both cases

rJσ−1(i)
< f ′σ−1(i) ≤min({rJ|J ∈J H}∪{ f ′σ−1(i+1)}) = min({rJ|J ∈J H}∪{ fσ−1(i+1)}) ,

and the algorithm does not abort in line 4 at iterationi, which completes the induction.
If the algorithm does not abort, the|J |-tuple built by the algorithm is always a correct EDF-ordered|J |-tuple,

implying the existence of such|J |-tuple forσ. Therefore, if such|J |-tuple does not exist, the algorithm eventually
returns FALSE.2
If a |J |-permutationσ has the corresponding EDF-ordered|J |-tuple f, it is said to bevalid. Furthermore, iff
is essential,σ is said to beessential. From the above argument, we can establish one-to-one correspondences
between EDF-ordered|J |-tuples and valid|J |-permutations, and between essential|J |-tuples and essential|J |-
permutations. Figure 3.(a) shows a job set with three jobs and Figures 3.(b), 3.(c) and 3.(d) show its EDF-equivalent
job sets with their|J |-permutations. Among3!(= 6) possible|J |-permutations, only three permutations are valid
(and essential).

Based on the algorithm in Figure 2, we describe another way to enumerate|J |-tuples. In the following,rJi and
dJi are interpreted as symbolic values, not as real numbers. Then,RJ ∪DJ has2 · |J | distinct symbolic values.
Furthermore, the algorithm in Figure 2 is assumed to assign symbolic values to elements of a|J |-tuple with the
following tie-breaking rule in line 5:

(a) rJi = rJj (i < j) : rJi < rJj (b) dJi = dJj (i < j) : rJi < rJj (c) rJi = dJj : rJi < dJj .

9

1: J ′ := {}, D := {}
2: foreach (dJi ∈DJ s.t.ζ(dJi) = 1)
3: fi := dJi , J ′ := J ′∪{Ji} , D := D∪{dJi}
4: end foreach /* return FALSE here ifJ ′ does not follow the EDF priority. */
5: foreach (rJi ∈RJ s.t.ζ(rJi) = 1 in a decreasing order)
6: fi := max{d ∈D | J ′∪{J} follows the EDF priority wherepJ = pJi , rJ = rJi ,dJ = d}

/* return FALSE here if suchfi does not exist. */
7: J ′ := J ′∪{J} , D := D∪{rJi}
8: end foreach
9: foreach (Ji s.t. fi is not determined (in any order))

10: fi := max{d ∈D | J ′∪{J} follows the EDF priority wherepJ = pJi , rJ = rJi ,dJ = d}
/* return FALSE here if suchfi does not exist. */

11: J ′ := J ′∪{J}
12: end foreach

Figure 4. The algorithm to build a | J |-tuple from a bit-vector.

Given a|J |-tuplef = (f1, f2, · · · , f|J |), let ζf : RJ ∪DJ ⇒{0,1} be a bit-vector of length2· |J | such that

ζf(t) =
{

1 t = fk for some1≤ k≤ |J | ,
0 otherwise.

The algorithm in Figure 4 constructs a|J |-tuple from an arbitrary bit-vectorζ : RJ ∪DJ ⇒{0,1}. The correctness
of the algorithm can be proved in a similar manner as the algorithm in Figure 2.

3.3 An Alternative Formulation

The problem formulation given in Section 2 is based on the voltage scheduleS(t). In this section, we describe
an alternative formulation, based on the following intuitive property, which states that each job runs at the same
constant speed if the voltage schedule is an optimal one.

Lemma 9 For an energy-optimal voltage scheduleS(t), S(t1) = S(t2) for anyt1 andt2 such thatjob(J ,S , t1) =
job(J ,S , t2).

Proof. Given an optimal scheduleS(t), suppose thatS(t1) 6= S(t2) for somet1 andt2 such thatjob(J ,S , t1) =
job(J ,S , t2). Given thatS(t) is optimal, there existt ′1, t

′
2,S1,S2 and∆t such thatS(t) = S1 for t ′1 ≤ t ≤ t ′1 + ∆t,

S(t) = S2 for t ′2 ≤ t ≤ t ′2 +∆t, andS1 6= S2. Let S(t)′ be defined by

S(t)′ =
{ S1+S2

2 t ′1 ≤ t ≤ t ′1 +∆t , t ′2 ≤ t ≤ t ′2 +∆t,
S(t) otherwise.

Then, it is obvious thatS(t)′ is feasible andE(S ′) < E(S), a contradiction.2

From Lemma 9, it can be shown that the voltage scheduling problem is equivalent to determining the allowed
execution timeai allocated to eachJi . Given a feasible voltage scheduleS , the corresponding tuple of the allowed
execution times(a1,a2, · · · ,a|J |), called atime-allocation tuple, can be uniquely determined. Conversely, given a
time-allocation tupleA = (a1,a2, · · · ,a|J |), the corresponding voltage scheduleSA can be uniquely constructed by
assigning the constant execution speedci/ai to Ji . A is said to befeasibleif the corresponding voltage scheduleSA

is feasible.
Let us now consider the exact condition for a time-allocation tupleA = (a1,a2, · · · ,a|J |) to be feasible by

rewriting Condition I in Section 2 in terms ofA.

Condition III (Feasibility Condition for Time-Allocation Tuples).

There exists a|J |-tuple (fJ1, fJ2, · · · , fJ|J |) ∈ T J such that

∀1≤ i ≤ |J | ∀r ∈ {t|t ∈ RJ ∧ t < fJi}
∑

Jk/pJk≤pJi∧rJk∈[r, fJi)
ak ≤ fJi − r . (9)

Lemma 10 Condition III is a necessary and sufficient condition forA to be feasible.

10

(a)

a1 ≤≤ d1 – r1

a1

a2

a2 ≤≤ d2 - r2

a1+ a2 ≤≤ d1 - r2

(b)

a1 ≤≤ d1 – r1

a1

a2

a2 ≤≤ d2 - r2

a1+ a2 ≤≤ d2 - r2

r1 - r2

Figure 5. Solution spaces for (a) an EDF job set and (b) a fixed-priority job set.

Proof. Given a job setJ = {J1,J2, · · · ,J|J |} and a time-allocation tupleA = (a1,a2, · · · ,a|J |) for J , consider a
new job setJ ′ = {J′1,J′2, · · · ,J′|J |} wherecJ′i = ai , rJ′i = rJi , dJ′i = dJi , and pJ′i = pJi for all 1≤ i ≤ |J |, i.e., J ′ is
identical toJ except for the workload.

Let S ′(t) = 1 (∀t > 0) be the voltage schedule ofJ ′. Then, it is obvious that the response time ofJi underSA

is the same as that ofJ ′i underS ′. Thus,A is feasible if and only ifS ′ is a feasible voltage schedule forJ ′. After
replacingS andcJi in Condition I byS ′ andai , respectively, we have Condition III.2

By applying the same argument to Condition II, we have the following condition for EDF job sets.

Condition IV (EDF Feasibility Condition for Time-Allocation Tuples).

For anyr ∈ RJ andd ∈ DJ (wherer < d) ,

∑
J/[rJ,dJ]⊆[r,d]

ai ≤ d− r .

Now, the voltage scheduling problem can be reformulated as follows:

Find a time-allocation tupleA = (a1,a2, · · · ,a|J |) such thatE(SA) is mini-
mized subject to Condition III (or Condition IV for an EDF job set).

The energy consumption of the voltage scheduleSA can be directly computed:

E(SA) = ∑|J |
i=1 ai ·P(ci/ai) . (10)

The set of feasible time-allocation tuples represents the solution space for the voltage scheduling problem stated
in terms of time-allocation tuples. For an EDF job set, the solution space is specified by a conjunction of linear
inequalities which can be directly obtained from Condition IV. However, this is not the case for a fixed-priority
job set; the existential quantifier in Condition III is not always removable. Consequently, the solution space for an
EDF job set is a convex set while the solution space for an arbitrary fixed-priority job set may not be a convex set.

Before we present an intractability result for the voltage scheduling problem in the next section, we illustrate the
inherent complexity of fixed-priority voltage scheduling based on the results explained in this section. Figures 5.(a)
and 5.(b) show the solution spaces for an example EDF job set and an example fixed-priority job set, respectively.
As a fixed-priority job set, we use the job set{J1,J2} of Figure 1. As an EDF job set, we use the same job set
{J1,J2} in Figure 1 with the same timing parameters, but the priority assignment is changed such that it follows
the EDF priority assignment, i.e.,pJ2 < pJ1. For the EDF job set, we have the following constraint:

a1 ≤ dJ1− rJ1 ∧ a2 ≤ dJ2− rJ2 ∧ a1 +a2 ≤ dJ1− rJ2

Similarly, we have the following constraint for the fixed-priority job set:

a1 ≤ dJ1− rJ1 ∧ a2 ≤ rJ1− rJ2 (Figure 1.(b)) ∨ a1 ≤ dJ2− rJ1 ∧ a1 +a2 ≤ dJ2− rJ2 (Figure 1.(c))

In Figures 5.(a) and 5.(b), the solution spaces for the EDF job set and the fixed-priority job set are depicted as a
convex region and a concave region, respectively. (Each point in the shaded regions represents a feasible schedule.)

11

In general, the solution space of any EDF job set withN jobs are represented by a convex set inRN, whereas the
solution space of a fixed-priority job set is represented by a concave set. Note that for EDF job sets, the objective
function, the total energy consumption, can be efficiently minimized by an optimization technique for a convex set
(as in Yao’s algorithm). However, optimization problems defined on a concave set are generally intractable.

4 Intractability Result

In this section, we present some observations related to the complexity issue of the optimal fixed-priority
scheduling problem. We first show that the decision version of the problem is NP-hard.

Theorem 11 Given a job setJ and a positive numberK, the problem of deciding if there is a feasible voltage
scheduleS(t) for J such thatE(S)≤ K is NP-hard.

Proof. Without loss of generality, we assume that the energy consumption (per CPU cycle) is quadratically
dependent on the processor speed. That is, the instantaneous power consumption (per time) is cubically dependent
on the processor speed, i.e.,P(t) = S(t)3. (The reduction can be easily modified for other power functions.) We
prove the theorem by reduction from the subset-sum problem, which is NP-complete [3]:

SUBSET-SUM

INSTANCE: A finite setU, a sizes : U⇒ Z+, and a positive integerB.
Question: Is there a subsetU′ ⊆ U such that∑u∈U′ s(u) = B?

