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Abstract

Software pipelining is widely used as a compiler optimization technique to achieve high performance in

machines that exploit instruction-level parallelism such as superscalar or VLIW processors. However, surpris-

ingly, there have been few theoretical results on the optimality of software pipelined loops with control flows.

The problem of time optimal software pipelining of loops with control flows is such an under-investigated the-

oretical problem. In this paper, we give a complete treatment on the time optimal software pipelining problem

solving two fundamental open problems. First, we show that there exists a (computable) decision procedure

that can decide if a given loop with control flows has a time optimal parallel program or not. Second, we

present a software pipelining algorithm that computes a time optimal parallel program, which is the most

significant outcome from the practical point of view. As part of the formal treatment of software pipelining,

we propose a new formalization of software pipelining, which provides a basis of our proof as well as a new

theoretical framework for software pipelining research.

1 Introduction

Software pipelining [5] refers to a class of fine-grain loop parallelization algorithms which impose no

scheduling barrier such as basic block or loop iteration boundaries, thus achieving the effect of fine-grain

parallelization with full loop unrolling. Software pipelining computes a static parallel schedule for machines

that exploit instruction-level parallelism (ILP) such as superscalar or VLIW processors.

While software pipelining has been used as a major compiler optimization technique to achieve high perfor-

mance for ILP processors, surprisingly, there have been few theoretical results known on the optimality issue

of software pipelined programs. One of the best known open problems is the time optimal software pipelining

problem, which can be stated as follows: given a loop (with or without control flows), 1) decide if the loop

has its equivalent time optimal program or not and 2) find a time optimal parallel program if the loop has one,

assuming that sufficient resources are available. A parallel program is said to be time optimal if every execu-

tion path p of the program runs in its minimum execution time determined by the length of the longest data

dependence chain in p [30]. Figure 1. (a) and (b) show an sequential loop and its corresponding time optimal

parallel program, respectively. Each shaded region in Figure 1. (b) corresponds to a parallel instruction and all
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Figure 1. (a) A sequential loop and (b) its time optimal parallel version

operations in a shaded region are executed simultaneously. For any execution path, there exists a dependence

chain whose length is equal to the execution time of the execution path.

For straight-line loops (without control flows), the time optimal software pipelining problem is well under-

stood and a time optimal program can be computed in polynomial time [2]. This is because the process of

software pipelining can be easily formalized thanks to the strong periodicity of such loops (e.g., a periodic

execution model and dependence patterns). For example, the problem of software pipelining of such loops can

be modeled by a simple linear formulation and several software pipelining algorithms have been developed

using this model [28, 14, 15, 7, 17, 9, 8].

On the other hand, for loops with control flows, software pipelining algorithms cannot exploit the loop

periodicity because execution paths of these loops cannot be modeled by periodic constraints. This irregu-

larity results in numerous complications and makes the formalization very difficult. As a consequence, time

optimal software pipelining of such loops has been under-investigated, leaving most of theoretical questions

unanswered. In this paper, we focus on loops with control flows.

1.1 Related Work

For loops without control flows, there exist several theoretical results [2, 14, 15, 9, 8]. When resource

constraints are not present, both the time optimal schedule and the rate optimal one can be found in polynomial

time [2, 14]. With resource constraints, the problem of finding the optimal schedule is NP-hard in its full

generality [14] but there exist approximation algorithms that guarantee the worst case performance of roughly

twice the optimum [14, 8].

Given sufficient resources, an acyclic program can be always transformed into an equivalent time optimal

program by applying list scheduling to each execution path and then simultaneously executing all the execution

paths parallelized by list scheduling. When resources are limited, definitions of time optimality may be based

on the average execution time. For acyclic programs, Gasperoni and Schwiegelshohn defined an optimality

measure based on the execution probability of various execution paths and showed that a generalized list
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scheduling heuristic guarantees the worst case performance of at most 2� 1�m � �1� 1�m� � 1�2 � �log2m�

times the optimum [16] where m is the number of operations that can be executed concurrently. For loops with

control flows, measures based on the execution probability of paths is not feasible, since there are infinitely

many execution paths.

There are few theoretical results for loops with control flows, and, to the best of our knowledge, only two

results [30, 31] have been published. The work by Uht [31] proved that the resource requirement necessary

for the optimal execution may increase exponentially for some loops with control flows. The Uht’s result,

however, is based on an idealized hardware model which is not directly relevant to software pipelining. The

work by Schwiegelshohn et al. [30], which is the most well-known theoretical result on time optimal programs,

showed that there are some loops for which no equivalent time optimal programs exist. Although significant,

their contribution lacks any formal treatment of the time optimal software pipelining. For example, they do

not formally characterize conditions under which a loop does not have an equivalent time optimal program.

Since the work by Schwiegelshohn et al. was published, no further research results on the problem have been

reported for about a decade, possibly having been discouraged by the pessimistic result.

Instead, most researchers focused on developing better software pipelining algorithms. To overcome the

difficulty of handling control flows, many developed algorithms imposed unnecessarily strict constraints on

possible transformations of software pipelining. For example, several software pipelining algorithms first apply

transformations that effectively remove control flows before scheduling [6, 20], and recover control flows after

scheduling [32]. Although practical, these extra transformations prohibit considerable amount of code motions,

limiting the scheduling space exploration significantly.

1.2 Contributions

In this paper, we propose a new formalization of software pipelining and give a complete treatment on the

time optimal software pipelining problem. In particular, we give answers to the following two fundamental

open problems on time optimal software pipelining:

Question 1: Is there a decision procedure that determines if a loop has its equivalent time optimal program

or not?

Question 2: For the loops that have the equivalent time optimal programs, is there an algorithm that com-

putes time optimal programs for such loops?

For loops with control flows, these two questions have not been adequately formulated, let alone being

solved. In solving two open problems, we take the following four steps:

Step 1: We hypothesize a condition for loops to have equivalent time optimal programs. (the Time Optimal-

ity Condition in Section 5)

Step 2: We prove that a loop does not have an equivalent time optimal program unless it satisfies the Time

Optimality Condition. (Theorem 20 in Section 6)

Step 3: We describe a software pipelining algorithm that computes a time optimal program for every loop

satisfying the Time Optimality Condition. (Theorem 26 in Section 7)
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Figure 2. Loop classification based on time optimality

Step 4: We present how to compute the Time Optimality Condition. (Theorem 36 in Section 8)

From Steps 2 and 3, we can conclude that the condition described in Step 1 is indeed a necessary and

sufficient condition for loops to have their time optimal programs. We call this condition, the Time Optimality

Condition. Informally, the Time Optimality Condition requires that every operation be moved within a bounded

range to yield the time optimal execution for every execution path.

In Step 2, we prove that a loop does not have its equivalent time optimal program if it does not satisfy the

Time Optimality Condition. The rationale behind the proof is that if a loop does not satisfy the Time Optimality

Condition but it needs to have a time optimal program, it must have two operations n1 and n2 such that n1 is

executed infinitely earlier than n2 in the time optimal parallel program while n2 precedes n1 in the original

sequential program. We show that no closed-form parallel program satisfies this anomalous requirement.

The results of Step 3, along with those of Step 2, prove that the Time Optimality Condition is indeed a

necessary and sufficient condition for a loop to have its time optimal parallel program. The proposed software

pipelining algorithm is mostly based on the algorithm by Aiken et al. [4] with some modifications in the

renaming framework. The proof of the time optimality is based on the greediness of the algorithm.

Although the Time Optimality Condition is intuitive and useful in deriving the theorems, it is not obvious

how to compute the condition because the condition includes the universal quantifier. In Step 4, we present an

equivalent time optimality condition which can be more directly computed.

Figure 2 summarizes our contributions graphically. The enclosing ellipse represents the set U of all the

reducible innermost loops and the bold curve represents the boundary between two sets of loops, one set whose

loops have equivalent time optimal programs (i.e., the right region) and the other set whose loops do not have

time optimal programs (i.e., the left region). The small circle represents the set of loops shown to have no time

optimal solutions by Schwiegelshohn et al. [30]. The work described in this paper classifies all the loops in U

into one of two sets, proves that the classification is decidable (i.e., each set is recursive) and shows that there

exists an algorithm for computing time optimal solutions for eligible loops.

Although the time optimality results reported in this paper may not have an immediate impact on devel-

oping realistic time-optimal software pipelining algorithms, we believe that our theoretical results provide an

important new insight into the software pipelining problem, which, in turn, stimulates the development of
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r0 := r1
cc0 := (r1==0)
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if cc1
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store(r2,r0)

Figure 3. A tree VLIW instruction

higher-quality software pipelining algorithms. For example, our initial experimental results indicate that most

loops of SPEC95 benchmark programs have time-optimal parallel programs under the assumption of unlim-

ited resource availability. As with software pipelining algorithms for straight-line loops [20, 14, 8], knowing

these time optimal schedules may result in better parallel schedules as well even under the resource-constrained

situations.

The rest of the paper is organized as follows. We explain the machine model assumptions, program repre-

sentation in Section 2. Section 3 discusses the dependence model. A formal description of software pipelining

is presented in Section 4. In Section 5, we present the Time Optimality Condition. In Section 6, we prove the

necessity part based on the formalization of software pipelining. The sufficiency part is proved by construction

of time-optimal software pipelining algorithm in Section 7. In Section 8, we explain how to compute the Time

Optimality Condition. We conclude with a summary and directions for future work in Section 9.

