
339

0885-7458/03/1000-0339/0 © 2003 Plenum Publishing Corporation

International Journal of Parallel Programming, Vol. 31, No. 5, October 2003 (© 2003)

Time Optimal Software Pipelining of
Loops with Control Flows
Han-Saem Yun,1 Jihong Kim,1, 3 and Soo-Mook Moon2

1 School of Computer Science and Engineering, Seoul National University, Seoul, Korea
151–742. E-mail: {hsyun, jihong}@davinci.snu.ac.kr

2 School of Electrical Engineering, Seoul National University, Seoul, Korea 151-742. E-mail:
smoon@altair.snu.ac.kr

3 To whom correspondence should be addressed

Software pipelining is widely used as a compiler optimization technique to
achieve high performance in machines that exploit instruction-level parallelism.
However, surprisingly, there have been few theoretical or empirical results
on time optimal software pipelining of loops with control flows. In this paper,
we present three new theoretical and practical contributions for this under-
investigated problem. First, we propose a necessary and sufficient condition for
a loop with control flows to have an optimally software-pipelined program. We
also present a decision procedure to compute the condition. As part of the
formal treatment of software pipelining, we propose a new formalization of
software pipelining. Second, we present two software pipelining algorithms. The
first algorithm computes an optimal solution for every loop satisfying the con-
dition, but may run in exponential time. The second algorithm computes
optimal solutions efficiently for most (but not all) loops satisfying the condition.
The former one proves the sufficiency of the condition and the latter one
suggests a practical optimal software pipelining algorithm. Third, we present
experimental results which strongly indicate that achieving the time optimality
in the software-pipelined programs is a viable goal in practice with reasonable
hardware support.

KEY WORDS: Software pipelining; instruction-level parallelism; VLIW; com-
piler optimization.

1. INTRODUCTION

Software pipelining refers to a class of fine-grain loop parallelization algo-
rithms which impose no scheduling barrier such as basic block or loop
iteration boundaries, thus achieving the effect of fine-grain parallelization
with full loop unrolling. Software pipelining computes a static parallel
schedule for machines that exploit instruction-level parallelism (ILP) such
as superscalar or VLIW processors.

While software pipelining has been used as a major compiler optimi-
zation technique to achieve high performance for ILP processors, surpri-
singly, there have been few theoretical results, let alone practical ones,
known on the optimality issue of software pipelined programs. One of the
best known open problems is the time optimal software pipelining problem,
which can be stated as follows: given a loop (with or without control flows),
(1) decide if the loop has its equivalent time optimal program or not and (2)
find a time optimal parallel program if the loop has one, assuming that suffi-
cient resources are available. A parallel program is said to be time optimal
if every execution path p of the program runs in its minimum execution
time determined by the length of the longest data dependence chain in p. (26)

For straight-line loops (without control flows), the time optimal
software pipelining problem is well understood and a time optimal
program can be computed in polynomial time. (1) This is because the
process of software pipelining can be easily formalized thanks to the strong
periodicity of such loops (e.g., a periodic execution model and dependence
patterns). For example, the problem of software pipelining of such loops
can be modeled by a simple linear formulation and several software
pipelining algorithms have been developed using this model. (5, 6, 11, 14)

On the other hand, for loops with control flows, software pipelining
algorithms cannot exploit the loop periodicity because execution paths of
these loops cannot be modeled by periodic constraints. This irregularity
results in numerous complications and makes the formalization very diffi-
cult. As a consequence, time optimal software pipelining of such loops has
been under-investigated, leaving most of theoretical questions unanswered.
In this paper, we focus on loops with control flows.

The time optimality is not only of theoretical interest but also of prac-
tical importance for the following reasons: First, ILP available in programs
(especially in non-numerical programs, which are the main sources of
branch-intensive loops) is inherently limited to an extent that the assump-
tion of unlimited resource does not impose any practical constraint on
many time optimal programs computed. (29) Second, knowing the time
optimal schedules may result in better parallel schedules (e.g., by local
transformations) even under the resource-constrained situations, as is the

340 Yun, Kim, and Moon

case with some software pipelining algorithms for straight-line loops. (6, 11, 19)

Third, time optimal schedules may be the only high performance schedule
attainable. For example, one can argue for profile-guided scheduling.
However, the profile information is not so helpful unless iterations of
the hot paths stay in the same acyclic path of a loop for a long time and
transitions from one acyclic path to another are infrequent. (27)