Given an instance〈U (= {u1, · · · ,u|U|}),s,B〉 of the subset-sum problem, we construct a job setJ and a positive
numberK such that there is a voltage scheduleS(t) of J with E(S(t))≤K if and only if ∃U′⊆U, ∑u∈U′ s(u) = B.
The corresponding job setJ consists of2· |U|+1 jobs as follows:

J = {J1,J2, · · · ,J2·|U|+1} where

pJi = i for all 1≤ i ≤ 2· |U|+1 ,

rJ2·i+1 = s(ui+1) +
i

∑
j=1

3·s(u j) , rJ2·i+2 =
i

∑
j=1

3·s(u j) ,

dJ2·i+1 =
i+1

∑
j=1

3·s(u j) , dJ2·i+2 = 2·s(ui+1) +
i

∑
j=1

3·s(u j) ,

cJ2·i+1 = 8· γ ·s(ui+1) , cJ2·i+2 = 8·s(ui+1) for all 0≤ i ≤ |U|−1 , and

rJ2·|U|+1 = 0 , dJ2·|U|+1 = B +
i

∑
j=1

3·s(u j) , cJ2·|U|+1 = 3
√

4·B .

whereγ is the unique positive solution of the following quadratic equation:

γ2 + γ = 1+
4

3·83 (=⇒ 1
2

< γ < 1).

Furthermore,K is set to be

K = (83 +
γ3

4
·83) ·

|U|
∑
i=1

s(ui) + 2·B .

From the construction ofJ , we have

rJ2·i+2 < rJ2·i+1 (= rJ2·i+2 +s(ui+1)) < dJ2·i+2 (= rJ2·i+1 +s(ui+1)) < dJ2·i+1 (= dJ2·i+2 +s(ui+1)) ,

[rJ2·i+2,dJ2·i+1] ⊂ [rJ2·|U|+1,dJ2·|U|+1] for all 0≤ i ≤ |U|−1 and

[rJ2·i+2,dJ2·i+1] ∩ [rJ2·i′+2
,dJ2·i′+1

] = /0 for all 0≤ i 6= i′ ≤ |U|−1 .

Let κ : {0,1}|U| ⇒ T J be a function defined by

κ((b1,b2, · · · ,b|U|)) = (f1, f2, · · · , f|J |) where

f2·i+1 = dJ2·i+1 , f2·i+2 = rJ2·i+1 if bi+1 = 0 ,

f2·i+1 = f2·i+2 = dJ2·i+2 if bi+1 = 1 for all 0≤ i ≤ |U|−1 , and

f2·|U|+1 = dJ2·|U|+1 .

12

Then, the set of essential job sets ofJ is given by:

{J f | f = κ(b) , b ∈ {0,1}|U|}

To compute the energy consumption of an essential job set by Yao’s algorithm [22], we first compare the intensity
of each interval. Let

I1 =
cJ2·i+2

rJ2·i+1− rJ2·i+2

, I2 =
cJ2·i+1

dJ2·i+1− rJ2·i+1

,

I3 =
cJ2·i+1

dJ2·i+2− rJ2·i+1

, I4 =
cJ2·i+1 +cJ2·i+2

dJ2·i+2− rJ2·i+2

and I5(δ) =
cJ2·|U|+1

B+δ
.

Then, we have

I1 =
8·s(ui+1)
s(ui+1)

= 8 > I2 =
8· γ ·s(ui+1)
2·s(ui+1)

= 4· γ > 2 >
3
√

4 > I5 =
3
√

4·B
B+δ

and

I4 =
8· (1+ γ) ·s(ui+1)

2·s(ui+1)
= 4+4· γ > I3 =

8· γ ·s(ui+1)
s(ui+1)

= 8· γ > I5 .

So, the energy consumption ofS J f

opt for f = κ((b1,b2, · · · ,b|U|)) can be computed as follows:

E(S J f

opt) =
|U|
∑
i=1

Ei + EL where

Ei =





(83 + γ3

4 ·83) ·s(ui) (= (8·s(ui))3

s(ui)2 + (8·γ·s(ui))3

(2·s(ui))2) bi = 0 ,
(1+γ)3

4 ·83 ·s(ui) (= (8·(1+γ)·s(ui))3

(2·s(ui))2) bi = 1 and

EL =
4·B3

(B + ∑|U|
i=1 bi ·s(ui))2

(
=

c3
J2·|U|+1

(B + ∑|U|
i=1 bi · (dJ2·i−1−dJ2·i))2

)
.

Since we have

(1+ γ)3

4
·83 ·s(ui) =

1+3· γ+3· γ2 + γ3

4
·83 ·s(ui)

=
1+3· (1+4/(3 ·83))+ γ3

4
·83 ·s(ui) = (83 +

γ3

4
·83) ·s(ui) + s(ui) ,

we can rewriteE(S J f

opt) as follows:

E(S J f

opt) = (83 +
γ3

4
·83) ·

|U|
∑
i=1

s(ui) + x +
4·B3

(B + x)2 where x =
|U|
∑
i=1

bi ·s(ui) .

It can be easily shown thatE(S J f

opt) has the minimum(83 + γ3

4 ·83) ·∑|U|
i=1 s(ui) + 2 ·B (= K) at x = B. That is,

E(S J f

opt)≤ K if and only if

∃ (b1,b2, · · · ,b|U|) ∈ {0,1}|U| , ∑|U|
i=1 bi ·s(ui) = B , which is equivalent to

∃ U′ ∈ U , ∑
u∈U′

s(u) = B .

It is obvious that the transformation can be done in polynomial time. Therefore, the problem is NP-hard.2

From the NP-hardness proof, the problem seems unlikely to have polynomial time algorithms that compute
optimal solutions. The NP-hardness of the problem strongly depends on the fact that extremely large input numbers
are allowed, as with some other NP-hard problems (e.g., the subset-sum problem and the knapsack problem [3]).
The NP-hardness in the ordinary (but not strong) sense does not rule out possibility of existence of a pseudo-
polynomial time algorithm or an FPTAS. Since our problem is an optimization problem that handles real numbers,
we focus our attention on the FPTAS in the next section.

13

5 A Fast Approximation Scheme

In this section, we present a fully polynomial time approximation scheme (FPTAS) for the problem. We first
consider a dynamic programming formulation that always finds the optimal solution, but may run in exponential
time. Then, the dynamic programming formulation is transformed into an FPTAS by using a standard technique,
therounding-the-input-datatechnique [21]. The technique brings the running time of the dynamic program down
to polynomial by rounding the input data so that sufficiently close input data are treated by a representative data
[14]. The relative error of an approximation scheme depends on how we define the closeness; the smaller the
threshold value for the closeness is, the smaller the relative error is. For a smaller error bound, however, the
computation time becomes longer.

5.1 Algorithm for Optimal Solutions

We first present an exponential-time optimal algorithm based on the properties of optimal voltage schedules
described in Section 3. The exponential-time algorithm essentially enumerates all the essential job sets. How-
ever, unlike Quan’s exhaustive algorithm [13], it enumerates the essential job sets intelligently without actually
enumerating all of them. Furthermore, it is based on dynamic programming formulation so that it can be easily
transformed into an FPTAS by the standard technique.

In formulating the problem by dynamic programming, we first identify appropriate ‘overlapping’ (or reusable)
subproblems to which dynamic programming can be applied iteratively. We note that the ‘optimal substructure’
of our problem is naturally reflected byblocking tuples, which are just sequences of time points inTJ in strictly
increasing order. (We formally define the blocking tuples later in this section.) That is, the optimal solution of
the original problem can be built by just merging the optimal schedules of the sub-intervals defined by a blocking
tuple. Figure 6 shows an example job set and its corresponding EDF-equivalent job set whose time interval is
partitioned by a blocking tuple(rN, rN−3,dN−1, · · · , r2,d2), which is depicted by a set of the dashed thick lines in
Figure 6.(b). Note that jobs in each sub-interval follow the EDF-priority assignment.

The original problem is partitioned into subproblems by partitioning the overall time interval into sub-intervals
such that jobs in each sub-interval follow the EDF priority assignment. If a job is released within a sub-interval with
its deadline outside the sub-interval, the deadline can be modified to the end of the sub-interval. Each partitioned
interval can be optimally scheduled in polynomial time by Yao’s algorithm [22]. The challenge is how to find the
set of sub-intervals whose optimal sub-schedules build an energy-optimal voltage schedule.

5.1.1 Basic Idea: The First Example

We now explain the basic idea of the optimal algorithm by describing the optimal algorithm on a simple but
illustrative job setJ = {J1,J2, · · · ,JN} in Figure 6.(a) wherer i+1 < r i < di+1 < di for 1≤ i < N. (Note that if the
priorities of jobs are reversed, the job set follows the EDF priority.) For this job set, an essential job setJ e (such
as one in Figure 6.(b)) is partitioned intoJ e

1 ,J e
2 , · · · ,J e

k such that eachJ e
i (1≤ i ≤ k) follows the EDF priority

assignment and the unionIi of execution intervals of jobs inJ e
i (i.e., Ii = ∪J∈J e

i
[rJ,dJ]) does not overlap with

I j (= ∪J′∈J e
j
[rJ′ ,dJ′]) for all 1≤ i 6= j ≤ k. To be more concrete,

for all 1≤ i < j < k , ∀J ∈ J e
i ,J′ ∈ J e

j , dJ ≤ rJ′ .

Therefore, the optimal voltage scheduleS J e

opt of J e is equal to the concatenation of the optimal voltage schedules of
J e

i ’s, i.e.,

S J e

opt(t) ≡ ⊕k
i=1S J e

i
opt(t) .

Note thatS J e
i

opt can be directly computed by Yao’s algorithm [22] sinceJ e
i follows the EDF priority assignment.

Therefore, the energy-optimal fixed-priority voltage scheduling problem is further reduced to the problem of find-
ing a partition that gives the energy-optimal voltage schedule for the whole time interval.

In defining a partition, we use a blocking tuple. For example, assume thatfN is selected asrN−3 as in Figure
6.(b). Then, bothfN−1 and fN−2 should be selected asrN−3, so that the job set becomes EDF-equivalent and,
furthermore, essential. As shown in Figure 6.(b), these three jobs are separated from the other jobs by a thick
vertical line at timerN−3. These jobs constitutes the first partitioned job setJ e

1 . The remaining job setsJ e
2 , · · · ,J e

k

14

JN

JN−1

JN−2

JN−3

J2

J1

f N−2

f N−1

f N

f N−3

f 1

f 2

N−1d N−2d 2r 1r 2d 1dNdNr rN−1 rN−2 rN−3

N−1d N−2d 2r 1r 2d 1dNdNr rN−1 rN−2 rN−3

(a)

(b)

Figure 6. An example illustrating the optimal algorithm. (a) An original job set and (b) an essential job
set defined by a |J |-tuple f = (f1, f2, · · · , fN−3, fN−2, fN−1, fN) = (d2,d2, · · · ,dN−1, rN−3, rN−3, rN−3). Jobs
in each sub-interval between the thick dashed lines follows the EDF priority assignment and can be
optimally scheduled by Yao’s algorithm.

can be constructed by applying the same argument. In this way, any essential job set can be partitioned and
represented by a blocking tuple.