2 Preliminaries

2.1 Architectural Requirements

In order that the time optimality is well defined for loops with control flows, some architectural assump-

tions are necessary. In this paper, we assume the following architectural features for the target machine model:

First, the machine can execute multiple branch operations (i.e., multiway branching [25]) as well as data oper-

ations concurrently. Second, it has an execution mechanism to commit operations depending on the outcome

of branching (i.e, conditional execution [12]). The former assumption is needed because if multiple branch

operations have to be executed sequentially, time optimal execution cannot be defined. The latter one is also

indispensable for time optimal execution, since it enables to avoid output dependence of store operations which

belong to different execution paths of a parallel instruction as pointed out by Aiken et al. [4].

As a specific example architecture, we use the tree VLIW architecture model [11, 26], which satisfies the

architectural requirements described above. In this architecture, a parallel VLIW instruction, called a tree

instruction, is represented by a binary decision tree as shown in Figure 3. A tree instruction can execute

simultaneously ALU and memory operations as well as branch operations. The branch unit of the tree VLIW

architecture can decide the branch target in a single cycle [25]. An operation is committed only if it lies in the

execution path determined by the branch unit [12].

2.2 Program Representation

We represent a sequential program Ps by a control flow graph (CFG) whose nodes are primitive machine

operations. If the sequential program Ps is parallelized by a compiler, a parallel tree VLIW program Ptree is
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r0 := load(r0)

cc0 := (r0==0)
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Figure 4. (a) A sequential program, (b) a parallel tree VLIW program, and (c) a parallel program in

the extended sequential representation

generated. While Ptree is the final output from the parallelizing compiler for our target architecture, we represent

the parallel program in the extended sequential representation for the description purpose.

Under the extended sequential representation, both sequential programs and parallel programs are described

using the same notations and definitions used for the sequential programs. Compared to sequential programs,

parallel programs include the additional information on operation grouping. Figure 4. (a) shows an input se-

quential program Ps and Figure 4. (b) shows its corresponding parallel tree VLIW program Ptree. Using the

extended sequential representation, Ptree is represented by Figure 4. (c). The parallel program shown in Figure

4. (c) is based on a sequential representation except that it has the operation grouping information indicated by

shaded regions. A group of operations in the shaded area indicates independently executable operations and is

called a parallel group. A parallel group corresponds to a tree VLIW instruction and can be easily converted

into the tree VLIW instruction with some local transformation on copy operations, and vice versa [26].

2.3 Basic Terminology

A program1 is represented as a triple �G � �N�E� � O � δ�. (This representation is due to Aiken et al. [4].)

The body of the program is a CFG G which consists of a set of nodes N and a set of directed edges E . Nodes

in N are categorized into assignment nodes that read and write registers or global memory, branch nodes that

affect the flow of control, and special nodes, start and exit nodes. The execution begins at the start node and

the execution ends at the exit nodes. E represents the possible transitions between the nodes. Except for branch

nodes and exit nodes, all the nodes have a single outgoing edge. Each branch node has two outgoing edges

while exit nodes have no outgoing edge.

O is a set of operations that are associated with nodes in N. The operation associated with n � N is denoted

by op�n�. More precisely, op�n� represents opcode and constant fields only; register fields are not included

in op�n�.2 Without loss of generality, every operation is assumed to write to a single register. We denote by

regW�n� the register to which n writes and by regsR�n� a set of registers from which n reads .

A configuration is a pair �n�s� where n is a node in N and s is a store (i.e., a snapshot of the contents of
1Since a parallel program is represented by the extended sequential representation, the notations and definitions apply to parallel

programs as well as sequential programs.
2For two programs to be equivalent, only the dependence patterns of these are needed to be identical but not register allocation

patterns. For this reason, register fields are not included in op�n�.
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Figure 5. An execution path in a parallel program

registers and memory locations). The transition function δ, which maps configurations into configurations,

determines the complete flow of control starting from the initial store. Let n0 be the start node and s0 an

initial store. Then, the sequence of configurations during an execution is ��n0�s0�� � � � ��ni�si�� � � � ��nt �st�� where

�ni�1�si�1�� δ��ni�si�� for 0 � i � t.

A path p of G is a sequence �n1� � � � �nk� of nodes in N such that �ni�ni�1� � E for all 1 � i � k. For a given

path p, the length of p is the number of nodes in p and denoted by 	p	. The i-th (1 � i � 	p	) node of p is

addressed by p�i�. A path q is said to be a subpath of p, written q 
 p, if there exists j (0 � j � 	p	� 	q	) such

that q�i� � p�i� j� for all 1� i� 	q	. For a path p and i� j (1� i� j� 	p	), p�i� j� represents the subpath induced

by the sequence of nodes from p�i� up to p� j�. Given paths p1 � �n1�n2� � � � �nk� and p2 � �nk�nk�1� � � � �nl�,

p1 Æ p2 � �n1�n2� � � � �nk�nk�1� � � � �nl� denotes the concatenated path between p1 and p2. A path p forms a cycle

if p�1� � p�	p	� and 	p	� 1. For a given cycle c, ck denotes the path constructed by concatenating c with itself

k times. When c denotes a cycle in the input loop (thus reducible) we assume c�1� represents the unique loop

header node. Two paths p and q are said to be equivalent, written p � q, if 	p	 � 	q	 and p�i� � q�i� for all

1 � i � 	p	.

A path from the start node to one of exit nodes is called an execution path and distinguished by the superscript

‘e’ (e.g., pe). An execution path of parallel program is further distinguished by the extra superscript ‘sp’ (e.g.,

pe�sp). Each execution path can be represented by an initial store with which the control flows along the

execution path. Suppose a program P is executed with an initial store s0 and the sequence of configurations

is written as ��n0�s0���n1�s1�� � � � ��nf �s f ��, where n0 denotes the start node and nf one of exit nodes. Then

ep�P�s0� is defined to be the execution path �n0�n1� � � � �nf � of P. (ep stands for execution path.) Compilers

commonly performs the static analysis under the assumption that all the execution paths of the program are

executable, because it is undecidable to check if an arbitrary path of the program is executable. In this paper,

we make the same assumption, That is, we assume �pe in P ,  s such that pe � ep�P �s�.

It may incur some confusion to define execution paths for a parallel program because the execution of the

parallel program consists of transitions among parallel instructions each of which consists of several nodes.

With the conditional execution mechanism described in Section 2.1, however, we can focus on the unique

committed path of each parallel instruction while pruning uncommitted paths. Then, like a sequential program,

the execution of a parallel program flows along a single thread of control and corresponds to a path rather than

a tree. For example, in Figure 5, the execution path of a parallel program is distinguished by a thick line.
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Some attributes such as redundancy and dependence should be defined in a flow-sensitive manner because

they are affected by control flows. Flow-sensitive information can be represented by associating the past and

the future control flow with each node. Given a node n and paths p1 and p2, the triple �n� p1� p2� is called

a node instance if n � p1�	p1	� � p2�1�. That is, a node instance �n� p1� p2� defines the execution context in

which n appears in p1 Æ p2. In order to distinguish the node instance from the node itself, we use a boldface

symbol like n for the former. The node component of a node instance n is addressed by node�n�. A trace of a

path p, written t�p�, is a sequence �n1�n2� � � � �n�p�� of node instances such that ni � �p�i�� p�1� i�� p�i� 	p	�� for all

1 � i � 	p	. The i-th component of t�p� is addressed by t�p��i� and the index of a node instance n in the trace

t�p� is represented by pos�n�. For the i-th node instance ni of t�p� whose node component is a branch node, a

boolean-valued attribute dir is defined as follows:

dir�ni� �

��
�

T if p�i�1� is the T-target successor of p�i� ,

F otherwise .

For a node instance n � �n� p1� p2� in an execution path pe in a sequential program, an attribute it�n� is

defined as the number of iterations which p1 spans over. Some of node instances in parallel programs are

actually used to affect the control flow or the final store while the others are not. The former ones are said to

be effective and the latter ones redundant. A node is said to be non-speculative if all of its node instances are

effective. Otherwise it is said to be speculative. These terms are further clarified in Section 4.

3 Dependence Model

Let alone irregular memory dependences, existing dependence analysis techniques cannot model true depen-

dences accurately mainly because true dependences are detected by conservative analysis on the closed form

of programs. In Section 3.1 we introduce a path-sensitive dependence model to represent precise dependence

information. In order that the schedule is constrained by true dependences only, a compiler should overcome

false dependences. We explain how to handle the false dependences in Section 3.2.

3.1 True Dependences

With the sound assumption of regular memory dependences, true dependence information can be easily

represented for straight line loops thanks to the periodicity of dependence patterns. For loops with control

flows, however, this is not the case and the dependence relationship between two nodes relies on the control flow

between them as shown in Figure 6. In Figure 6.(a), there are two paths, p1 � �1�2�3�5� and p2 � �1�2�4�5�,

from node 1 to node 5. Node 5 is dependent on node 1 along p1, but not along p2. This ambiguity cannot be

resolved unless node 1 is splitted into distinct nodes to be placed in each path. In Figure 6.(b), node 7 is first

used after k iterations of c1 along p3 Æ ck
1 Æ p4, where p3 � �7�9�11�, p4 � �5�10� and c1 � �5�6�8�9�11�5�.

However, this unspecified number of iterations, k, cannot be modeled by existing techniques; That is, existing

techniques cannot model the unspecified dependence distance. In order to model this type of dependence, we

associate path information with the dependence relation. The dependences carried by registers are defined as

follows.
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Figure 7. Copy operations used to overcome false dependences

Definition 1 For nodes n1 and n2 and a path p such that p�1� � n1� p�	p	� � n2, n2 is said to be dependent on

n1 along p, written n1 �p n2 , if

regW�n1� � regsR�n2� and

regW�pe�i��� �� regW�n1� for all 1 � i � 	p	 �

Furthermore, we can extend the dependence relation on node instances as follows:

Definition 2 Given a path p and i� j �1 � i � j � 	p	�, t�pe�� j� is said to be dependent on t�pe��i�, written

t�pe��i� � t�pe�� j� , if p�i� �p�i� j� p� j�.