1.1. Related Work

For loops without control flows, there are several theoretical
results. (1, 6, 7, 11, 12) When resource constraints are not present, both the time
optimal schedule and the rate optimal one can be found in polynomial
time. (1, 11) With resource constraints, the problem of finding the optimal
schedule is NP-hard in its full generality (11) but there exist approximation
algorithms that guarantee the worst case performance of roughly twice the
optimum. (6, 11)

Given sufficient resources, an acyclic program can be always trans-
formed into an equivalent time optimal program by applying list schedul-
ing to each execution path and then simultaneously executing all the exe-
cution paths parallelized by list scheduling. When resources are limited,
definitions of time optimality may be based on the average execution time.
For acyclic programs, Gasperoni and Schwiegelshohn defined an opti-
mality measure based on the execution probability of various execution
paths and showed that a generalized list scheduling heuristic guarantees the
worst case performance of at most 2 − 1/m+(1 − 1/m) · 1/2 · Klog2 mL times
the optimum (13) where m is the number of operations that can be executed
concurrently. For loops with control flows, measures based on the execu-
tion probability of paths is not feasible, since there are infinitely many
execution paths.

Until recently, only two results for loops with control flows were
published. (26, 28) The work by Uht (28) proved that the resource requirement
necessary for the time optimal execution may increase exponentially for
some loops with control flows. The work by Schwiegelshohn et al., (26)

which is the best known and most significant result on time optimal
programs, simply illustrated that certain loops with control flows do not
have their equivalent time optimal programs. Since the work by
Schwiegelshohn et al. was published, no further research results on the
problem have been reported for about a decade, possibly having been
discouraged by the pessimistic result.

Instead, most researchers focused on developing better software
pipelining algorithms. To overcome the difficulty of handling control flows,
many developed algorithms imposed unnecessarily strict constraints on

Time Optimal Software Pipelining of Loops with Control Flows 341

possible transformations of software pipelining. For example, several
software pipelining algorithms first apply transformations that effectively
remove control flows before scheduling, (4, 19) and recover control flows after
scheduling. (30) Although practical, these extra transformations prohibit
considerable amount of code motions, limiting the scheduling space
exploration significantly.

1.2. Contributions

In this paper, we are to identify exactly what can and cannot be
achieved by software pipelining and to empirically evaluate how often
software pipelining can generate optimal4 solutions in real applications.

4 In the rest of the paper, we use ‘‘optimal’’ and ‘‘time optimal’’ interchangeably where no
confusion arises.

Our contributions can be divided into two parts, theoretical ones and
practical ones.

For the theoretical contributions, we further extend our previous
results and give answers to the following two fundamental open problems
on time optimal software pipelining:

Question 1. Is there a decision procedure that determines if a loop
has its equivalent time optimal program or not?

Question 2. For the loops that have the equivalent time optimal
programs, is there an algorithm that computes time optimal programs for
such loops?

For loops with control flows, these two questions have not been
adequately formulated, let alone being solved. In this paper, we call the
necessary and sufficient condition for a loop to have its equivalent time
optimal program as the Time Optimality Condition. As an answer to the
first question, we present the Time Optimality Condition and describe how
to compute the Time Optimality Condition. For the second question, we
present a software pipelining algorithm that computes time optimal
programs for every loop satisfying the Time Optimality Condition.

Figure 1 summarizes our theoretical contributions graphically. The
enclosing ellipse represents the set U of all the reducible innermost loops
and the bold curve represents the boundary between two sets of loops, one
set whose loops have equivalent time optimal programs (i.e., the right
region) and the other set whose loops do not have time optimal programs
(i.e., the left region). The small circle represents the set of loops shown to
have no time optimal solutions by Schwiegelshohn et al. (26) The work
described in this paper classifies all the loops in U into one of two sets,
proves that the classification is decidable (i.e., each set is recursive) and
shows that there exists an algorithm for computing time optimal solutions
for eligible loops.

342 Yun, Kim, and Moon

Loops that do not have
time optimal solutions

Loops that have time
optimal solutions

Loops identified from
Schwiegelshohn et al.’s work

Contribution 2: Time
Optimal Software
Pipelining Algorithm

Contribution 1: Time
Optimality Condition

Fig. 1. Loop classification based on time optimality.