Let b = (b1,b2, · · · ,bl) (b1 < b2 < · · ·< bl , b j ∈ TJ) be a blocking tuple where

∀1≤ j < l , ∃Ji s.t. b j = r i ∧ b j+1 ≤ di

Then, the corresponding EDF-ordered|J |-tuplef = (f1, f2, · · · , fN) is given by

fk = b j s.t. rk ∈ [b j−1,b j) for all 1≤ k≤ N .

We call such[b j−1,b j] an atomic interval. For example, the intervals[rN, rN−3] and [rN,dN] in Figure 6.(a) are
atomic, but the interval[rN,dN−1] is not atomic. (Later, we formally define the term atomic interval in arbitrary job
sets other than this example.) Letth be theh-th earliest time point inTJ and letSh,g represent the energy-optimal
voltage schedule defined within[th, tg] for the job setJh,g defined by

Jh,g = {J′i | rJi ∈ [th, tg)} where rJ′i = rJi ,cJ′i = cJi , pJ′i = pJi and dJ′i = min{dJi , tg} .

Then, we have

E(S J
opt) = E(S1,|TJ |) =

min{
k−1

∑
j=1

E(Sh j ,h j+1) | 1 = h1 < h2 < · · ·< hk = |J | and [th j , th j+1] is atomic for all j = 1, · · · ,k−1} .

Given an atomic interval[th j , th j+1], Sh j ,h j+1 can be directly computed by Yao’s algorithm. In this way, the optimal
voltage scheduling problem is reduced to a variant of the subset-sum problem. That is, for such job sets as in
Figure 6, our problem can be formulated as follows:

15

J2

J4

J3

J1

4r r3 r2 1r 2d 1d 4d 4r r3 r2 1r 2d 1d 4d

f 1

f 2

f 3

f 4

4r r3 r2 1r 2d 1d 4d

f 4

f 1

f 2

f 3

4r r3 r2 1r 2d 1d 4d

f 4

3d

3d

3d

3d

f 1

f 2

f 3

(a) (b)

(c) (d)

Figure 7. An example of background workload.

Select a tuple(h1,h2, · · · ,hk) (1= h1 < · · ·< hk = |J |) of integers such that the sum

qh1,h2 +qh2,h3 + · · ·+qhk−1,hk

is minimized subject to[thi , thi+1] is atomic for all1≤ i < k whereqh j ,h j+1 denotes
E(Sh j ,h j+1) (which can be directly computed by Yao’s algorithm).

5.1.2 Basic Idea: The Second Example

The example job set in Figure 6 is illustrative in showing how our problem can be formulated by dynamic pro-
gramming. However, the easily partitionable structure comes from the fact the job set follows the ‘reverse’ EDF
priority. For example, in Figure 6, sincefN is set to berN−3, which is within the execution intervals ofJN−1 and
JN−2, fN−1 and fN−2 cannot be larger thanfN (or rN−3) so that the modified job set should be EDF-equivalent.
Furthermore,fN−1 and fN−2 are set to be the maximum possible value,fN, for the modified job set to be essential.

If the priority pattern is not the same as the example job set in Figure 6, the partitioning becomes difficult.
For example, the essential job sets in Figures 3.(c) and 3.(d) cannot be obtained by the partitioning procedure
just explained. In Figure 7.(a),J4 has the lowest priority and the latest deadline, which makesf4 to bed4 for all
essential job sets (Figures 7.(a), 7.(b) and 7.(c)). Therefore, any atomic interval (e.g.,[r3, r1], [r1,d1] or [r3,d3])
contains partial workload ofJ4, which we call abackgroundworkload. In the following, we first explain how
to extend the dynamic programming formulation to handle thebackgroundworkload. Then, we describe how to
explore essential job sets of a given arbitrary job set (as in Figure 3) by dynamic programming.

From Lemma 9, the jobJ4 in Figure 7 runs at the same speed if the voltage schedule is an optimal one. For the
time being, let us assume that the constant speed is amongSC = {s1,s2,s3}. (For now,SC is set to be the set of all
the possible constant speeds in the optimal voltage schedule. In section 5.2, we explain how the setSC is selected
such that the size ofSC is bounded by a polynomial function.) For eachsi ∈ SC, we first compute the amount of
background workload ofJ4 for each atomic interval, and then find the minimum-energy essential job set (among
those in Figures 7.(b), 7.(c) and 7.(d)) by using the similar procedure to the previous case in Figure 6. However,
unlike the previous case, we discard any job set for which the sum of background workloads executed in overall
time interval is less than the total workload ofJ4.

Figure 8.(a) shows the atomic intervals[r3, r1] and[r1,d1], which are obtained from the essential job set in Figure
7.(b). Figures 8.(b), 8.(c) and 8.(d) show the optimal voltage schedules for the atomic intervals whereJ4 runs at the
speeds1, s2 ands3, respectively. The workloads of jobsJ1, J2 andJ3 are denoted byc1, c2 andc3, respectively, and
the background workloads are denoted byw. The amount of the background workload (and the resultant optimal
voltage schedule) for each atomic interval and speed can be easily computed by a slightly modified version of
Yao’s algorithm [22]. That is, when the critical interval is selected, if the speed to be assigned (by the intensity
of the critical interval) is less than or equal to the speed of the background workload, we assign the speed of the
background workload to all the unscheduled time intervals (including the critical interval). Then, the amount of
background workload can be directly computed as in Figure 8.(b), 8.(c) and 8.(d).

Once the background workload and the optimal voltage schedule is computed for each atomic interval, we apply
the same procedure as in the job set in Figure 6 to find the minimum-energy essential job set and the energy-optimal

16

1f

1r d1 t

2f

3f

3r 2r 1r t

(a)

S(t)

3r 2r 1r t

2s
3s

1s
3c 2c

1r d1

1c

S(t)

2s
3s

1s

t

2r 1r d1 d43r4r

1c

S(t)

2s
3s

1s
3c 2c

2r 1r d1 d43r4r

3c 2c 1c
2s
3s

1s

S(t)

S(t)

3r 2r 1r t

2s
3s

1s 3c 2cw

S(t)

1r d1

2s
3s

1s 1c w

t

2r d43r4r

S(t)

2s
3s

1s 3c 2c 1c

S(t)

3r 2r 1r t

2s
3s

1s 3c 2cw w

S(t)

1r d1

2s
3s

1s 1c w

t

(d)(b)

t

w w ww w w

t

(e)

(c)

(f)

ww w w w

1r d1
t

(g)

Figure 8. An example illustrating the algorithm on a job set with background workload. (a) Atomic
intervals (obtained from the job set in Figure 7.(b)). The optimal schedules for two atomic intervals
where the speeds of background workload of J4 are (b) s1, (c) s2 and (d) s3, respectively. The voltage
schedules for overall time intervals where the speeds of J4 are (e) s1, (f) s2 and (g) s3, respectively.

1: fσ−1(|J |) := dJσ−1(| J |)
2: bσ := (dJσ−1(| J |))
3: for (i := |J |−1 to 1)
4: let J H be{Jσ−1(k)| i < k≤ |J | ∧ σ−1(k) < σ−1(i) }
5: if (rJσ−1(i)

≥min({rJ|J ∈ J H}∪{ fσ−1(i+1)})) return FALSE

6: else fσ−1(i) := min({ fσ−1(i+1),dJσ−1(i)
}∪{rJ|J ∈ J H})

7: end if
8: if (fσ−1(i) ≤ min{rJσ−1(k)

| i < k≤ |J |}) appendfσ−1(i) onto the head ofbσ

9: end if
10: end for
11: appendmin RJ onto the head ofbσ

Figure 9. The algorithm to build a strongly-blocking tuple from a | J |-permutation.

voltage schedule. In exploring the solution space, we should discard any infeasible schedules. Figure 8.(e) shows
an infeasible schedule whereJ4 runs ats1 and cannot complete its execution until its deadline. The voltage schedule
in Figure 8.(g) is feasible, but not an optimal one. Thus, only the schedule in Figure 8.(f) is not removed in the
pruning procedure and is compared with another schedules obtained from the essential job sets in Figures 8.(c) and
8.(d).

5.1.3 Putting It Altogether

We now describe the optimal algorithm for arbitrary job sets based on the observations from the example job
sets. First, we formally define the termsstrongly-atomic intervalandstrongly-blocking tuple. Given a valid|J |-
permutationσ, the algorithm in Figure 9 builds the corresponding strongly-blocking tuplebσ = (b1,b2, · · · ,bk)
whereb1 < b2 < · · · < bk andbi ∈ TJ for all 1≤ i ≤ k. The algorithm is identical to the algorithm in Figure 2
except for lines 2, 8, 9 and 11. In line 8,fσ−1(i) is selected as an element of a strongly-blocking tuple if it partitions
the execution interval.

Definition 12 Given a valid|J |-permutationσ, the tuplebσ built by the algorithm in Figure 9 is called astrongly-
blocking tuple. An interval[t, t ′] is strongly-atomicif there is a strongly-blocking tupleb = (b1,b2, · · · ,bk) such
that [t, t ′] = [bi ,bi+1] for some1≤ i < k. Furthermore, the job setJ[t,t ′] defined by

J[t,t ′] = {J′| J ∈ J , rJ ∈ [t, t ′)} where rJ′ = rJ,cJ′ = cJ, pJ′ = pJ and dJ′ = min{dJ, t
′} .

is said to beinducedby an interval[t, t ′].2

2[t, t ′] is not required to be strongly-atomic.

17

/* TJ = {t1, t2, · · · , tN} */
1: foreach (strongly-atomic interval[ti , t j])

2: gi, j := E(S
J [ti ,t j]

opt)
3: end foreach
4: V := {v1,v2, · · · ,vN}
5: E := {(vi ,v j) | [ti , t j] is strongly-atomic}
6: foreach ((vi ,v j) ∈ E) w((vi ,v j)) := gi, j end foreach /* weight of edges */
7: Find the shortest path fromv1 to vN in G = (V, E). /* Note that G is acyclic. */

/* The shortest path =〈vq1,vq2, · · ·vqk〉 (vq1=v1,vqk=vN) */

8: return⊕k−1
j=1 S

J [tqj ,tqj+1]

opt

Figure 10. An exponential-time optimal algorithm based on strongly-atomic intervals.