The dependence relation between two node instances with memory operations may be irregular even for

straight line loops. Existing software pipelining techniques rely on conservative dependence analysis tech-

niques, in which the dependence relationship between two node instances is determined by considering the it-

eration difference only [5] and is usually represented by data dependence graphs [19] or its extensions [13, 29].

In our work, we assume a similar memory dependence relation, in which the dependence relation between two

node n1 and n2 along p �p�1� � n1� p�	p	� � n2� rely only on the number of iterations that p spans.

Assuming regular memory dependences, straight-line loops can be transformed so that every memory de-

pendence does not span more than an iteration by unrolling sufficient times. For loops with control flows, we

assumed that they are unrolled sufficiently so that memory dependences do not span more than an iteration to

simplify notations and the algorithm. This seems to be too conservative but we do not lose much generality

and that the claims in this paper can be shown to be still valid in other memory dependence models with slight

modifications to the proofs.

9



3.2 False Dependences

For loops with control flows, it is not a trivial matter to handle false dependences. They cannot be eliminated

completely even if each live range is renamed before scheduling. For example, the scheduling techniques

described in [4, 26] rely on the “on the fly” register allocation scheme based on copy operations so that the

schedule is constrained by true dependences only.

In Fig. 7. (a), for the ����� to be scheduled above the branch node, � should not be used for the target

register of ����� and, therefore, the live range from ����� to �����	 should be renamed. But the live range

from ����� to �����	 alone cannot be renamed because the live range from ��
�� to �����	 is combined

with the former by �. Thus, the live range is splitted by the copy operation �� so that  carries the result of

��� along the prohibited region and  passes ��� to � the result.

In Fig. 7. (b), ����	 is to be scheduled across the exit branch but ����	 is used at the exit. So the live range

from ����	 to exit is expected to be longer than an iteration, but it cannot be realized if only one register is

allocated for the live range due to the register overwrite problem. This can be handled by splitting the long live

range into ones each of which does not span more than an iteration, say one from ���	 to �� and one from

�� to the exit.

In the next section, these copy operations used for renaming are distinguished from ones in the input pro-

grams which are byproduct of other optimizations such as common subexpression elimination. The true de-

pendence carried by the live range joined by these copy operations is represented by
�
� relation as follows.

Definition 3 Given an execution path of a parallel program pe, let Npe represent the set of all node instances

in t�pe�. For node instances n in t�pe�sp�, Prop�n� represents the set of copy node instances in t�pe� by which

the value defined by n is propagated, that is,

Prop�n� � �nc 	 n� nc
1 � nc

k � nc� nc
i � nc

i�1 for all 1 � i � k

where nc and nc
i �1 � i � k� are copy node instances� �

For node instances n1 and n2 in Npe , we write n1
�
� n2 if

n1 � n2 or  nc � Prop�n1�� nc � n2 �

Definition 4 The extended live range of n, written elr�n�, is the union of the live range of the node instance n

and those of copy node instances in Prop�n�, that is,

elr�n� � t�p��pos�n��max�pos�nc�	nc � Prop�n��� �

Now we are to define a dependence chain for sequential and the parallel programs.

Definition 5 Given a path p, a dependence chain d in p is a sequence of node instances �n1�n2� � � � �nk� in t�p�

such that ni � ni�1 for all 1 � i � k. A dependence chain is said to be critical if it is the longest one in p. The

i-th component of a dependence chain d is addressed by d�i� and the number of components in d is denoted by

	d	. For a dependence chain d and i� j �1 � i � j � 	d	�, d�i� j� represents the sub-chain of d induced by the

sequence of node instances from d�i� up to d� j�.
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4 A Formalization of Software Pipelining

In this section, we develop a formal account of transformations of software pipelining, which will provide a

basis for the proof in Section 6. Given an input loop L and its parallel version LSP, let Pe and Pe�SP denote the

set of all execution paths in L and the set of those in LSP, respectively. Let us consider a relation R : Pe�Pe�SP

defined by

�pe� pe�sp� � R iff  a store s� ep�L �s� � pe � ep�LSP�s�� pe�sp �

In order to formalize software pipelining, we are to restrict transformations (that map pe into pe�sp) by the

following five constraints, Constraints 6-10.

First, transformations should exploit only dependence information, that is, they should have only the effect of

reordering nodes. Some optimization techniques (e.g., strength reduction and tree height reduction) may reduce

the path length by using other semantic properties of programs (e.g., associativity). However, the scheduler is

not responsible for such optimizations. These optimizations are performed before/after the scheduling phase.

Additionally, the scheduler is not responsible for eliminating partially dead operation nodes in pe, which are

not used in pe but may be used in another execution paths. Partially dead operations may become fully dead by

some transformations such as moving branch up and can be eliminated on the fly [26], but we assume that they

are not eliminated until a post-pass optimization phase. We require that all operation nodes in pe, dead or not,

be also present in pe�sp. Therefore pe�sp is required to execute the same operations as pe in an order compatible

with the dependences present in pe. The path pe�sp, however, may have additional speculative nodes3 from

other execution paths that do not affect the final store of pe�sp and copy operations used for overcoming false

dependences [4, 26]. Formally, the first constraint on transformations can be given as follows.

Constraint 6 Let N1 represent the set of all node instances in t�pe� and let N2 represent the set of all effective

node instances in t�pe�sp�. Then, there exists a bijective function f from N1 to N2 such that

�n � N1� op�node�n�� � op�node� f �n��� and

�n�n� � N1� n� n� iff f �n�
�
� f �n�� �

In this case, f �n� is said to correspond to n and we use sp nipe�pe�sp to represent the function f for a pair of

such execution paths pe and pe�sp.

Second, the final store4 of pe�sp should be equal to that of pe to preserve the semantic of L . For this, we

require that for any node n � node�n�, where n is a node instance in t�pe�, if the target register of n is live at the

exit of pe, the value defined by node�sp nipe�pe�sp�n�� should be eventually committed to regW�n� along pe�sp.

For simplicity, we assume that all registers in pe are regarded as being live at the exit of pe during software

pipelining. The liveness of each node in pe�sp are checked at post-pass dead code elimination optimization

phase. Constraint 7 concisely states this condition.
3In fact, most complications of the nonexistence proof in Section 6 as well as the formalization of software pipelining are due to

expanded solution space opened up by branch reordering transformation.
4Temporary registers are excluded.
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Constraint 7 For any assignment node instance n in t�pe� such that

�i � pos�n�� regW�pe�i�� �� regW�node�n��,

regW�node�n�� � regW�node�sp nipe�pe�sp�n��� or

regW�node�n�� � regW�node�nc�� for some node instance nc � Prop�sp nipe�pe�sp�n���

It is needed to impose a restriction on registers allocated for speculative nodes. Registers defined by specu-

lative nodes are required to be temporary registers that are not used in L so as not to affect the final store.

Constraint 8 Let R be the set of registers that are defined by nodes in L . Then the target register of each

speculative node in LSP is not contained in R.

Now we are to impose a restriction to preserve the semantic of branches. Let us consider a branch node

instance n � t�pe��i� and the corresponding node instance n� � t�pe�sp��i�� � sp nipe�pe�sp�n�. The role of n is to

separate pe from the set of execution paths that can be represented by pe�1� i�Æ pf where pf represents any path

such that pf�1� � pe�i�� pf�2� �� pe�i�1� and pf�	pf	� is an exit node in L . n� is required to do the same role as n,

that is, it should separate pe�sp from the set of corresponding execution paths. But some of them might already

be separated from pe�sp earlier than n� due to another speculative branch node, the instance of which in pe�sp is

redundant, scheduled above n�. This constraint can be written as follows.

Constraint 9 Given an execution path pe and qe in L such that

qe�1� i�� pe�1� i� � dir�t�qe��i�� �� dir�t�pe��i�� �

for any execution path pe�sp and qe�sp such that �pe� pe�sp��qe�qe�sp��R � there exists a branch node pe�sp� j� � j�

i�� such that

qe�sp�1� j�� pe�sp�1� j� � dir�t�qe�sp�� j�� �� dir�t�pe�sp�� j��

where i� is an integer such that t�pe�sp��i�� � sp nipe�pe�sp�t�pe��i�� .

pe�sp is said to be equivalent to pe, written pe �SA pe�sp, if Constraints 6-9 are all satisfied. (The subscript

SA is adapted from the expression “semantically and algorithmically equivalent” in [30].) Constraint 9 can be

used to rule out a pathological case, unification of execution paths. Two distinct execution paths pe1 � ep�L �s1�

and pe
2 � ep�L �s2� in L are said to be unified if ep�LSP�s1� � ep�LSP�s2�. Suppose pe

1 is separated from pe
2

by a branch, then ep�LSP�s1� must be separated from ep�LSP�s2� by some branch by Constraint 9. So pe
1 and

pe
2 cannot be unified.

Let us consider the mapping cardinality of R . Since distinct execution paths cannot be unified, there is

the unique pe which is related to each pe�sp. But there may exist several pe�sp’s that are related to the same

pe due to speculative branches. Thus, R is a one-to-many relation, and if branch nodes are not allowed to

be reordered, R becomes a one-to-one relation. In addition, the domain and image of R cover the entire Pe

and Pe�SP, respectively. Because of our assumption in Sect. 2.3 that all the execution paths are executable,
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�pe � Pe� s� pe � ep�L �s� and the domain of R covers the entire Pe. When an execution path pe � Pe is

splitted into two execution paths pe�sp
1 � pe�sp

2 � Pe�SP by scheduling some branch speculatively, it is reasonable

for a compiler to assume that these two paths are all executable under the same assumption and that the image

of R cover the entire Pe�sp. To be short, R �1 is a surjective function from Pe�sp to Pe.