The optimal software pipelining algorithm, which is given to answer
Question 2 above, enables us to complete the theoretical treatment on time
optimal software pipelining. However, the algorithm is of little practical
importance; it suffers from excessive overhead in computation time and
code expansion. In the worst case, the overhead is inherently unavoi-
dable. (28) As a practical alternative, we present a more realistic optimal
software pipelining algorithm which runs faster with less code expansion
and less hardware requirement. Unlike the former optimal algorithm, this
algorithm guarantees optimal solutions when loops satisfy a stronger
version of the Time Optimality Condition. According to our experimental
observations, however, most loops satisfying the Time Optimality Condi-
tion satisfy the stronger version as well, which strongly indicates the prac-
tical significance of the proposed realistic software pipelining algorithm.

Using a series of experimental analysis, we also demonstrate that
achieving the optimality in the software-pipelined programs is a viable goal
in practice with reasonable levels of hardware support. We have performed
experiments using the loops of SPEC95 integer benchmark programs.

The rest of the paper is organized as follows. We explain the machine
model assumptions, program representation and dependence representation
in Section 2. A formal description of software pipelining is presented in
Section 3. In Section 4, we present the Time Optimality Condition and
describe how to compute it. In Sections 5 and 6, we present two optimal
software pipelining algorithms, respectively. Experimental results are given
in Section 7 and we conclude with a summary and directions for future
work in Section 8.

Time Optimal Software Pipelining of Loops with Control Flows 343

2. PRELIMINARIES

2.1. Architectural Requirements

In order that the time optimality is well defined for loops with control
flows, some architectural assumptions are necessary. In this paper, we
assume the following architectural features for the target machine model:
First, the machine can execute multiple branch operations (i.e., multiway
branching (21)) as well as data operations concurrently. Second, it has an
execution mechanism to commit operations depending on the outcome of
branching (i.e, conditional execution (9)). The former assumption is needed
because if multiple branch operations have to be executed sequentially,
time optimal execution cannot be defined. The latter one is also indispens-
able for time optimal execution, since it enables to avoid output depen-
dence of store operations which belong to different execution paths of a
parallel instruction as pointed out by Aiken et al. (3)

As a specific example architecture, we use the tree VLIW architecture
model, (22) which satisfies the architectural requirements described above. In
this architecture, a parallel VLIW instruction, called a tree instruction, is
represented by a binary decision tree as shown in Fig. 2. A tree instruction
can execute simultaneously ALU and memory operations as well as branch
operations. The branch unit of the tree VLIW architecture can decide the
branch target in a single cycle. (21) An operation is committed only if it lies
in the execution path determined by the branch unit. (9)

2.2. Program Representation

We represent a sequential program Ps by a control flow graph (CFG)
whose nodes are primitive machine operations. If the sequential program Ps

is parallelized by a compiler, a parallel tree VLIW program Ptree is gener-
ated. While Ptree is the final output from the parallelizing compiler for our
target architecture, we represent the parallel program in the extended
sequential representation for the description purpose.

Fig. 2. A tree VLIW instruction.

344 Yun, Kim, and Moon

Fig. 3. (a) A sequential program, (b) a parallel tree VLIW program, and (c) a parallel
program in the extended sequential representation.

Under the extended sequential representation, both sequential
programs and parallel programs are described using the same notations
and definitions used for the sequential programs. Compared to sequential
programs, parallel programs include the additional information on opera-
tion grouping. Figure 3(a) shows an input sequential program Ps and
Fig. 3(b) shows its corresponding parallel tree VLIW program Ptree. Using
the extended sequential representation, Ptree is represented by Fig. 3(c). The
parallel program shown in Fig. 3(c) is based on a sequential representation
except that it has the operation grouping information indicated by shaded
regions. A group of operations in the shaded area indicates independently
executable operations and is called a parallel group. A parallel group cor-
responds to a tree VLIW instruction and can be easily converted into the
tree VLIW instruction with some local transformation on copy operations,
and vice versa. (22) An irreducible loop can always be transformed into an
reducible one (15) and the input program of software pipelining under con-
sideration is required to be a reducible innermost loop but the corresponding
parallel program may consist of several strongly connected components
(SCCs) with DAG components.