For the job set in Figure 3 not only[r3, r2], [r2,d2] (Figure 3.(b)) and[r3, r1] (Figure 3.(c)) but also[r1,d2] (Figure
3.(c)) and[r3,d3] (Figure 3.(d)) are strongly-atomic. Note that the intervals[r1,d2] and[r3,d3] are not covered by the
previous definition in Section 5.1.1. Furthermore,(r3, r2,d2) (Figure 3.(b)),(r3, r1,d2) (Figure 3.(c)) and(r3,d3)
(Figure 3.(d)) are strongly-blocking tuples.

Note that for an interval[t, t ′], I J[t,t′] ⊆ [t, t ′] sincet ≤ rJ < dJ ≤ t ′ for all J ∈ J[t,t ′]. Therefore, for a strongly-
blocking tupleb = (b1,b2, · · · ,bk), I J[b1,b2] , I J[b2,b3] , · · · , I J[bk−1,bk] are disjoint. Now, we prove that a job set can be
partitioned by strongly-blocking tuples as with the job set in Figure 6 so that the formulation described in Section
5.1.1 can be extended to cover arbitrary job sets.

Lemma 13 Given a job setJ and an essential|J |-tuplef, J f ≡ ∪k−1
j=1J j wherebσf = (b1,b2, · · · ,bk) andJ j is an

EDF-equivalent job set ofJ[b j ,b j+1] for all 1≤ j < k.

Proof. Let J f = {J′1,J′2, · · · ,J′|J |} and letJ j = {J′l ∈ J f | rJ′l (= rJl) ∈ [b j ,b j+1)}. Then,{J1,J2, · · · ,Jk−1} forms

a partition ofJ f , i.e.,

J f ≡ ∪k−1
j=1J j and J j ∩ J j ′ = /0 for all 1≤ j 6= j ′ < k .

Thus, it suffices to show thatJ j is an EDF-equivalent job set ofJ[b j ,b j+1] for all 1≤ j < k. Let i j = max{ i | fσ−1(i) =
b j} for all 1≤ j ≤ k, and suppose thatdJ′l > b j+1 for a jobJ′l ∈ J j . Then, we haveσ(l) > i j+1 since

fσ−1(σ(l)) = fl = dJ′l > b j+1 = fσ−1(i j+1) .

From line 8 of the algorithm in Figure 9, we have

b j+1 = fσ−1(i j+1) ≤ min{rJσ−1(k)
| i j+1 < k≤ |J | } ≤ rJσ−1(k)

|k=σ(l) (>i j+1) = rJl ,

which contradictsrJ′l (= rJl) ∈ [b j ,b j+1). Therefore,dJ′l ∈ [b j ,b j+1] for all J′l ∈ J j . Furthermore,J j follows the

EDF priority since it is a subset of the EDF job setJ f .
It remains to show that|J j |= |J[b j ,b j+1]| and there is a bijective functionα : J[b j ,b j+1] ⇒ J j such that

∀J′ ∈ J[b j ,b j+1] , pJ′ = pα(J′) , cJ′ = cα(J′) and rJ′ = rα(J′) . (11)

For the former, we have

|J j | = |{J′ ∈ J f | rJ′ ∈ [b j ,b j+1)}| = |{J ∈ J | rJ ∈ [b j ,b j+1)}| = |J[b j ,b j+1]| .

For the latter, we defineα such thatα(J′) = J′′ iff pJ′ = pJ′′ . Then, it is clear thatα is a bijective function and (11)
holds.2

Lemma 14 Let S(t) = ⊕h−1
j=1 S

J[t j ,t j+1]

opt for minRJ = t1 < t2 < · · · < th = maxDJ (t j ∈ TJ). Then,S is a feasible
voltage schedule ofJ . Furthermore,

E(S) =
h−1

∑
j=1

E(S
J[t j ,t j+1]

opt) ≥ E(S J
opt) .

18

1: fσ−1(|J |) := dJσ−1(| J |)
2: bw

σ := (dJσ−1(| J |))
3: for (i := |J |−1 to 1)
4: let J H be{Jσ−1(k)| i < k≤ |J | ∧ σ−1(k) < σ−1(i) }
5: if (rJσ−1(i)

≥min({rJ|J ∈ J H}∪{ fσ−1(i+1)})) return FALSE

6: else fσ−1(i) := min({ fσ−1(i+1),dJσ−1(i)
}∪{rJ|J ∈ J H})

7: end if
8: if (fσ−1(i) ≤ min{rJ| r ∈ J H) appendfσ−1(i) onto the head ofbw

σ

9: end if
10: end for
11: appendmin RJ onto the head ofbw

σ

Figure 11. The algorithm to build a weakly-blocking tuple from a | J |-permutation.

Proof. Let u[t0,t ′0](t) be defined by

u[t0,t ′0](t) =
{

1 t0 ≤ t ≤ t ′0 ,
0 otherwise,

SinceI [t j ,t j+1] ⊆ [t j , t j+1], S is feasible ifS(t) · u[t j ,t j+1](t) is a feasible schedule ofJ[t j ,t j+1] for all 1≤ j < h. By

definition,S(t) ·u[t j ,t j+1](t) = S
J[t j ,t j+1]

opt is a feasible schedule ofJ[t j ,t j+1] for all 1≤ j < h. E(S) = ∑h−1
j=1 E(S

J[t j ,t j+1]

opt)
holds trivially fromI [t j ,t j+1] ⊆ [t j , t j+1]. Finally, sinceS is feasible,E(S)≥ E(S J

opt). 2

The following lemma implies how an energy-optimal voltage scheduling problem can be partitioned into sub-
problems.

Lemma 15 Let

E1 = min{
k−1

∑
j=1

E(S
J[bj ,bj+1]

opt) | (b1,b2, · · · ,bk) is a strongly-blocking tuple.} ,

E2 = min{
h−1

∑
j=1

E(S
J[t j ,t j+1]

opt) | minRJ = t1 < t2 < · · ·< th = maxDJ , t j ∈ TJ } and

E3 = min{
h−1

∑
j=1

E(S
J[t j ,t j+1]

opt) | [t j , t j+1] is a sub-interval of a strongly-atomic interval for all1≤ j < h} .

Then,E(S J
opt) = E1 = E2 = E3 .

Proof. Let

S1 = {⊕k−1
j=1 S

J[bj ,bj+1]

opt | (b1,b2, · · · ,bk) is a strongly-blocking tuple.}
and defineS2 andS3 similarly. Then, from Lemma 14,Ei = min{E(S)|S ∈ Si} for i = 1,2,3. By definition,
S1 ⊆ S3 ⊆ S2 and consequentlyE2 ≤ E3 ≤ E1. Furthermore,E(S J

opt)≤ E2 from Lemma 14. From Theorem 5 and

Lemma 13,S J
opt∈ S1. Thus, we haveE(S J

opt)≥ E1, which impliesE(S J
opt) = E1 = E2 = E3. 2

Figure 10 shows an optimal algorithm which is based on strongly-atomic intervals. From Lemma 15, is is
obvious that the algorithm in Figure 10 always computes an optimal voltage schedule. The algorithm may work
efficiently for some job sets (e.g., the job set in Figure 6). But, the running time may not be bounded by a poly-
nomial function; For the job set in Figure 7, there are only one strongly-atomic interval[r4,d4] and the algorithm
cannot but enumerate all the essential job sets. Furthermore, the algorithm does not have a structure suitable to be
transformed into an FPTAS. So, we consider another optimal algorithm based onweakly-atomicintervals,weakly-
boundingtuples, and the background workload. First, we formally define the terms based on the algorithm in
Figure 11, which is identical to the algorithm in Figure 9 except for the boxed code segment (line 8).

Definition 16 Given a valid|J |-permutationσ, the tuplebw
σ built by the algorithm in Figure 11 is called aweakly-

blocking tuple. An interval[t, t ′] is weakly-atomicif there is a weakly-blocking tuplebw = (b1,b2, · · · ,bk) such
that [t, t ′] = [bi ,bi+1] for some1≤ i < k. Furthermore, the job setJ[t,t ′]w defined by

J[t,t ′]w = {J′| J ∈ J , rJ ∈ [t, t ′) ∧ (∃Jh ∈ J , pJh < pJ∧ rJh = t ′∧dJ ∈ [rJh,dJh))} where

rJ′ = rJ,cJ′ = cJ, pJ′ = pJ and dJ′ = min{dJ, t
′} .

19

is said to beweakly-inducedby an interval[t, t ′].
Furthermore, given a weakly-blocking tuplebw = (b1,b2, · · · ,bk) and the corresponding EDF-equivalent job set
J ′, any job inJ ′−∪k−1

j=1J[b j ,b j+1]
w is called abackground jobwith respect to the weakly-blocking tuplebw. The

workload of background jobs are calledbackground workload.

Note that for an interval[t, t ′], I J[t,t′]w ⊆ I J[t,t′] ⊆ [t, t ′] sinceJ[t,t ′]w ⊆ J[t,t ′]. Therefore, for a weakly-blocking tuple
bw = (b1,b2, · · · ,bk), I J[b1,b2]w , I J[b2,b3]w , · · · , I J[bk−1,bk]w are disjoint.

Lemma 17 Given a weakly-blocking tuplebw, let J B
bw represent the set of background jobs with respect tobw.

Then,J B
bw

1
≡ J B

bw
2

for any weakly-blocking tuplesbw
1 andbw

2 .

Proof. Let bw
1 = (b1,b2, · · · ,bk) andbw

2 = (b′1,b
′
2, · · · ,b′k′). Assume thatJ ∈ J B

bw
1

andrJ ∈ [b j ,b j+1). From the
definition of a background job, we have

∃k > j +1 , dJ ≥ b j+1 and pJ > max{pJ′ |J′ ∈ ∪k−1
l= j+1J[bl ,bl+1]

w} . (12)

Suppose thatJ /∈ J B
bw

2
. From (12), we have

[b j+1,b j+2]⊆ (b′j ′ ,b
′
j ′+1] for rJ ∈ [b′j ′ ,b

′
j ′+1) ,

a contradiction. So,J B
bw

1
⊆ J B

bw
2
. Similarly, we haveJ B

bw
2
⊆ J B

bw
1
. 2

Lemma 17 states that we can specify background jobs irrespective of weakly-blocking tuples. For the rest of
this paper, we useJ B to represent the set of background jobs.