Let N and NSP represent the set of all node instances in all execution paths in L and the set of all effective

node instances in all execution paths in LSP, respectively. The following constraint can be derived from the

above explanation.

Constraint 10 There exists a surjective function α : Pe�SP � Pe such that

� pe�sp � Pe�SP� α�pe�sp� �SA pe�sp �

Using α defined in Constraint 10 above and sp nipe�pe�sp defined in Constraint 6, another useful function β is

defined, which maps each node instance in NSP to its corresponding node instance in N.

Definition 11 β : NSP � N is a surjective function such that

β�nsp� � sp niα�pe�sp��pe�sp
�1�nsp�

where pe�sp � Pe�SP is the unique execution path that contains nsp.

To the best of our knowledge, all the software pipelining techniques reported in literature satisfy Constraints

6-10.

5 Time Optimality Condition

In this section, we present the Time Optimality Condition. Before presenting the Time Optimality Condition,

we first formally define time optimality. For each execution path pe�sp � Pe�SP, the execution time of each node

instance n in t�pe�sp� can be counted from the grouping information associated with LSP and is denoted by

τ�n�. Time optimality of the parallel program LSP is defined as follows [30, 4].

Definition 12 (Time Optimality)

LSP is time optimal, if for every execution path pe�sp � Pe�SP, τ�t�pe�sp��	pe�sp	�� is the length of the longest

dependence chain in the execution path pe.

The definition is equivalent to saying that every execution path in LSP runs in the shortest possible time

subject to the true dependences. Note that the longest dependence chain in pe is used instead of that in pe�sp

because the latter may contain speculative nodes which should not be considered for the definition of time

optimality. Throughout the remainder of the paper, the length of the longest dependence chain in a path p is

denoted by �p�.

A loop L has an equivalent time optimal program if and only if the following condition is satisfied:
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Figure 8. An example illustrating Condition I.(a)

Condition I (Time Optimality Condition)

(a) There exists a constant B1 � 0 such that for any path p in L ,

�p�1� i����p�i�1� 	p	�� � �p��B1 for all 1 � i � 	p	 and

(b) there exist constants B2�B3 � 0 such that for any path p in L ,

	p	 � B2 � �p��B3 �

Condition I.(a) states that for any path p in L , if the path p is splitted into two subpaths, the sum of the

lengths of the longest dependence chains in each subpath can exceed the length of the longest dependence

chain in p at most by B1. Figure 8 illustrates Condition I.(a) using an example path p shown in Figure 8.(a)

where edges represent true dependences. The path psp in Figure 8.(b) shows the corresponding path in the time

optimal parallel program. Since the length of the longest dependence chain in p is 8, psp is executed in eight

time steps. To compute the lower bound on B1 for this case, let us substitute 7 for i in Condition I.(a). Then we

have:

B1 � �p�1�7����p�8�14����p� � 7�7�8 � 6 �

Intuitively, the lower bound on B1 corresponds to the range of the code motion required for the time optimal

execution. In Figure 8, n2 is preceded by n1 in p, but, for the time optimal execution, n2 should be executed at

least 5 time steps earlier than n1, which is B1�1.

Condition I.(b) is rather trivial. It states that for any path p in L , 	p	 is bounded by a linear function of �p�.

In other words, if L has an equivalent time optimal program, there exists a fairly long dependence chain for

every path p in L .

Let us consider the example loops shown in Figure 9. These loops were adapted from [30]. The first one

(Figure 9. (a)), which was shown to have an equivalent time optimal program, satisfies Condition I. For any

execution path pe that loops k iterations, �pe� � 2k� 1 and for 1 � i � j � 	pe	 � 4k , �pe�1� i�� � �i�2�� 1

and �pe� j� 	pe	�� � �4k� j�2��2. So, we have:

�pe�1� i����pe� j� 	pe	�� � 2k�3� � j� i��2 � �pe��2 �
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a = b + 1
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b = a * 2
c = d + e

x = x + b + c

3 e = c / 3

if  x == 0

if  x != 1
2if  y == 0

a = g2(x)a = g1(x)

x = f(a)

y = h(x)

if  a > b

b = g(b)

9

10 11d = c / 2

a = f(a)

(a) (b) (c)

Figure 9. Example loops used by Schwiegelshohn et al.

The second and third shown in Figures 9. (b) and 9. (c) do not satisfy Condition I.(a), thus having no equiv-

alent time optimal programs as shown in [30]. For the loop in Figure 9. (b), let c1 � �1�2�4�5�8�1� and

c2 � �1�6�7�8�1�. For the execution path pe�k� � ck
1 Æ ck

2, we have :

�pe�k��1�5k����pe�k��5k�1� 	pe�k�	����pe�k���

�2k�1���2k�1�� �3k�1� � k�1 �

As k is not bounded, there cannot exist a constant B for the loop and it does not satisfy Condition I. It can be

also shown that the loop in Fig. 9. (c) does not satisfy Condition I by a similar way. The main result of this

paper can be summarized by the following theorem:

Theorem 13 Condition I is a necessary and sufficient condition for L to have an equivalent time optimal

program.

Section 6 gives a proof on the necessary part of Theorem 13. Section 7 shows that Condition I is also

a sufficient condition. The proof is by construction, that is, we present an algorithm to compute the time

optimal parallel program for a loop that satisfies Condition I. Condition I is intuitive and useful in deriving the

theorems, but it is not obvious how to determine if a loop satisfies Condition I or not. If Condition I is to be

directly computed from the expressions, every execution path should be enumerated, which is impossible. So

we present another condition in Section 8 which is equivalent to Condition I and can be computed more easily.

6 Nonexistence of Time Optimal Solution

In this section, we prove that Condition I is a necessary condition for a loop to have an equivalent time

optimal parallel program.

Lemma 14 Condition I.(b) is a necessary condition for L to have an equivalent time optimal program.

Proof. Suppose L has an equivalent time optimal program LSP. Let B2 be the maximum height among tree

parallel instructions of LSP and let B3 be 2 �L �B2. For a path p, we define p� to be the same path used for the

proof of Condition I.(a). From the fact that LSP is time optimal and the definition of B2, 	p�	 is bounded by

B2 � �p��. Therefore, we have

	p	 � 	p�	 � B2 � �p�� � B2 � ��p��2 �L� � B2 � �p��B3 �

�
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Lemma 15 If there exists a constant B � 0 such that for any execution path pe in L

�pe�1� i����pe� j� 	pe	�� � �pe��B for all 1 � i � j � 	pe	 � (1)

Condition I.(a) is satisfied.

Proof. In order to prove that (1) implies Condition I.(a), we first substitute i�1 for j in the above condition.

Then it remains to show that the inequality also holds for every path, not only for every execution path. For a

path p, let p1 be a simple path from the loop header to p�1� and let p2 be a simple path from p�	p	� to an exit of

L . Then p� � p1 Æ pÆ p2 is an execution path of L , and the above inequality holds for p�. Therefore, we have

�p�1� i����p�i�1� 	p	�� � �p��1� i� 	p1	�1����p��i� 	p1	� 	p
�	�� � �p���B

� �p���p1���p2��B � �p��B�2 �L

where L is the length of the longest simple path in L . �

Throughout the remainder of this section, we assume that L does not satisfy (1) and that LSP is time optimal.

Eventually, it is proved that this assumption leads to a contradiction showing that Condition I is indeed a

necessary condition. Without loss of generality, we assume that every operation takes 1 cycle to execute. An

operation that takes k cycles can be transformed into a chaining of k unit-time operations. The following proofs

are not affected by this transformation.

Lemma 16 For any l � 0, there exists an execution path pe�sp in LSP and dependence chains of length l in pe�sp,

d1 and d2, which contain only effective node instances such that pos�d1� j�� � pos�d2�k�� and pos�β�d1� j��� �

pos�β�d2�k��� for any 1 � j� k � l.

Proof. From the assumption that L does not satisfy (1), there must exist i1� i2 �i1 � i2� and pe such that

�pe�1� i1����pe�i2� 	pe	���� �pe��2 � l. Note that both the terms of LHS is greater than l because otherwise

LHS becomes smaller than or equal to �pe�� l, a contradiction.

There exist dependence chains d�1 of length �pe�1� i1�� and d�
2 of length �pe�i2� 	pe	�� in pe such that pos�d�

1��pe�1� i1�����

i1 and pos�d�
2�1��� i2. Let pe�sp be an execution path in LSP such that α�pe�sp� � pe. By Constraint 6, there exist

dependence chains d1 and d2 of length l in pe�sp such that β�d1� j�� � d�
1� j� l��pe�1� i1��� and β�d2�k�� � d�

2�k�

for 1 � j� k � l. Then we have for any 1 � j� k � l :

pos�β�d1� j��� � pos�d�
1� j� l ��pe�1� i1����� i1 � i2 � pos�d�

2�k�� � pos�β�d2�k���

Next, consider the ranges for τ�d1� j�� and τ�d2�k��, respectively :

τ�d1� j��� 	d�
1�1� j� l ��pe�1� i1���1�	� j� l��pe�1� i1���1

τ�d2�k��� �pe�� 	d�
2�k��pe�i2� 	p

e	���	�1 � �pe���pe�i2� 	p
e	��� k

Consequently, we have for any 1 � j� k � l :

τ�d1� j��� τ�d2�k��� �pe�1� i1����pe�i2� 	p
e	����pe�� j� k� l�1 � 0 �
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Therefore, pos�d1� j��� pos�d2�k��. �

For the rest of this section, we use pe�sp�l� to represent an execution path which satisfies the condition of

Lemma 16 for a given l � 0, and d1�l� and d2�l� are used to represent corresponding d1 and d2, respectively.