2.3. Basic Terminology

A program5 is represented as a triple OG=(N, E), O, dP. (This repre-

5 Since a parallel program is represented by the extended sequential representation, the nota-
tions and definitions explained in Section 2 apply to parallel programs as well as sequential
programs.

sentation is due to Aiken et al. (3)) The body of the program is a CFG G
which consists of a set of nodes N and a set of directed edges E. Nodes in

Time Optimal Software Pipelining of Loops with Control Flows 345

N are categorized into assignment nodes that read and write registers or
global memory, branch nodes that affect the flow of control, and special
nodes, start and exit nodes. The execution begins at the start node and the
execution ends at the exit nodes. E represents the possible transitions
between the nodes. Except for branch nodes and exit nodes, all the nodes
have a single outgoing edge. Each branch node has two outgoing edges
while exit nodes have no outgoing edge.

O is a set of operations that are associated with nodes in N. The
operation associated with n ¥ N is denoted by op(n). More precisely, op(n)
represents opcode and constant fields only; register fields are not included
in op(n).6 Without loss of generality, every operation is assumed to write to

6 For two programs to be equivalent, only the dependence patterns of these are needed to be
identical but not register allocation patterns. For this reason, register fields are not included
in op(n).

a single register. We denote by regW(n) the register to which n writes and
by regsR(n) a set of registers from which n reads.

A configuration is a pair On, sP where n is a node in N and s is a store
(i.e., a snapshot of the contents of registers and memory locations). The
transition function d, which maps configurations into configurations,
determines the complete flow of control starting from the initial store. Let
n0 be the start node and s0 an initial store. Then, the sequence of configu-
rations during an execution is OOn0, s0P,..., Oni, siP,..., Ont, stPP where
Oni+1, si+1P=d(Oni, siP) for 0 [i < t.

A path p of G is a sequence On1,..., nkP of nodes in N such that
(ni, ni+1) ¥ E for all 1 [i < k. For a given path p, the length of p is the
number of nodes in p and denoted by |p|. The ith (1 [i [|p|) node of p is
addressed by p[i]. A path q is said to be a subpath of p, written q • p, if
there exists j (0 [j [|p| − |q|) such that q[i]=p[i+j] for all 1 [i [|q|.
For a path p and i, j (1 [i [j [|p|), p[i, j] represents the subpath induced
by the sequence of nodes from p[i] up to p[j]. Given paths p1=
On1, n2,..., nkP and p2=Onk, nk+1,..., nlP, p1 p p2=On1, n2,..., nk, nk+1,..., nlP
denotes the concatenated path between p1 and p2. A path p forms a cycle if
p[1]=p[|p|] and |p| > 1. For a given cycle c, ck denotes the path con-
structed by concatenating c with itself k times. When c denotes a cycle in
the input loop (thus reducible) we assume c[1] represents the unique loop
header node. Two paths p and q are said to be equivalent, written p — q, if
|p|=|q| and p[i]=q[i] for all 1 [i [|p|.

A path from the start node to one of exit nodes is called an execution
path and distinguished by the superscript ‘‘e’’ (e.g., pe). An execution path
of parallel program is further distinguished by the extra superscript ‘‘sp’’
(e.g., pe, sp). Each execution path can be represented by an initial store with

346 Yun, Kim, and Moon

Fig. 4. An execution path in a parallel program.

which the control flows along the execution path. Suppose that a program
P is executed with an initial store s0 and the sequence of configurations is
written as OOn0, s0P, On1, s1P,..., Onf, sfPP, where n0 denotes the start node
and nf one of exit nodes. Then ep(P, s0) is defined to be the execution path
On0, n1,..., nfP of P. (ep stands for execution path.) Compilers commonly
performs the static analysis under the assumption that all the execution
paths of the program are executable, because it is undecidable to check if
an arbitrary path of the program is executable. In this paper, we make the
same assumption, that is, we assume -pe in P, ,s such that pe — ep(P, s).

It may incur some confusion to define execution paths for a parallel
program because the execution of the parallel program consists of transi-
tions among parallel instructions each of which consists of several nodes.
With the conditional execution mechanism described in Section 2.1,
however, we can focus on the unique committed path of each parallel
instruction while pruning uncommitted paths. Then, like a sequential
program, the execution of a parallel program flows along a single thread of
control and corresponds to a path rather than a tree. For example, in Fig. 4,
the execution path of a parallel program is distinguished by a thick line.