Lemma 18 Given a job setJ and an essential|J |-tuple f, let bw
σf

= (b1,b2, · · · ,bk). Then, for any weakly-atomic
interval [b j ,b j+1] (1≤ j < k) and a background jobJ, we have the following assuming jobs are executed under
S J

opt.
(a)dJ ∈ [b j ,b j+1): J completes its execution byb j .
(b) rJ ∈ [b j ,b j+1): J completes its execution byb j+1.
(c) [b j ,b j+1]⊆ [rJ,dJ] executes its partial workload at constant speed.

Furthermore, for any interval[t, t ′]⊆ [b j ,b j+1], J[t,t ′]w is an EDF job set.

Proof. Case (a) and Case (b) are obvious from the construction of the weakly-blocking tuplebw
σf

. Case (c)
follows from Lemma 9. Finally, suppose thatJ[t,t ′]w is not an EDF job set. Then, we have

∃J,J′ ∈ J[t,t ′]w s.t. pJ > pJ′ , dJ ∈ (rJ′ ,dJ′) ,

and the algorithm in Figure 11 selectsrJ′ (∈ (b j ,b j+1)) as an element ofbw
σf

, a contradiction.2
From Lemma 18, we characterize the optimal schedule in terms of weakly-atomic intervals, weakly-blocking

tuples and background workload.

Lemma 19 Given a job setJ and an essential|J |-tuplef,

S J
opt ≡ ⊕k−1

j=1 S J j
opt (13)

wherebw
σf

= (b1,b2, · · · ,bk) andJ j = J[b j ,b j+1] ∪ {Jb
j } such that

rJb
j
= b j , dJb

j
= b j+1 , pJb

j
= max{pJ|J ∈ J[b j ,b j+1]}+1 and cJb

j
= cb

j for somecb
j ≥ 0 .

Proof. From Lemma 18, we have

{ job(J ,S J
opt(t), t) | t ∈ [b j ,b j+1)} ≡ J[b j ,b j+1]

w ∪ J ′ ∪ J ′′ where

J ′ = {J′ ∈ J B |rJ′ ∈ [b j ,b j+1)} and J ′′ = {J′ ∈ J B |[b j ,b j+1]⊆ [rJ′ ,dJ′]} .

From Case (b) of Lemma 18,J[b j ,b j+1]
w ∪ J ′ ≡ J[b j ,b j+1], and from Case (c),J ′′ = {Jb}. So, we have

S J
opt(t) ·u[b j ,b j+1](t) ≡ S J j

opt for all 1≤ j < k ,

20

which is equivalent to (13).2
From Lemma 19, the voltage scheduling problem is reduced to the problem of finding a weakly-blocking tuple

bw = (b1,b2, · · · ,bk) and the amount of background workloadcB
[b j ,b j+1]

for each weakly-atomic interval[b j ,b j+1].
To find thebackground speedsB

[b j ,b j+1]
instead of the amount of background workload makes it possible to exploit

Lemma 9.

Lemma 20 Given a weakly-atomic interval[t1, t2], let J ′ = J[t1,t2] ∪ {Jb} where

rJb = t1 , dJb = t2 , pJb = max{pJ|J ∈ J[t1,t2]}+1 and cJb = cB
[t1,t2] (> 0) ,

and letsB
[t1,t2]

be the constant speed ofJb underS J ′
opt. Then,

S J ′
opt(t) =





S
J[t1,t2]
opt (t) t s.t. S

J[t1,t2]
opt (t) > sB

[t1,t2]
,

sB
[t1,t2]

t s.t. S
J[t1,t2]
opt (t)≤ sB

[t1,t2]
.

Furthermore,sB
[t1,t2]

strictly increases ascB
[t1,t2]

increases, and vice versa.

Proof. From Lemmas 18 and 19, bothJ[t1,t2] andJ ′ follow the EDF priority and their optimal voltage schedules

are obtained by Yao’s algorithm [22]. For an interval[t ′1, t
′
2] ⊂ [t1, t2] such thatS

J[t′1,t′2]

opt (t) > sB
[t ′1,t

′
2]

, Yao’s algorithm

selects the same speed forS J ′
opt(t). For the other intervals,S J ′

opt(t) = sJb since[t1, t2]⊆ [rJb,dJb].

BecauseW(S J ′
opt, [t1, t2]) strictly increases assB

[t1,t2]
increases andcB

[t1,t2]
= W(S J ′

opt, [t1, t2])−W(S
J[t1,t2]
opt , [t1, t2]),

cB
[t1,t2]

increases assB
[t1,t2]

increases. Hence, it follows thatsB
[t1,t2]

increases ascB
[t1,t2]

increases (and vice versa).2

Definition 21 Given a job setJ and background workloadc, the job setJ with background workloadc is defined
as

J [c]
de f
= J ∪ {Jb} where rJb = RJ , dJb = DJ , pJb = max{pJ|J ∈ J }+1 andcJb = c .

Furthermore, given a job setJ [c], the constant speed of background workload underS J [c]
opt is called abackground

speedof J [c] and is denoted byBS(J ,c).

The following lemma is an extension of Lemma 20 for arbitrary intervals.

Lemma 22 Given a job setJ [c]

S J [c]
opt ≡ ⊕k−1

j=1 S
J[bj ,bj+1][c j]
opt for b1, · · · ,bk ∈ TJ , b1 < · · ·< bk such that

c = ∑k−1
j=1 c j and BS(J[b j ,b j+1],c j) = BS(J[b j′ ,b j′+1],c j ′) for all 1≤ j 6= j ′ < c j .

Proof. Directly from Lemmas 19 and 9.2
Along with Lemma 22, the following lemma implies how the problem can be reduced to a dynamic programming

formulation.

Lemma 23 Giventi , t j , tm∈ TJ whereti < tm≤ t j , let

J B
[ti ,t j]

w = J[ti ,t j]
w ∪ {J ∈ J B | [rJ,dJ]⊆ [ti , t j]} and

cB
[ti ,tm] = C({J ∈ J B | rJ ∈ [ti , tm)∧dJ ∈ [tm, t j] }) ,

and letS [ti ,t j]
opt representS

J B
[ti ,t j]

w

opt . Then,

S [ti ,t j]
opt ∈ {S

J[ti ,tm]w [cB
[ti ,tm]]

opt ⊕S [tm,t j]
opt | S

J[ti ,tm]w [cB
[ti ,tm]]

opt is feasible for J B
[ti ,tm]w} .

21

procedure OPTIMAL VOLTAGE SCHEDULE (J)
/* TJ = {t1, t2, · · · , tN} , SC := {s1,s2, · · · ,sn} */

1: foreach (s∈SC)
2: V := {v1,v2, · · · ,vN}
3: E := {(vi ,v j) | [ti , t j] is weakly-atomic}
4: foreach ((vi ,v j) ∈ E)

5: w((vi ,v j)) := W(max{SJ [ti ,t j]

opt (t),s}, [ti , t j])−W(S
J [ti ,t j]

opt (t), [ti , t j]) /* weight of edges */
6: end foreach
7: Find longest paths between all pairs of vertices inV. /* Note thatG is acyclic. */
8: foreach (1≤ i < j ≤N s.t. [ti , t j] is a concatenation of weakly-atomic intervals)

/* The longest path fromvi to v j = 〈vq1,vq2, · · ·vql 〉
9: c := the weight of the longest path fromvi to v j .

10: Ei, j [c] := E(⊕l−1
h=1 max{ S

J [tqj ,tqj+1]

opt (t),s}, [ti , t j])
11: end foreach
12: end foreach
13: for (i := 1 to N−1)
14: for (j := 1 to N− i)
15: E j, j+i := ∞+

16: for (k := j +1 to j + i)
17: c j, j+i,k := C({J ∈JB | rJ ∈ [t j , tk)∧dJ ∈ [tk, t j+i]})
18: E j, j+i,k := E j,k[c j, j+i,k]+Ek, j+i

19: if (E j, j+i > E j, j+i,k and S
J [t j ,tk]w [c j, j+i,k]
opt is feasible forJ [ti ,t j]

w ∪{J ∈JB |[rJ,dJ]⊆ [ti , t j]})
20: E j, j+i := E j, j+i,k , h := k
21: end if
22: end for
23: b j, j+i := {th}∪ b j,h∪ bh, j+i
24: end for
25: end for

/* E1,N = E(S J
opt) and S J

opt ≡ S
∪l−1

h=1 J [bh,bh+1]w ∪ JB

opt where b1,N = (b1,b2, · · · ,bl) */

26: J opt := ∪l−1
h=1 J [bh,bh+1]w ∪ JB where b1,N = (b1,b2, · · · ,bl)

27: return S J opt
opt /* J opt is an EDF job set. So,S J opt

opt can be directly computed by Yao’s algorithm */
end procedure

Figure 12. An exponential-time optimal algorithm based on weakly-atomic intervals.

Proof. If all the jobs in{J ∈ J B | [rJ,dJ] ⊆ [ti , t j]} runs at the same speed underS [ti ,t j]
opt , S [ti ,t j]

opt ≡ S
J[ti ,t j]

w [cB
[ti ,t j]

]

opt .
Otherwise, there must existtm ∈ T{J∈J B | [rJ,dJ]⊆[ti ,t j]} (⊆ TJ) such that all the jobs in{J ∈ J B | rJ ∈ [ti , tm)∧dJ ∈
[tm, t j] } finish their executions bytm with the same constant speed and all the jobs in{J ∈ J B | [rJ,dJ] ⊆ [tm, tl]}
are not executed beforetm underS [ti ,t j]

opt . Therefore, we haveS [ti ,t j]
opt ≡ S

J[ti ,tm]w [cB
[ti ,tm]]

opt ⊕ S [tm,t j]
opt whereS

J[ti ,tm]w [cB
[ti ,tm]]

opt is
feasible forJ B

[ti ,tm]w . 2

Corollary 24 LetE
[ti ,t j]
opt denoteE(S [ti ,t j]

opt) whereS [ti ,t j]
opt is defined as in Lemma 23. Then,

E
[ti ,t j]
opt = min ({E(S

J[ti ,tm]w [cB
[ti ,tm]]

opt)+E
[tm,t j]
opt | tm∈ TJ , ti < tm < tk , S

J[ti ,tm]w [cB
[ti ,tm]]

opt is feasible for J B
[ti ,tm]w}) .