In addition, let i1�l� and i2�l� be i1 and i2, respectively, as used in the proof of Lemma 16 for a given l � 0.

Finally, pe�l� represents α�pe�sp�l��.

Next, we are to derive the register requirement for “interfering” extended live ranges. reg�elr�n��n�� is used

to denote the register which carries elr�n� at n�.

Lemma 17 Given k assignment node instances n1�n2� � � � �nk in an execution path in LSP and a node instance

n in the execution path, if n is contained in elr�ni� for all 1 � i � k, reg�elr�n1��n�, reg�elr�n2��n�, � � �,

reg�elr�nk��n� are all distinct.

Proof. The proof is by induction on k. The base case is trivial. For the induction step, assume the above

proposition holds for k � h� 1. Consider h�1 assignment node instances n�1�n
�
2� � � � �n

�
h�1 in an execution path

pe�sp whose extended live ranges share a common node instance n�. Without loss of generality let us assume

pos�n�
h�1� � pos�n�

i� for all 1 � i � h. Then the range shared by these extended live ranges can be written as

t�pe�sp��pos�n�
h�1�� pos�n���.

By induction hypothesis, reg�elr�n�1��n
�
h�1�, � � �, reg�elr�n�

h��n
�
h�1�� are all distinct. Moreover, regW�n�

h�1�

must differ from these h registers since the live range defined by n�h�1 interferes with any live ranges carried by

these registers. For the same reason at any point in t�pe�sp��pos�n�
h�1�� pos�n���, any register which carries part

of elr�n�
h�1� differs from h distinct registers which carry extended live ranges of n�is. Therefore, the proposition

in the above lemma holds for all k � 0. �

For loops without control flows, the live range of a register cannot spans more than an iteration although

sometimes it is needed to do so. Modulo variable expansion handles this problem by unrolling the software-

pipelined loop by sufficiently large times such that II becomes no less than the length of the live range [20].

Techniques based on Enhanced Pipeline Scheduling usually overcome this problem by splitting such long

live ranges by copy operations during scheduling, which is called as dynamic renaming or partial renaming

[26]. Optionally these copy operations are coalesced away after unrolling by a proper number of times to

reduce resource pressure burdened by these copy operations. Hardware support such as rotating register files

simplifies register renaming. For any cases, the longer a live range spans, the more registers or amount of

unrolling are needed. There is a similar property for loops with control flows as shown below.

Lemma 18 Given an effective branch node instance nb in an execution path pe�sp in LSP and a dependence

chain d in pe�sp such that for any node instance n in d, pos�n� � pos�nb� and pos�β�n�� � pos�β�nb��, there

exist at least �	d	��M � 1��� 1 node instances in d whose extended live ranges contain nb where M denotes

the length of the longest simple path in L .

Proof. Let pe � α�pe�sp� and M� � �	d	��M �1��. From the definition of M, there must exist pos�β�d�1��� �

i1 � i2 � � � �� iM� � pos�β�d�	d	��� such that pe�i1� � pe�i2� � � � �� pe�iM� �. If pe�i� � pe� j� �i � j�, there must

exist a node instance in pe, n� �i � pos�n��� j� such that � k � pos�n�� regW�pe�k�� �� regW�node�n���. Thus
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by Constraint 7, there must exist node instances in d, n1�n2� � � � �nM��1, such that

regW�node�β�ni��� � regW�node�ni�� or

regW�node�β�ni��� � regW�node�nc��

for some node instance nc � Prop�ni� for all 1 � i � M��1 �

Since pos�ni� � pos�nb� and pos�β�ni�� � pos�β�nb��, node�ni� is speculative for all 1 � i � M�� 1. By

Constraint 8, regW�node�ni�� �� R and the value defined by ni cannot be committed into r � R until nb. So,

elr�ni� should contain nb for all 1 � i � M��1. �

Lemma 19 Let Nb�l� represent the set of effective branch node instances in pe�sp�l� such that

Nb�l� � �nb 	 pos�β�nb��� i1�l� � pos�nb�� pos�d2�l��1�� � �

Then there exists a constant C � 0 such that

τ�nb�� �pe�l��1� i1�l����2 � l �C�

Proof. Let C � �M � 1��R� 2� where M is defined as in Lemma 18 and R denotes the number of registers

used in LSP. Suppose τ�nb�� �pe�l��1� i1�l����2 � l �C.

From the proof of Lemma 16, we have

τ�d2�l��C�� � �pe�l����pe�l��i2�l�� 	p
e�l�	���C�1 � τ�nb� �

So at least �C��M �1���1 � R�1 registers are required by Lemmas 17 and 18, a contradiction. Therefore,

we have

τ�nb�� �pe�l��1� i1�l����2 � l �C � �

Theorem 20 Condition I.(a) is a necessary condition for L to have an equivalent time optimal program.

Proof. By Lemma 19, there exist an effective branch node instance nb in pe�sp�l� such that

τ�nb�� �pe�l��1� i1�l����2 � l �C and τ�nb�� τ�n�
b�

where n�
b represents any branch node instance in τ�n�b� such that pos�β�n�

b��� pos�β�d�
1�l��l��.

Let P�nb� be the set of execution paths in LSP such that

P�nb� � � qe�sp 	 qe�sp�1� pos�nb�� � pe�sp�l��1� pos�nb�� � dir�t�qe�sp��pos�nb��� �� dir�t�pe�sp�l���pos�nb��� �

Then �qe�sp� � �pe�l��1� i1�l���. By Lemma 2, we have �qe�sp�pos�nb� � 1��qe�sp��� � l �C. Since l is not

bounded and C is bounded, the length of any path starting from node�nb� is not bounded, a contradiction.

Therefore the assumption that LSP is time optimal is not valid and by Lemma 14 Condition I is indeed a

necessary condition. �
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Figure 10. Scheduling above a φ-function at the join point

7 Time Optimal Software Pipelining Algorithm

In this subsection, we prove that L has an equivalent time optimal program if L satisfies Condition I. Instead

of merely showing the existence of a time optimal program, we construct the time optimal program by a

software pipelining algorithm which is based on the algorithm by Aiken et al. [4]. we first present the software

pipelining algorithm by explaining our modifications to the Aiken’s algorithm. Then, we prove that the output

of the algorithm is a time optimal parallel program if the input loop satisfies Condition I.

Without loss of generality, we assume that every operation takes 1 cycle to execute. An operation that

takes k cycles can be transformed into a chaining of k unit-time ���
� pseudo operations, which can be safely

eliminated after scheduling. We assume that an arbitrary but fixed loop L satisfies Condition I.

The time-optimal software pipelining algorithm is mostly based on the algorithm by Aiken et al. [4], the

latest version of Perfect Pipelining [3]. Before scheduling, a sequential loop is unrolled infinite times to form

an infinite (but recursive) CFG and then the infinite CFG is incrementally compacted by semantic-preserving

transformations of Percolation Scheduling [27]. During scheduling, the algorithm finds equivalent nodes n and

n� in the infinite CFG, deletes the infinite subgraph below n�, and adds backedges from the predecessors of n�

to n. In this way, the infinite CFG eventually becomes a finite parallel graph.

The Aiken’s original algorithm does not handle false dependences appropriately [4]. An operation node

which is blocked by the false dependences but not by true dependences may not be available for scheduling.

To compute a time optimal solution, the false dependences should be overcome so that the parallel schedule is

constrained by the true dependences only. We modify the Aiken’s original algorithm so that the infinite CFG is

put into the static single assignment (SSA) form [10], the SSA form is software pipelined into a finite parallel

graph, and then the finite parallel graph is translated back out of the SSA form.

By translating into the SSA form, the false dependences are completely eliminated because every variables

are defined by exactly one operation. Moreover, extra φ-functions do not incur additional true dependences

because the operations that use the target registers of the φ-functions can always be combined with the φ-

functions and be moved above the φ-functions. For example, in Figure 10, ������ is to be scheduled above

���φ������	. The operation ������ is combined with ���φ������	 and split into ������ and ������.

Furthermore, to maintain the SSA form even after code motion above the join point, a new φ-function is

introduced at the join point. In Figure 10, two � definitions are replaced by the �� and �� definitions and a new

φ-function, ��φ������	, is added.

If an operation is not true-dependent on any operations (except φ-functions) in a path, it can always be moved
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procedure SOFTWARE PIPELINE � L� window size �

L � :� L∞

translate L � into the SSA form

f rontiers :� ��nstart�nroot��

scheduled be f ore :� � �

back edges :� � �

while (� �np�ns� � f rontiers)

f rontiers :� f rontiers���np �ns��

A :� COMPUTE AVAILABLE OPERATIONS� L �� ns� window size�

if (�A� � scheduled be f ore s.t. A� and A are equivalent)

n� :� parallel group root�A��

replace �np�ns� by �np�n�� and

delete unreachable nodes from L�

back edges :� back edges � ��np�n���

else

SCHEDULE PARALLEL GROUP� L �� ns� A� f rontiers�

scheduled be f ore :� scheduled be f ore � �A�

end if

end while

foreach ��np�ns� � back edges�

INSERT CONSISTENCY COPIES� L �
�np� ns�

end foreach

translate L � back out of the SSA form

remove dead operation nodes

return L �

end function

Figure 11. The time-optimal software pipelining algorithm.

along the path even if it is not free from the false dependences in the original program. When translating a

software pipelined program out of the SSA form, some copies might be remained, but all the unremovable

copy operations can be executed concurrently with any operations that are dependent on the copy operation.

Before describing the algorithm, we define some additional notations. Let L∞ represent the infinite recursive

graph obtained by unrolling L infinite times. For a node n in L , let ni denote the corresponding node in the i-th

unrolled copy of L in L∞. For a set X of nodes in L∞, X j is defined to be the set �ni� j	ni � X�. Two sets of

nodes in L∞, X1 and X2, are said to be equivalent if X1 � Xk
2 for some k.

The proposed time-optimal software pipelining algorithm begins with L∞, an acyclic infinite CFG, and

successively transforms L∞ into LSP which consists of parallel groups. Figure 11 describes the overall pro-

cessing steps of the software pipelining algorithm. The procedure SOFTWARE PIPELINE calls the SCHED-

ULE PARALLEL GROUP procedure (Appendix A.1) to build a parallel group, and then to build parallel groups

for all the branches of that group, and so on. If at any point the algorithm encounters the equivalent set of

available operation nodes in the second time, it uses the previously scheduled parallel group.

Before building a parallel group, the COMPUTE AVAILABLE OPERATIONS procedure (Appendix A.2) is in-

voked to compute the set of all available operation nodes that can move into the parallel group without violating
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procedure INFINITE ACYCLIC SCHEDULE � L� window size �

L � :� L∞

f rontiers :� ��nstart�nroot��

/* below condition is always true, thus loops forever */

while (� �np�ns� � f rontiers)

f rontiers :� f rontiers���np �ns��

A :� COMPUTE AVAILABLE OPERATIONS� L �� ns� window size�

SCHEDULE PARALLEL GROUP� L �� ns� A� f rontiers�

end while

/* cannot reach here */

return L �

end function

Figure 12. An algorithm for building an infinite parallel program.

the true dependences.5 In our algorithm, every operation node that is not blocked by the true dependences is

always available for scheduling. As in [4], we impose additional constraint on available operations: operations

are available at most k iterations. The predetermined constant k is called a sliding window [4] and it guarantees

the termination of the while loop in the SOFTWARE PIPELINING procedure.

Once the available operation nodes are computed, the SCHEDULE PARALLEL GROUP procedure repeat-

edly moves the operation nodes to a group boundary [26].6 When a branch operation node is moved, the

group boundary is split into multiple boundaries. When moving up an operation node, φ-functions may be

encountered. In this case, the scheduled operation node is combined with the φ-functions as described in the

COMBINE SOURCE REGISTERS procedure (Appendix A.3).

The following lemma states the correctness of the proposed algorithm.

Lemma 21 LSP is equivalent to L .

Proof. We use the algorithm in Figure 12 to prove the correctness of our software pipelining algorithm.

This algorithm is identical to the one in Figure 11 except that it does not reuse previously scheduled parallel

groups. Let LSP
∞ be the infinite parallel program defined by the algorithm in Figure 12 for a loop L . Then LSP

∞ is

equivalent to L since all the transformations can be implemented by those in the Moon’s algorithm [26]. Thus,

we prove the correctness of the software pipelining algorithm of Figure 11 by showing that LSP is equivalent

to LSP
∞ , i.e., for any initial store s, the final store of ep�LSP�s� is equal to that of ep�LSP

∞ �s�. It suffices to show

the following properties.

- For any k� 0, if there is a sequence of configurations ��n0�s0�� � � � ��nk�sk�� of LSP
∞ , then there is an sequence

of configurations ��n�0�s0�� � � � ��n�
k�sk�� of LSP.

- When ni and n�
i are scheduled, the set of available operations in the INFINITE ACYCLIC

SCHEDULE procedure and that in the SOFTWARE PIPELINE procedure are equivalent.
5This procedure is functionally equivalent to the same procedure in the Moon’s algorithm [26].
6Since the transformations in the SCHEDULE PARALLEL GROUP procedure can be implemented using transformations described

in the Moon’s algorithm whose correctness has been already proved [24], they preserve program semantics.
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- ni � n�
i
j for some j.

The proof is by induction on k. For the base case, let e � ��n0�s0�� be a sequence of configurations in

LSP
∞ . The initial set of available operations A is the same for both LSP

∞ and LSP. Now in procedure SOFT-

WARE PIPELINE, scheduled be f ore is empty, because initially no operation nodes are scheduled. Then the

operation to be scheduled is the same as INFINITE ACYCLIC SCHEDULE and e � ��n0�s0�� is a equence of

configurations in LSP. For the induction step, assume that the proposition in the Lemma holds for k.

If nk is the exit node, then n�k is also the exit node and we are done. Otherwise, in the next transition we

have δ��ni�si�� � �ni�1�si�1� and δ��n�
i�si�� � �n�

i�1�si�1�. The stores must be the same in the two transitions

since, by induction hypothesis, nk and n�
k have the same operations. Let c be the direction of branch taken

by the configuration ��nk�sk��. Note c is also taken in the configuration ��n�k�sk��, because nk and n�
k have the

same operations evaluated in the same store. It remains to show that nk�1 and n�
k�1 have the same operations,

possibly differing in iteration numbers, i.e., we must show nk�1 � n�
k�1

j for some j.

Consider the available operations B and B� of the two algorithms when nk�1 and n�
k�1 are scheduled. By the

induction hypothesis, available operations are equivalent, i.e., B� B�l for some l. Now there are two cases. For

the first case, assume that scheduled be f ore does not include any equivalent set of available operations. Then,

the two algorithms work in the same manner and we have nk�1 � n�
k�1

l . For the other case, assume that there

is a j such that Bj � scheduled be f ore. Then the parallel group is scheduled in LSP using available operations

B j. The rest can be proved by a similar manner to the above case. �

From the greediness of the algorithm, along with our modifications in the renaming framework (which has

the effect of removing the false dependences), the algorithm exhibits the following property.

Lemma 22 Let LSP be the result of the software pipelining algorithm with the sliding window of k iterations.

Then for an effective node instance n in an execution path pe�sp in LSP such that τ�n�� 1, there must exist an

effective node instance n� in pe�sp such that

τ�n�� � τ�n��1 � �β�n��� β�n� � it�β�n��� it�β�n���� k� �

Proof. Suppose that such n� does not exist and consider the execution snapshot of the SOFTWARE PIPELINE

procedure when the set of available operations for the predecessor parallel group Ω of β�n� is computed.

For some path from the group boundary of Ω to β�n�, there cannot exist any node on which β�n� is true-

dependent. Otherwise, some node on which β�n� is true-dependent should be scheduled into Ω so that β�n�

can be scheduled into the successor parallel group of Ω, which contradicts the assumption.

Furthermore, it�β�n�� can exceed min�it�n���	n�� � Ω� at most by k. Therefore, when the parallel group

Ω is built, the COMPUTE AVAILABLE OPERATIONS procedure computes β�n� as available and β�n� must be

scheduled into Ω, a contradiction. �

7.1 Time Optimality of the Algorithm

The software pipelining algorithm described in Figure 11 always generates time optimal parallel programs

for loops that satisfy Condition I. The proof is based on the greediness of the algorithm. Before presenting the
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time optimality proof, we prove some miscellaneous properties stated below in Lemmas 23 and 24. (Recall

that we have assumed that L satisfies Condition I and that every operation takes 1 cycle to execute.)

Lemma 23 For a path p in L and 1 � i1 � i2 � � � �� il � 	p	 ,

∑l�1
j�1�p�i j � i j�1�� � �p�� �l�2� � �B1 �1� �

Proof.

�p� � �p�i1� i2����p�i2 �1� il ���B1 � �p�i1� i2����p�i2� il ���1�B1

� �p�i1� i2�����p�i2� i3����p�i3� jl ���1�B1��1�B1

� �� � � ∑l
k�1�p�ik� jk��� �l�2� � �B1 �1� �

�

Lemma 24 For node instances n1 and n2 in a path p in L such that it�n2�� it�n1�� k,

�p�pos�n1�� pos�n2��� � �
�L�1� � k�1�B3

B2
�

where L is the length of the shortest cycle in L .

Proof. Since n1 and n2 are separated by more than k iterations, the number of node instances between them

is at least �L�1� � k. From Condition I.(b) we can write

�p�pos�n1�� pos�n2��� � �
pos�n2�� pos�n1��1�B3

B2
� � �

�L�1� � k�1�B3

B2
� �

�

We are now ready to prove the time optimality of the software pipelining algorithm. The SOFTWARE PIPELININE

procedure requires the size of sliding window as an input parameter. To achieve the time optimality, we select

the sliding window size as

WS � �
2 �B2 � �B1 �1��B3

L�1
� (2)

where L is the length of the shortest cycle in L .

Lemma 25 Let LSP be the result of the software pipelining algorithm with the sliding window of W S iterations.

Then LSP is time optimal.

Proof. It suffices to show that for an arbitrary but fixed execution path pe�sp in LSP, τ�t�pe�sp��	pe�sp	�� �

�α�pe�sp��. Let p denote α�pe�sp� and let GD�ND�ED� be a directed graph such that ND is the set of node

instances in t�p� and ED � E �
D�E ��

D where

E �
D � � �n1�n2� 	 n1 � n2 �

E ��
D � � �n1�n2� 	 it�n2�� it�n1��WS��
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We first show that the length of the longest path in GD is equal to the length of the longest path in G�
D�ND�E �

D�,

the subgraph of GD induced by E�
D. Suppose that there exists a path pD � n1 � n2 � �� � �� nh in GD whose

length is larger than the length of the longest path in G�
D (which is equal to �p�). Then, there must exist s �� 1�

edges �ni1 �ni1�1�� � � � ��nis �nis�1� �i1 � i2 � � � �� is� in pD that come from E��
D. So, we have

�p� � 	pD	� i1 �∑s�1
j�1�i j�1� i j��h� is

� �p�1� pos�ni1 ����∑s�1
j�1�p�pos�ni j�1�� pos�ni j�1���� �p�pos�nis�1���p��� � (3)

From Lemma 23, we can write

�p� � �p�1� pos�ni1 ����∑s�1
j�1�p�pos�ni j�1�� pos�ni j�1����

�p�pos�nis�1���p����∑s
j�1�p�pos�ni j �� pos�ni j�1����2s � �B1 �1� � (4)

From (3) and (4), we have

∑s
j�1�p�pos�ni j �� pos�ni j�1��� � 2s � �B1 �1� � (5)

Since �ni j�1�ni j � � E ��
D , it�ni j�1�� it�ni j��WS.