Based on weakly-atomic interval, we construct another optimal voltage scheduling algorithm. Figure 12 shows
the optimal algorithm which is based on the dynamic programming formulated by weakly-atomic intervals. The
algorithm identifies weakly-atomic intervals and computes the optimal schedule for the weakly-atomic interval.
(Note that jobs in a weakly-atomic interval follow the EDF priority assignment.) In computing the optimal schedule
for a weakly-atomic interval, we consider the background workload, that is, the algorithm computes the optimal
schedule for each candidate background speed inSC. Given a job setJ , the algorithm first computes the setSC of
candidates for the speed of background workload. For the optimal algorithm, the setSC is set to be

SC = { C(J ′)
∑k−1

i=0 (tp2i+2− tp2i+1)
| J ′ ⊂ J , t1 < t2 < · · ·< tp2k , t j ∈ TJ } .

It is obvious that the speed of the background workload in an optimal voltage schedule is included inSC. (In
the FPTAS which will be presented in Section 5.2, the setSC is selected such that the size ofSC is bounded

22

by a polynomial function.) Given the optimal schedules of weakly-atomic intervals, the algorithm searches the
minimum sum of the energy values of the weakly-atomic intervals. The correctness of the algorithm directly
follows from Lemma 23 and Corollary 24. The worst-case running time of the algorithm is not bounded by a
polynomial function, but it can be easily transformed into an FPTAS.

5.2 Approximation Algorithm

First, we prove a miscellaneous property which is useful in bounding the error of our approximation algorithm.

Lemma 25 Given a functionP : R+ ⇒ R+ and a constant0 < ε < 1, if

0 < x1 < x2 <

(
1+

ε · log2
max{η(x)|x > 0}

)
·x1 where η(x) =

P′(x)
P(x)

·x ,

then P(x2) < (1+ ε) ·P(x1) .

Proof. From the condition, we have

logx2− logx1 < log

(
1+

ε · log2
max{η(x)|x > 0}

)
<

ε · log2
max{η(x)|x > 0} . (14)

Let y1 = logx1 andy2 = logx2. Then we have

log P(x2) − log P(x1) = log P(ey2) − log P(ey1) ≤ (y2−y1) ·max{ d(log P(ey))
dy

} .

From (14) and

d(log P(ey))
dy

=
P′(ey)
P(ey)

·ey = η(ey) ,

we have

log P(x2) − log P(x1) <
ε · log2

max{η(x)|x > 0} ·max{ η(x) | x > 0} = ε · log2 .

It follows that

P(x2) < eε·log2 ·P(x1) < elog(1+ε) ·P(x1) = (1+ ε) ·P(x1) .

2

For a power functionP(s) = α ·sn, we haveη(s) = n. In the following, we useρP to denotelog2/max{η(x)|x > 0}.
From Lemma 25, we can construct an FPTAS as in Figure 13. The FPTAS is slightly different from the algorithm
in Figure 12. To bring the running time down to polynomial, we useS′C instead ofSC:

S′C = {min{SC} · (1+ ε ·ρP)k | k = 0,1, · · · , l where

min{SC} · (1+ ε ·ρP)l−1 < max{SC} ≤min{SC} · (1+ ε ·ρP)l } .

Theorem 26 APPROX VOLTAGE SCHEDULE is a fully polynomial time approximation scheme for the voltage
scheduling problem.

Proof. Let s1 ands2 be elements ofS′C such thats2 = s1 · (1+ ε ·ρP). Given a weakly-atomic interval[ti , t j], we
have forti ≤ t ≤ t j :

max{S
J[ti ,t j]

opt (t),s2} ≤ (1+ ε ·ρP) ·max{S
J[ti ,t j]

opt (t),s1} .

Thus, from Lemma 25, we have forti ≤ t ≤ t j

P(max{S
J[ti ,t j]

opt (t),s2})≤ (1+ ε) ·P(max{S
J[ti ,t j]

opt (t),s1}) , which implies

E(max{S
J[ti ,t j]

opt (t),s2}, [ti , t j])≤ (1+ ε) ·E(max{S
J[ti ,t j]

opt (t),s1}, [ti , t j]) .

Let us compareE j,k[c′] in line 21 ofAPPROX VOLTAGE SCHEDULE andE j,k[c j, j+i,k] in line 18 ofOPTIMAL VOLTAGE

SCHEDULE. Let s′ ands be the corresponding elements inS′C andSC, respectively. Then, from the definition of
S′C, we haves′ < (1+ ε ·ρP) ·s, which impliesE j,k[c′] < (1+ ε) ·E j,k[c j, j+i,k]. Therefore,E1,N < (1+ ε) ·E(S J

opt).
Finally, since we have

|S′C| = 1+ dlog1+ε·ρP
(max{SC}/min{SC})e < 2+

log(max{SC}/min{SC})
ε · log(1+ρP)

, (15)

the running time is bounded a polynomial function of|J | and1/ε. 2

23

procedure APPROX VOLTAGE SCHEDULE (J ,ε)
/* TJ = {t1, t2, · · · , tN} */
/* S′C = {min{SC} · (1+δ)k|k = 0,1, · · · ,dlog1+δ(max{SC}/min{SC})e whereδ = ε ·ρP*/

1: InitializeCi, j := {} for 1≤ i < j ≤N.
2: foreach (s∈S′C)
3: V := {v1,v2, · · · ,vN}
4: E := {(vi ,v j) | [ti , t j] is weakly-atomic}
5: foreach ((vi ,v j) ∈ E)

6: w((vi ,v j)) := W(max{SJ [ti ,t j]

opt (t),s}, [ti , t j])−W(S
J [ti ,t j]

opt (t), [ti , t j]) /* weight of edges */
7: end foreach
8: Find longest paths between all pairs of vertices inV. /* Note thatG is acyclic. */
9: foreach (1≤ i < j ≤N s.t. [ti , t j] is a concatenation of weakly-atomic intervals)

/* The longest path fromvi to v j = 〈vq1,vq2, · · ·vql 〉
10: c := the weight of the longest path fromvi to v j .

11: Ei, j [c] := E(⊕l−1
h=1 max{ S

J [tqj ,tqj+1]

opt (t),s}, [ti , t j])
12: Ci, j := Ci, j ∪{c}
13: end foreach
14: end foreach
15: for (i := 1 to N−1)
16: for (j := 1 to N− i)
17: E j, j+i := ∞+

18: for (k := j +1 to j + i)
19: c j, j+i,k := C({J ∈JB | rJ ∈ [t j , tk)∧dJ ∈ [tk, t j+i]})
20: c′ := min{c∈Cj,k|c≥c j, j+i,k}
21: E j, j+i,k := E j,k[c′]+Ek, j+i
22: if (E j, j+i > E j, j+i,k and

S
J [t j ,tk]w [c j, j+i,k]
opt is feasible forJ [ti ,t j]

w ∪{J ∈JB |[rJ,dJ]⊆ [ti , t j]})
23: E j, j+i := E j, j+i,k , h := k
24: end if
25: end for
26: b j, j+i := {th}∪ b j,h∪ bh, j+i
27: end for
28: end for

/* E1,N < (1+ ε) ·E(S J
opt) */

29: J ε := ∪l−1
h=1 J [bh,bh+1]w ∪ JB where b1,N = (b1,b2, · · · ,bl)

30: return S J ε
opt /* J ε is an EDF job set. So,S J ε

opt can be directly computed by Yao’s algorithm */
end procedure

Figure 13. The fully polynomial time approximation scheme.

6 Workload-Aware Optimal Off-Line Scheduling

The off-line voltage scheduling algorithm described in Section 5 is based on the assumption that the workload of
each job is constant. Off-line algorithms can be applied to the case where each job runs at its worst-case execution
time (WCET). However, the execution time of each job varies, sometimes by a large amount, which cannot be
adequately handled by off-line scheduling alone. Therefore, rescheduling by an on-line scheduling algorithm is
necessary during runtime. On-line scheduling is effective in leveraging the execution time variation, but it should
not spend much computation time due to the runtime overhead.

Consequently, both the off-line scheduling and the on-line scheduling are needed in realizing the full potential
of energy saving with sophisticated static analysis while exploiting the workload variation appropriately without
incurring much runtime overhead. A naive approach to combine the off-line scheduling and the on-line scheduling
is to decouple the off-line and on-line decisions. That is, the off-line scheduler assumes that each job runs at
its WCET, and is unaware of either the workload variation or the behavior of the on-line scheduler. This policy
makes the off-line scheduling problem easier, but the off-line schedule may lead to a poor energy efficiency once
rescheduled by the on-line scheduler during runtime.

Given an off-line voltage scheduleA = (a1,a2, · · · ,a|J |)3 and an on-line voltage scheduling algorithmA , we

3For the rest of this paper, we use a time-allocation tupleA (or SA) instead ofS (a function from time to the processor speed) to denote
an off-line voltage schedule, because an off-line scheduleA is a more appropriate representation for an off-line voltage schedule from the
viewpoint of an on-line voltage scheduler.

24

useA〈A,(x1,x2, · · · ,x|J |)〉 to represent the on-line voltage schedule obtained byA when the actual workloads
of J1,J2, · · · ,J|J | arex1,x2, · · · ,x|J | (xi ∈ (0,ci]), respectively. Given a feasible off-line scheduleA that satisfies
Condition III, an on-line voltage scheduling algorithmA is required to give each job the actual workload between
its release time and deadline. Conversely, sinceA〈A,(c1,c2, · · · ,c|J |)〉 ≡ SA , an off-line schedule must satisfy
Condition III. Therefore, the solution space for the WAOS problem (stated in terms of time-allocation tuples) is
the same as that for the CWOS problem, and the WAOS is formulated as follows:

Given workload probability distributionsP1,P2, · · · ,P|J | and an on-line scheduling algorithmA , find
an off-line scheduleA = (a1,a2, · · · ,a|J |) such that the average energy consumptionZ cJ1

0
· · ·
Z cJ|J |

0

(|J |
∏
i=1

Pi(xi)
)
·E(A〈A,(x1, · · · ,x|J |)〉) dx|J | · · · dx1 (16)

is minimized subject to Condition III (or Condition IV for an EDF job set).

Note that the CWOS problem is the special case of the WAOS problem where the workload ofJi is alwaysci for
all 1≤ i ≤ |J |.

The difficult of the CWOS comes mainly from how to express the integral (16) in terms of an off-line schedule
A = (a1,a2, · · · ,a|J |), because it requires an analysis on the runtime behavior of an arbitrary on-line scheduling
algorithm. For this, we propose a generic on-line scheduling algorithm in Section 6.1. Then, we give an average-
case analysis of the generic on-line algorithm, which gives an analytic expression of the integral (16) in terms of an
off-line schedule. The analytic expression can be minimized by a modified version of the algorithm for the CWOS
problem in conjunction with standard convex optimization technique [2].