Therefore, by Lemma 24 we have for all 1 � i � s

�p�pos�ni j �� pos�ni j�1��� � �
�L�1� �WS�1�B3

B2
� � 2 �B1 �2 �

which contradicts (5). So the assumption is false and the length of the longest path in GD is equal to the length

of the longest path in G�
D, which is equal to �p�.

Let σ�n� denote the length of the longest path in GD that reaches n. For 1 � i � �pe�sp�, we are to show that

τ�t�pe�sp��i�� � σ�β�t�pe�sp��i��� when t�pe�sp��i� is an effective node instance. The proof is by induction on i.

Let m be the largest integer such that τ�t�pe�sp��i�� � 1. Then, the proposition holds trivially for all 1 � i � m.

For the induction step, assume that the proposition holds for all 1� j � i. By Lemma 22, there must exist i� � i

such that

t�pe�sp��i�� is an effective node instance and

τ�t�pe�sp��i��� � τ�t�pe�sp��i���1 and (6)

� β�t�pe�sp��i���� β�t�pe�sp��i�� � it�β�t�pe�sp��i���� it�β�t�pe�sp��i�����WS �

In any cases, � β�t�pe�sp��i��� � β�t�pe�sp��i�� � � E ��
D. Therefore, by the definition of σ, we have

σ�β�t�pe�sp��i��� � σ�β�t�pe�sp��i���� � 1 � (7)

From (6), (7) and the induction hypothesis, we have

τ�t�pe�sp��i�� � τ�t�pe�sp��i����1 � σ�β�t�pe�sp��i�����1 � σ�β�t�pe�sp��i��� �

Therefore, we have

τ�t�pe�sp��k��� σ�β�t�pe�sp��k��� � �p�
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where k is the largest integer such that t�pe�sp��k� is an effective node instance.

To finish the proof, we need to show that redundant node instances do not affect the length of the schedule.

Effective node instances are not dependent on redundant node instances. Furthermore, there cannot exist

a redundant node instance following the last effective node instance. This is because every node instance

following the last effective branch node is guaranteed to be effective by the dead code elimination after the

scheduling. �

From Lemma 25, we can state the following theorem.

Theorem 26 Condition I is a sufficient condition for L to have an equivalent time optimal program.

Although showing the existence of the constants is sufficient for proving Theorem 13, it does not guarantee

that a time-optimal software pipelining algorithm exists, since the algorithm described in Section 7 requires the

constants to be computed before parallelization. In the next section, we explain how to compute the constants

used in Condition I.

8 Computability of the Time Optimality Condition

In this section, we explain how to compute the Time Optimality Condition. Directly computing the Time

Optimality Condition requires that the infinitely many execution paths be enumerated, which is not possible.

So, we derive another equivalent condition that can be checked in a finite number of steps.

Before presenting the new condition, we define a new term, a dependence cycle. For straight-line loops the

concept of the dependence cycle is well known, but for loops with control flows, the dependence cycle has not

been defined formally. We define the dependence cycle for each cyclic path in L as follows.

Definition 27 Given a cycle c (may not be simple) in L , d is a dependence cycle with respect to c if there exist

l � 1 and 1 � i1 � i2 � � � �� i�d� � l � �	c	�1� such that

i1 � 	c	�1 � i�d� � i1 ��l�1� � �	c	�1� and

d� j� � cl �i j� for 1 � j � 	d	 and

d�i��cl �i j �i j�1� d�i�1� for 1 � i � 	d	 �

Figure 13 shows an example of dependence cycles. We associate several attributes with the dependence

cycle, which are defined below.

Definition 28 For a dependence cycle d, the sum of latencies of d�1��d�2�� � � � �d�	d	 � 1� is denoted by δ�d�.

span�d� denotes l in Definition 27 and slope�d� is defined to be δ�d��span�d�. Further, DC�c� represents

the set of dependence cycles associated with c and DCcr�c� represents the subset of DC�c� that consists of all

the dependence cycles with the maximum slope in DC�c�. A dependence cycle in DCcr�c� is called a critical

dependence cycle and its slope value is denoted by max slope�c�.
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Figure 13. Dependence cycles

There are a finite number of simple dependence cycles in DCcr�c� as well as in DC�c� and these dependence

cycles can be enumerated using the Johnson’s algorithm [18]. It is also useful to define dependence relation on

dependence cycles. Informally, d2 is said to be dependent on d1 if there is a dependence chain from a node in

d1 to one in d2.

Definition 29 Given two cycles c1 and c2 in L such that c1�i1� � c2�i2�, d2 is said to be dependent on d1

�d1 � DC�c1�� d2 � DC�c2�� , written d1 �
C d2 , if

 j1 � j2� d1� j1��p d2� j2� for some p s.t.

p 
 cspan�d1��1
1 Æ c1�1� i1�Æ c2�i2� 	c2	�Æ cspan�d2��1

2 �

If d1�k1� � d2�k2� for some k1 and k2, d1 and d2 are said to be joined, written d1 � d2.7

By unrolling appropriate times, a loop L can always be transformed into L� such that for every dependence

cycle in L�, its span is 1. For brevity, we assume this property for the rest of this section. Let C � �c1�c2� � � ��

represent the set of all the simple cycles in L starting from the loop header node and let Ck �1 � k � 	C	� and

C� be defined as follows:

Ck � �ci1 Æ ci2 Æ � � � Æ cik 	 � j �� l� i j �� il � � j � 1� i1 � i j�

C� � �
�C�
k�1 Ck �

Then, the following condition is equivalent to Condition I.

Condition II.

(a) For any cycle c in C�, DC�c� is not empty and

(b) For each cycle ci �1 � i � 	C�	� in C�, there exists a dependence

cycle

di � DCcr�ci� such that dj �
C dk for all 1 � j � k � 	C�	.

It is possible to check if a loop satisfies the Condition II in a finite number of steps because only finite number

of cycles need to be enumerated.
7Note that the � relation is symmetric.
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Lemma 30 If a given loop L satisfies Condition I, it also satisfies Condition II.

Proof. (b) is obviously satisfied. Suppose (a) is not satisfied for some c1 and c2. For d1 � DCcr�c1� , select

d2 � DCcr�c2� and d3 � DC�c1� such that d3 �
C d2 and slode�d3� is maximal. Note that every d2 � DCcr�c2�

may not be dependent on any dependence cycles in DC�c1� and then d3 is set to be an imaginary null cycle.

Let p�i� � cai
1 Æcabi

2 Æ pf where pf denotes any simple path from the unique loop header node to one exit and

a�b are defined as follows.

a �

��
�

LCM�span�d1��span�d2�� if d3 is null ,

LCM�span�d1��span�d2��span�d3�� otherwise .

b � �slope�d1���slope�d2�� r��

where r denotes the second largest slope in DC�c2�.

It is evident that one of the longest dependence chain in p�i� can be represented as

pD � d�ai�span�d4���1
4 Æ pD

1 Æd�abi�span�d5���1
5 Æ pD

2

for some d4 �DC�c1�� d5 � DC�c2�. Therefore, we have

�p�i�� � δ�d4� � �ai�span�d4���δ�d5� � �abi�span�d5���α

� slope�d4� �ai� slope�d5� �abi�α

for some constant α.

Case 1 : d5 ��DCcr�c2�.

slope�d5�� r and �p�i�� � slope�d1� �ai� r �abi�α2. From

slope�d1� �a� r �ab� slope�d3� �a� slope�d2� �ab �

a � �slope�d1��b � �r� slope�d2����

a � �slope�d1�� slope�d1�� � 0 �

we have

�p�i�� � slope�d3� �ai� slope�d2� �abi�α �

Case 2 : d5 �DCcr�c2�.

From the definition of d3, slope�d4�� slope�d3�. So we have

�pe
1�i�� � slope�d3� �ai� slope�d2� �abi�α �

From the assumption, d3 �� DCcr�c1� and slope�d3�� slope�d1�. But we have

�p1�i�� � slope�d1� �ai

�p2�i�� � slope�d2� �abi �

where p1�i� � p�i��1��	c	�1� �ai� and p2�i� � p�i���	c	�1� �ai�1��p�i���. So,

�p1�i����p2�i����p�i�� � �slope�d1�� slope�d3�� � i�α �
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Figure 14. A new representation for a cycle: (a) A graph with cycles and (b) a tree representation

of c5

Therefore, Condition I is not satisfied, a contradiction. �

Before showing that the inverse proposition also holds, we introduce a new representation for cycles. As

will be shown in Lemma 31, it is useful to represent a cycle by a composition of given subcycles. For example,

consider a cycle c5 shown in Figure 14.(a), given the subcycles c1�c2�c3 and c4.The cycle c5 can be represented

by a tree shown in Figure 14.(b).

Given a cycle c, the tree representation of c, written by CT �c�, can be found by the algorithm in Appendix

B. Each node in CT �c� represents a cycle in C�. Conversely, the sequence of a cycle represented by a tree

can be found by the algorithm in Appendix C. For the sake of convenience, we use the following notation

for cycles. Given a cycle c, c� j� represents the same cycle as c but the sequence is shifted such that c� j��i� �

c��i� j�1mod 	c	��1� for 1 � i � 	c	.

Lemma 31 For any cycle c in L such that c ��C�,

max slope�c� �∑ci�CT �c�
max slope�ci� �

Proof. For a critical dependence cycle d in c, we decompose d into critical dependence cycles in CT �c�.

From Condition II.(b), d can be written as dj Æ dk� �dj � DCcr�c j�� where cj is a leaf node in CT �c�. Then it

is obvious that max slope�c� � max slope�cj��max slope�c�� where c�l� � cj Æ c��l�� for some l and i�. By

applying the same argument to c� recursively, we have max slope�c� �∑ci�CT �c�max slope�ci� � �

For 	C	�C� unknowns ρi1�i2�����i�C�
�1 � i1� i2� � � � � i�C� � 	C	�, we solve the following linear system of 	C�	 equa-

tions in the 	C	�C� unknowns.

For each cycle c � cj1 Æ c j2 Æ � � � Æ c jk � C� ,

k�1

∑
h�0

ρ j�1�h�1 mod k��1 � j�2�h�1 mod k��1� ��� � j��C��h�1 mod k��1

� max slope�c� �

By using a simple argument based on linear algebraic theorems, we can easily show that the linear system

has a solution such that every ρi1�i2�����i�C�
is positive. (Actually, the solution is not unique and we select any
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one of them.) Given ρi1�i2�����i�C�
, we can characterize the lengths of critical dependence chains. Let M1 denote

the length of the longest dependence chain in cycles ci1 Æ ci2 Æ � � � Æ ci�C��1 �1 � i1� i2� � � � � i�C� � 	C	� and let M2

denote the length of the longest dependence chain in simple paths in L .

Lemma 32 Given a path p � ps Æ ci1 Æ ci2 Æ � � � Æ cik Æ pf in L where k � 	C	 , ci j � 	C	 for all 1 � j � k and

both ps and pf are simple paths, let M3 be

∑k��C�

h�0 ρi1�h � i2�h � ��� � i�C��h
�

Then, M3 � �p� � M1 �2 �M2 �M3 �

Proof. Let c� � ci�C�
Æ ci�C��1 Æ � � � Æ cik . Then max slope�c�� is equal to M3 by Lemma 31. Therefore, we have

�p� � �ps���ci1 Æ ci2 Æ � � � Æ ci�C��1�

� �ci�C�
Æ ci�C��1 Æ � � � Æ cik���pf�

� M2 �M1 �M3 �M2 � M1 �2 �M2 �M3 �

Similarly,

�p� � �ci�C�
Æ ci�C��1 Æ � � � Æ cik�� M3 �

�

From Lemma 32, we can compute the constants.

Lemma 33 If B1 is selected as 2 �M1 �4 �M2, Condition I.(a) is satisfied.

Proof. For a path p � ps Æ ci1 Æ ci2 Æ � � � Æ cik Æ pf in L we split p into two subpaths p1 and p2. Than p1 and p2

can be written as

p1 � ps1 Æ ci1 Æ � � � Æ cil Æ pf1 � p2 � ps2 Æ cil�2 Æ � � � Æ cik Æ pf2 �

By Lemma 32 we have

�p1���p2���p� � M1 �2 �M2�∑l��C�

h�0 ρi1�h � i2�h � ��� � i�C��h
�

M1 �2 �M2�∑k��C�

h�l�1 ρi1�h � i2�h � ��� � i�C��h
�

∑k��C�

h�0 ρi1�h � i2�h � ��� � i�C��h
� 2 �M1 �4 �M2 �

�

Lemma 34 If B2 and B3 are selected as

B2 � max�
	c j	

ρi1�i2�����i�C�

	 c j � 	C	 � 1 � i1� i2� � � � � i�C� � 	C	�

B3 � 2 �LC

where LC is the length of the longest simple cycle in L , Condition I.(b) is satisfied.
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Proof. For a path p � ps Æ ci1 Æ ci2 Æ � � � Æ cik Æ pf in L ,

	p	 � ∑k
h�1�	cih 	�1��2 �LC

� ∑k��C�

h�0 �
	cih 	

ρi1�h � i2�h � ��� � i�C��h

�ρi1�h � i2�h � ��� � i�C��h
��B3� k

� B2 �∑k��C�

h�0 ρi1�h � i2�h � ��� � i�C��h
�B3

� B2 � �p��B3 � (By Lemma 32.)

�

Note that all the constants B1�B2 and B3 can be computed in finite steps.

Lemma 35 If a given loop L satisfies Condition II, it also satisfies Condition I.

Proof. Directly from Lemmas 33 and 34. �

Theorem 36 Condition I is decidable.

Proof. From Lemmas 30 and 35, Condition I is equivalent to Condition II, whose decision procedure is

obvious from the given expression. �

Theorem 37 There exists a software pipelining algorithm that computes time optimal programs for loops that

satisfy Condition I.

Proof. From Lemma 25, the algorithm in Figure 11 is a time-optimal software pipelining algorithm provided

that the size of sliding window is computable. From Lemmas 33 and 34, B1�B2 and B3 can be computed in a

finite number of steps. The size of sliding window can be directly computed from Eq. (2). �

9 Conclusion and Future Work

In this paper, we presented a necessary and sufficient condition for loops with control flows to have their

equivalent time optimal programs and showed that it is decidable whether a loop satisfies the condition. Fur-

thermore, we described a software pipelining algorithm that computes a time optimal solution for every eligi-

ble loop satisfying the condition. Our results solve two fundamental open problems on time optimal software

pipelining of loops with control flows.

Our work can be extended in several directions for developing more efficient realistic software pipelining

algorithms. As a short-term research topic, we plan to improve the complexity of the software pipelining

algorithm proposed in this paper. We are developing a more efficient version based on the framework by

Milicev et al. [21, 22, 23]. As a long-term research goal, we are interested in developing a realistic resource-

constrained software pipelining algorithm guided by the results shown in this paper.
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Appendix

A Software Pipelining Subroutines

A.1 Algorithm for Building a Parallel Group

procedure SCHEDULE PARALLEL GROUP� L �
� ndummy� A� f rontiers�

boundaries :� �ndummy�
sort elements in A by the priority order
foreach (n � A)

make L � delete consistent for �r�n�
nnew :� COMBINE SOURCE REGISTERS� L �

� ndummy� n�
if (n is an assigment)

foreach (non-blocking ni � duplicates�n�)
replace every �n��ni� by �n��succ�ni�� and delete ni

end foreach
insert nnew above ndummy

else /* n is a branch */
duplicate the subgraph induced by nodes in paths

from ndummy to preds�n�
boundaries :� boundaries � �the duplicate of ndummy�
replace �n��n� by �n��succF �n�� for every n� � preds�n�
insert �n���succT �n�� for every duplicate

n�� of n� � preds�n�
replace �np�ndummy� by �np�nnew�
succF �nnew� :� ndummy
succT �nnew� :� the duplicate of ndummy

end if
end foreach
foreach (nb � boundaries)

f rontiers :� f rontiers � ��np�nb��
end foreach

end procedure
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A.2 Algorithm for Computing Available Operations

procedure COMPUTE AVAILABLE OPERATIONS� L �
� ndummy� window size�

min it :� it�succ�ndummy��
A :� ��
foreach (n s.t. n is reachable from ndummy and

it�n�� min it �window size)

if (� ndummy
p
� n s.t. n is not blocked along p)

A :� A � �n�
end foreach
return A

end procedure

A.3 Algorithm for Combining Source Registers with φ-functions

procedure COMBINE SOURCE REGISTERS� L �� ndummy� n�
n� :� any non-blocking duplicate of n
p :� any path from ndummy to n�

nr :� create a duplicate of n
for (i :� �p� to 1)

if (p�i� is a φ-function)
combine nr with p�i�

end for
return nr

end procedure

B Algorithm for Building a Cycle Tree

procedurebuild cycle tree�c�C � �c1� � � ���
/* c : the cycle to decompose, C : the set of simple cycles */

covered�1 �� �c��1� :� �F� � � � �F�
V �CT�c�� :� ��
E�CT �c�� :� ��
while (� i� covered�i� 	 F)

j :� 1
for (k :� 1 to �c��1)

if (covered�k� 	 F)
orig index� j� :� k
remained� j��� :� c�k�

end if
end for
find the smallest l and m �l � m � j�

such that remained�l� 	 remained�m�
find r and s such that

cr�s� 	 
 remained�l��remained�l �1�� � � � �remained�m� �
V �CT �c�� :� V �CT �c�� �


 cr�s�� �orig index�l��orig index�m�� �
for (k :� l to m�1)

covered�orig index�k�� :� T
end for

end while
foreach(x1 � 
 cr1�s1�� � j1�k1���x2 � 
 cr2�s2�� � j2�k2�� � V �CT �c��)

if ( j1 � j2 � k1 � k2)
E�CT �c�� :� E�CT �c�� � �x1�x2�

end if
end foreach
foreach (�x1�x2� � E�CT �c��)

if (� x3� �x1�x3���x3�x2� � E�CT�c��)
E�CT �c�� :� E�CT �c�� � �x1�x2�

end if
end foreach
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root�CT �c�� :� the unique node with no in-edge
return CT �c�

C Algorithm for Finding the Cycle from a Cycle Tree

procedure f ound sequence�T�C � �c1� � � ���
/* T : the tree corresponding to a cycle, C : the set of simple cycles */

sequence�1 �� M� /* where root�T � � 
 x� �1�M� � */
post order�root�T ��sequence�1�
return 
 sequence�1��sequence�2�� � � � �sequence�M� �

procedure post order�n�sequence� i�

 c� �i1� i2� � :� n /* it must be i 	 i1 */
for ( j :� 1 to outdeg�n�)


 c�� �k1�k2� � :� child�n� j�
for (l :� i to k1 �1)

sequence�l� :� c�i1 ���
end for
i � post order�child�n� j��sequence�k1�

for ( j :� i to i2 �1)
sequence� j� :� c�i1 ���

end for
return i2
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