6.1 A Generic On-Line Algorithm

In this section, we characterize on-line fixed-priority scheduling based on the behavior of the existing on-line
voltage scheduling algorithms for fixed-priority job sets [17, 10, 4]. From the characterization, we construct a
generic on-line voltage scheduling algorithm, which will be used as the base on-line scheduling algorithm for our
workload-aware off-line scheduling algorithm in Section 6.2.

On-line algorithms use the “run-calculate-assign-run” strategy to determine the on-line voltage schedule: (1)
run a current job, (2) when the job is completed, reclaim the unused processor time, called theslack, (3) pass a
part of the accumulated slack on to the next job, (4) calculate the speed of the next job, and (5) run the next job.
Existing on-line algorithms differ only in step (3), and can be characterized by how much slack is given to a job at
its release time or resumption.

A generic on-line voltage scheduling algorithm is given in Figure 14. An on-line algorithm can be directly
obtained by implementing procedureALLOCATE SLACK appropriately. For example, Gruian’s algorithm can be
obtained by adopting the ASAP policy in allocating the slack, i.e., giving all the accumulated slack time to the next
activated job. On the other hand, Shin’s algorithm [17] and Pillai’s algorithm [10] are based on the ALAP policy.

Figures 15 and 16 illustrate the off-line and on-line scheduling, respectively. Initially, a jobJi ∈ J is given
an allowed execution timeai which is determined by the off-line scheduler. Figures 15.(a) and 15.(b) show an
example job set and its off-line schedule, respectively. (For simplicity, we select an off-line schedule with a
constant processor speed.) In Figure 15.(b)J4 andJ5 are preempted by higher priority jobs, and their execution
intervals are split into sub-intervals. For example, the execution interval ofJ5 are split into sub-intervals with
lengthsa5,1 anda5,2 wherea5,1 +a5,2 = a5. Figure 15.(c) shows the actual workload of each job and slack times,
which are not known off-line.

On-line scheduling algorithms reclaim the slack times and distribute them into jobs when the jobs are released
or resumed as shown in Figure 16. Figure 16.(a) shows the on-line schedule obtained by Shin’s algorithm [17]
or Pillai’s algorithm [10]. Note that no slack time is given toJ6 at its release time andJ4 at its resumption. The
on-line schedule in Figure 16.(b) obtained by Gruian’s algorithm [4] is flatter than the schedule in Figure 16.(a).
Under the ASAP policy in allocating the slack, a job starts with a lower speed than under the ALAP policy and,
consequently, the on-line schedule tends to be flatter resulting in the lower energy consumption.

25

procedure INITIALIZE

(a1,a2, · · · ,a|J |) := a feasible off-line schedule;
slack:= 0; /* accumulated slack */
for (i := 1 toJ)

workload le f ti := ci ;
time usedi := 0; /* the total amount of CPU time used byJi */
slack usedi := 0; /* the total amount of slack given toJi */

end for
end procedure

procedure DURING IDLE TIME

decrementslackby the idle time.
end procedure

procedure UPON RELEASED OR RESUMED(Ji)
slack allocated:= ALLOCATE SLACK (Ji) ;
decrementslackby slack allocated.
allowed time le f t := ai +slack usedi − time usedi ;
incrementslack usedi by slack allocated.
runJi at the speedworkload le f ti / (slack allocated+allowed time le f t).

end procedure

procedure DURING EXECUTION (Ji)
decrementworkload le f ti .
incrementtime usedi .

end procedure

procedure UPON COMPLETE(Ji)
/* reclaim the slack time left byJi */
incrementslackby ai +slack usedi − time usedi .

end procedure

Figure 14. The generic on-line voltage scheduling algorithm. On-line algorithms are characterized by
procedure ALLOCATE SLACK, which allocates a part of the accumulated slack to a job released or
resumed.

6.2 Workload-Aware Off-Line Scheduling

Based on the average-case analysis, we reduce the WAOS problem to the CWOS problem so that the FPTAS for
the CWOS problem can be used for the WAOS problem with slight modification. Recall that it suffices to consider
an algorithm that minimizes the integral (16) for an EDF job set; then, the FPTAS for the WAOS problem (with
fixed-priority job sets as the problem instances) can be directly obtained.

First, we derive the average energy consumption in the integral (16) as a function of an off-line scheduleA =
(a1,a2, · · · ,a|J |), based on the behavior of the generic on-line scheduling algorithm described in Section 6. Figure
17 shows an on-line schedule of a jobJi . Initially, Ji is given ai as its allowed execution time by an off-line
scheduler.Ji may be preempted by higher priority jobs, and its execution interval is split intoni sub-intervals
I i,1, I i,2, · · · , I i,ni with lengthsai,1,ai,2, · · · ,ai,ni , respectively, whereai = ∑ni

j=1ai, j . Furthermore,ui, j is used to
denote the slack time given toJi at its j-th activation. WhenJi starts its execution, the available time forJi is
ai +ui,1 and the speedsi,1 for I i,1 is set toci/(ai +ui,1). Consequently, the amount of workload executed withinI i,1
is given by

wi,1 = si,1 · (ui,1 +ai,1) = ci · ui,1 +ai,1

ui,1 +ai
.

Similarly, we can derive a recurrence for the speedsi, j in I i, j and the amount of workloadwi, j executed inI i, j .
At Ji ’s j-th invocation, the available execution time isui, j +ai −∑ j−1

k=1ai,k and the amount of workload executed is

∑ j−1
k=1wi,k. Therefore, we have

si, j =
ci−∑ j−1

k=1wi,k

ui, j +ai−∑ j−1
k=1ai,k

, wi, j = si, j · (ui, j +ai, j) .

26

J1

J2 J3

J4

J5

r1 r2 r5 r4 r3

(a)

J1 J2 J3J4J5 J4 J5

r1 r2 r5 r4 r3

(b)

a1 a2 a5,1 a4,1 a3 a4,2 a5,2

J1 J2 J3J4J5 J4 J5

r1 r2 r5 r4 r3

(c)

Figure 15. Off-line voltage scheduling examples; (a) an example job set, (b) an off-line schedule, and
(c) the actual workload of each job. (↔ represents slack time.)

J1 J2
J3J4J5 J4 J5

r1 r2 r5 r4 r3

(a)

J1 J2

J3J4J5 J4 J5

r1 r2 r5 r4 r3

(b)

Figure 16. On-line voltage schedules obtained by (a) Shin’s algorithm [18] or Pillai’s algorithm [13],
(b) Gruian’s algorithm [5].

Solving the recurrence gives

si, j =
ci

ui,1 +ai
·

j−1

∏
l=1

ai−∑l
k=1ai,k

ui,l+1 +ai−∑l
k=1ai,k

, wi, j = ci · ui, j +ai, j

ui,1 +ai
·

j−1

∏
l=1

ai−∑l
k=1ai,k

ui,l+1 +ai−∑l
k=1ai,k

.

Let xi be the actual workload ofJi (xi ≤ ci) such that

∑ j−1
k=1wi,k ≤ xi < ∑ j

k=1wi,k .

Then, the total CPU timeti used byJi is given by

ti = ∑ j−1
k=1(ui,k +ai,k)+

xi−∑ j−1
k=1wi,k

si, j
,

and the energy consumed byJi is given by

Ei(x1,x2, · · · ,x|J |) = ∑ j−1
k=1P(si,k) · (ui,k +ai,k) − P(si, j) · (ti −∑ j−1

k=1(ui,k +ai,k)) .

Now, it remains to deriveui, j in terms of an off-line schedule(a1,a2, · · · ,a|J |) and the actual workload of each
job. In addition to these parameters,ui, j is dependent on the behavior of the base on-line scheduling algorithm,
i.e., on how the slack is distributed by procedureALLOCATE SLACK in Figure 14. In this paper, we use the ASAP
policy explained in Section 6, which showed the best energy efficiency in our experiment. LetJi j denote the job
that completes its execution atJi ’s j-invocation. Then,ui, j is given by

ui, j = ∑
ni j

k=1(ui j ,k +ai j ,k)− ti j .

We can now rewrite the average energy consumptionEave (i.e., the integral (16)) as follows:

|J |
∑
i=1

Z cJ1

0
· · ·
Z cJ|J |

0

(|J |
∏
i=1

PJi (xi)
)
·Ei(x1,x2, · · · ,x|J |) dx|J | · · · dx1

27

(a)

Ji

ai,1 ai,2

Ji

ai,3

Ji

ui,1 ui,2 ui,3

Ji

ai,1+ ui,1 ai,2

Ji

ai,3

Ji

ui,2 ui,3

(b)

Ji

ai,1+ ui,1

Ji

ai,3

Ji

ui,3

ai,2+ ui,2

(c)

Ji

ai,1+ ui,1

Ji Ji

ai,2+ ui,2

(d)

ai,3+ ui,3

Figure 17. On-Line scheduling examples.

Note that the average energy consumption given in (17) can be proved to be a convex function of(a1,a2, · · · ,a|J |).
Furthermore, since(a1,a2, · · · ,a|J |) is a convex set inR|J |, the global minimum can be found by standardconvex
optimizationtechnique [2]. As explained in Section 5, the FPTAS for the WAOS problem is directly obtained by
substituting the convex optimization algorithm to minimize the average energy consumption for Yao’s EDF voltage
scheduling algorithm in the FPTAS for the CWOS problem.

7 Experimental Results

We evaluated the proposed algorithms for the CWOS problem and the WAOS problem. For both settings, we
implemented the FPTAS in Section 5. We also implemented Yao’s algorithm [22] and the convex optimization
algorithm [2] for the CWOS problem and the WAOS problem, respectively. For the base on-line scheduling
algorithm for the WAOS problem, we used the ASAP policy.

7.1 Evaluation of FPTAS for CWOS Problem

We first evaluated the FPTAS for the CWOS problem. For a comparison, we also implemented Quan’s heuristic
[12], which is currently the best polynomial-time voltage scheduling algorithm for fixed-priority real-time tasks.
We compared the energy efficiency and computation time between two algorithms.4 In our experiments, we as-
sumed that the energy consumption is quadratically dependent on the supply voltage. For a given supply voltage
V, the corresponding clock frequencyf is proportional to(VDD−VTH)α/VDD, whereVTH andα are assumed to be
0.5V and 1.3 [15].

We constructed test job sets from periodic task sets of three real-world applications: MPEG4 Videophone [16],
CNC [6] and Avionics [9]. Table 1 summarizes the experimental results for these job sets. In each experiment, the
execution time of each job (i.e., task instance) was randomly drawn from a Gaussian distribution5 within the range
of [WCET/10,WCET] of each task. Results were normalized over the energy consumption of each application
scheduled by the proposed FPTAS withε = 0.1%. As shown in Table 1, the FPTAS outperforms Quan’s algorithm
spending reasonable CPU times. In the experiments, actual errors were always less than givenε’s. (We omit CPU
times for MPEG4 Videophone because they are less than0.1 seconds.)

We also performed experiments using synthesized job sets with the varying number of jobs from50 to 1600.
We conjectured that one of the key parameters affecting the performance of Quan’s algorithm is the degree of
interferences among jobs. Since the degree of interferences is mainly dependent on the lengths of the execution
intervals of the jobs, we generated three classes of job sets as follows: For the first class of job sets (Class 1), the
release time and the length of the execution interval of a job are selected under the uniform distribution within
[0,1000] and [50,100], respectively. The workload of each job was randomly selected from a uniform distribution
within [0.2,1.0]. (Note that it is sufficient to consider only the relative values of workloads since the maximum
processor speed can be always appropriately adjusted.) For the second class of jobs (Class 2) and the third class

4We have implemented the exhaustive optimal algorithm by Quanet al. [13] as well for experiments. This algorithm, however, takes an
excessive amount of time. For example, it took more than a day whenN = 25. Therefore, we cannot include the experimental results for
this algorithm.

5With the meanm= WCET/10+WCET
2 and the standard deviationσ = WCET−WCET/10

6 .

28

Normalized Energy CPU Time(s)
Applications MPEG4 CNC Avionics CNC Avionics

jobs 22 289 1372 289 1372

ε = 0.1% 1 1 1 44.71 4506.63
ε = 0.5% 1.003 1.004 1.003 11.67 1021.48

FPTAS ε = 1.0% 1.006 1.008 1.007 6.12 631.15
ε = 1.5% 1.012 1.013 1.011 5.16 512.32
ε = 2.0% 1.017 1.018 1.018 3.81 313.15

Quan [12] 1.041 1.062 1.059 4.76 580.32

Table 1. Experimental results for three real-world real-time applications.

of jobs (Class 3), we used [100,300] and [300,500] (instead of [50,100]) for the length of the execution interval,
respectively. Note thatClass 1, Class 2andClass 3correspond to job sets with low, medium and high degrees of
the interferences among the jobs. Tables 2, 3 and 4 show the experimental results forClass 1, Class 2andClass 3.
As shown in tables, in general, the higher the degree of interferences becomes, the larger the improvement of our
algorithm over Quan’s algorithm becomes.

Normalized Energy
Job sets J1 J2 J3 J4 J5 J6

jobs 50 100 200 400 800 1600

ε = 0.1% 1 1 1 1 1 1
ε = 0.5% 1.003 1.003 1.004 1.004 1.003 1.003

FPTAS ε = 1.0% 1.008 1.007 1.009 1.009 1.008 1.009
ε = 1.5% 1.013 1.012 1.012 1.014 1.014 1.014
ε = 2.0% 1.016 1.016 1.019 1.018 1.019 1.019

Quan [12] 1.044 1.047 1.051 1.054 1.052 1.071

Table 2. Experimental results for synthesized jobs (Class 1).

Normalized Energy
Job sets J1 J2 J3 J4 J5 J6

jobs 50 100 200 400 800 1600

ε = 0.1% 1 1 1 1 1 1
ε = 0.5% 1.004 1.004 1.003 1.004 1.003 1.004

FPTAS ε = 1.0% 1.009 1.007 1.007 1.008 1.009 1.009
ε = 1.5% 1.013 1.012 1.014 1.014 1.013 1.014
ε = 2.0% 1.018 1.016 1.018 1.018 1.019 1.019

Quan [12] 1.055 1.062 1.070 1.079 1.103 1.127

Table 3. Experimental results for synthesized jobs (Class 2).

7.2 Evaluation of FPTAS for WAOS problem

We next evaluated the performance of the workload-aware off-line scheduling algorithm, i.e., the FPTAS for the
WAOS problem. For a comparison, we experimented with three strategy. For the first strategy (Strategy 1), we
used the workload-aware off-line scheduling algorithm and the base on-line scheduling algorithm as described in
Section 6.2. The second strategy (Strategy 2) is identical toStrategy 1except that the workload-aware off-line
algorithm is replaced by the FPTAS for the CWOS problem, which does not exploit the workload variation at
off-line. For the third one (Strategy 3), we implemented the approach proposed by Pillai and Shin [10], which we
believe is the best-known approach in the literature.

The real-world applications used in Section 7.1 was also used in the experiments and the results are collected in
Table 5. In each experiment, the workload of each job (i.e., task instance) was randomly drawn from a Gaussian
distribution6 within the range of [BCET,WCET] of each job where BCET is the best case execution time. We
performed the experiments by varying BCET from 10% to 90% of WCET for each application. Results were
normalized over the energy consumption of each application scheduled byStrategy 1. As shown in Table 5, our
workload-aware algorithm outperforms other approaches by up to about 40%.

6With the meanm= BCET+WCET
2 and the standard deviationσ = WCET−BCET

6 .

29

Normalized Energy
Job sets J1 J2 J3 J4 J5 J6

jobs 50 100 200 400 800 1600

ε = 0.1% 1 1 1 1 1 1
ε = 0.5% 1.004 1.004 1.004 1.003 1.004 1.004

FPTAS ε = 1.0% 1.009 1.007 1.007 1.009 1.008 1.009
ε = 1.5% 1.014 1.013 1.014 1.013 1.014 1.014
ε = 2.0% 1.018 1.017 1.019 1.018 1.019 1.019

Quan [12] 1.094 1.114 1.121 1.134 1.142 1.137

Table 4. Experimental results for synthesized jobs (Class 3).

Strategy 2 Strategy 3
Applications MPEG4 CNC Avionics MPEG CNC Avionics

0.1 1.221 1.321 1.352 1.207 1.420 1.361
0.3 1.117 1.214 1.193 1.124 1.311 1.252

BCET/WCET 0.5 1.053 1.126 1.113 1.085 1.189 1.231
0.7 1.019 1.046 1.041 1.022 1.098 1.071
0.9 1.000 1.004 1.003 1.000 1.007 1.012

Table 5. Experimental results for average-case optimal FPTAS.

8 Conclusions

We investigated the problem of energy-optimal voltage scheduling for fixed-priority real-time systems imple-
mented on a variable voltage processor. First, we proved the NP-hardness of the problem. Our complexity analysis
provided an important new insight into the problem. Knowing the NP-hardness of the problem, as the best practical
solution, we described a fully polynomial time approximation scheme (FPTAS) for the problem. That is, for any
ε > 0, the proposed approximation scheme computes a voltage schedule whose energy consumption is bounded by
(1+ ε) times that of the optimal voltage schedule with the running time bounded by a polynomial function of the
number of input jobs and1/ε.

Furthermore, we present a workload-aware off-line scheduling approach which takes the workload variation
and the behavior of an on-line scheduling algorithm into account. As part of the analysis of on-line algorithms,
we propose a generic on-line voltage scheduling algorithm, which has its own significance in that it provides a
new framework for the research on the on-line voltage scheduling. Experimental results show that our algorithm
outperforms other well-known algorithms in the literature by up to about 40%.

While the proposed approximation scheme is efficient for general fixed-priority job sets, the proposed scheme
can be further extended in several directions. For example, we are interested in devising more efficient algorithms
for more specialized job sets such as job sets from periodic task sets. In addition, we plan to modify the proposed
approximation scheme to work under a more realistic processor model with a limited number of voltage levels and
voltage transition overheads.

References

[1] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic and Aggressive Scheduling Techniques for Power-Aware
Real-Time Systems. InProc. of Real-Time Systems Symposium, 2001.

[2] A. Ben-Tal and A. Nemirovski.Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering
Applications. SIAM, 2001.

[3] M. Garey and D. Johnson.Computers and Intractability. W.H. Freeman and Company, 1979.

[4] F. Gruian. Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS Processors. InProc. of Inter-
national Symposium on Low Power Electronics and Design, pages 46–51, 2001.

[5] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processors. InProc. of Real-Time Systems Symposium, pages 178–187, 1998.

[6] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin. Visual Assessment of a Real-Time System Design: A
Case Study on a CNC Controller. InProc. of Real-Time Systems Symposium, pages 300–310, 1996.

[7] W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling Algorithm for Dynamic-Priority Hard Real-Time Systems
Using Slack Time Analysis. InProc. of Design, Automation and Test in Europe, 2002.

[8] W.-S. Liu. Real-Time Systems. Prentice Hall, 2000.

30

[9] C. Locke, D. Vogel, and T. Mesler. Building a Predictable Avionics Platform in Ada: A Case Study. InProc. of
Real-Time Systems Symposium, 1991.

[10] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating Systems. InProc.
of ACM Symposium on Operating Systems Principles, 2001.

[11] Transmeta Corporation. Crusoe Processor.http://www.transmeta.com. 2000.

[12] G. Quan and X. Hu. Energy Efficient Fixed-Priority Scheduling for Real-Time Systems on Variable Voltage Processors.
In Proc. of Design Automatioin Conference, pages 828–833, 2001.

[13] G. Quan and X. Hu. An Optimal Voltage Schedule for Real-Time Systems on a Variable Voltage Processor. InProc. of
Design, Automation and Test in Europe, 2002.

[14] S. Sahni. Algorithms for Scheduling Independent Tasks.Journal of the ACM, 23:116–127, 1976.

[15] T. Sakurai and A. Newton. Alpha-power Law MOSFET Model and Its Application to CMOS Inverter Delay and Other
Formulars.IEEE Journal of Solid State Circuits, 25(2):584–594, 1990.

[16] D. Shin, J. Kim, and S. Lee. Low-Energy Intra-Task Voltage Scheduling Using Static Timing Analysis. InProc. of the
38th Design Automation Conference, 2001.

[17] Y. Shin and K. Choi. Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems. InProc. of Design
Automatioin Conference, pages 134–139, 1999.

[18] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-Time Embedded Systems on Variable Speed Processors.
In Proc. of International Conference on Computer-Aided Design, pages 365–368, 2000.

[19] AMD Corporation. PowerNow! Technology.http://www.amd.com. 2000.

[20] Intel Corporation. Intel XScale Technology.http://developer.intel.com/design/intelxscale. 2001.

[21] G. J. Woeginger. When Does a Dynamic Programming Formulation Guarantee the Existence of an FPTAS? InProc. of
ACM-SIAM Symposium on Discrete Algorithms, pages 820–829, 1999.

[22] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU Energy. InProc. of IEEE Annual Foundations
of Computer Science, pages 374–382, 1995.

31