Some attributes such as redundancy and dependence should be defined
in a flow-sensitive manner because they are affected by control flows. Flow-
sensitive information can be represented by associating the past and the
future control flow with each node. Given a node n and paths p1 and p2,
the triple On, p1, p2P is called a node instance if n=p1[|p1 |]=p2[1]. That

Time Optimal Software Pipelining of Loops with Control Flows 347

is, a node instance On, p1, p2P defines the execution context in which n
appears in p1 p p2. In order to distinguish the node instance from the node
itself, we use a boldface symbol like n for the former. The node component
of a node instance n is addressed by node(n). A trace of a path p, written
t(p), is a sequence On1, n2,..., n|p|P of node instances such that ni=Op[i],
p[1, i], p[i, |p|]P for all 1 [i [|p|. The ith component of t(p) is addressed
by t(p)[i] and the index of a node instance n in the trace t(p) is repre-
sented by pos(n). For the ith node instance ni of t(p) whose node compo-
nent is a branch node, a boolean-valued attribute dir is defined as follows:

dir(ni)=˛T if p[i+1] is the T-target successor of p[i],
F otherwise.

For a node instance n=On, p1, p2P in an execution path pe in a
sequential program, an attribute it(n) is defined as the number of iterations
which p1 spans over. Some of node instances in parallel programs are
actually used to affect the control flow or the final store while the others
are not. The former ones are said to be effective and the latter ones redun-
dant. A node is said to be non-speculative if all of its node instances are
effective. Otherwise it is said to be speculative. These terms are further
clarified in Section 3.

2.4. Dependence Model

Let alone irregular memory dependences, existing dependence analysis
techniques cannot model true dependences accurately mainly because true
dependences are detected by conservative analysis on the closed form of
programs. In Section 2.4.1 we introduce a path-sensitive dependence model
to represent precise dependence information. In order that the schedule
is constrained by true dependences only, a compiler should overcome
false dependences. We explain how to handle the false dependences in
Section 2.4.2.

2.4.1. True Dependences

With the sound assumption of regular memory dependences, true
dependence information can be easily represented for straight line loops
thanks to the periodicity of dependence patterns. For loops with control
flows, however, this is not the case and the dependence relationship
between two nodes relies on the control flow between them as shown in
Fig. 5. In Fig. 5(a), there are two paths, p1=O1, 2, 3, 5P and p2=
O1, 2, 4, 5P, from node 1 to node 5. Node 5 is dependent on node 1 along p1,
but not along p2. This ambiguity cannot be resolved unless node 1 is

348 Yun, Kim, and Moon

Fig. 5. Path-sensitive dependence examples.

splitted into distinct nodes to be placed in each path. In Fig. 5(b), node 7 is
first used after k iterations of c1 along p3 p ck

1 p p4, where p3=O7, 9, 11P,
p4=O5, 10P, and c1=O5, 6, 8, 9, 11, 5P. However, this unspecified number
of iterations, k, cannot be modeled by existing techniques; That is, existing
techniques cannot model the unspecified dependence distance. In order to
model this type of dependence, we associate path information with the
dependence relation. The dependences carried by registers are defined as
follows.

Definition 1. For nodes n1 and n2 and a path p such that
p[1]=n1, p[|p|]=n2, n2 is said to be dependent on n1 along p, written
n1 Op n2, if

regW(n1) ¥ regsR(n2) and -1 < i < |p|, regW(pe[i])] regW(n1).

Furthermore, we can extend the dependence relation on node instances as
follows:

Definition 2. Given a path p and 1 [i < j [|p|, t(pe)[j] is said to
be dependent on t(pe)[i], written t(pe)[i] O t(pe)[j], if p[i] Op[i, j] p[j].

The dependence relation between two node instances with memory
operations may be irregular even for straight line loops. Existing software
pipelining techniques rely on conservative dependence analysis techniques,
in which the dependence relationship between two node instances is
determined by considering the iteration difference only and is usually
represented by data dependence graphs (18) or its extensions. (10, 25) In our
work, we assume a similar memory dependence relation, in which the
dependence relation between two node n1 and n2 along p (p[1]=n1,
p[|p|]=n2) rely only on the number of iterations that p spans.

Time Optimal Software Pipelining of Loops with Control Flows 349

Assuming regular memory dependences, straight-line loops can be
transformed so that every memory dependence does not span more than an
iteration by unrolling sufficient times. For loops with control flows, we
assumed that they are unrolled sufficiently so that memory dependences do
not span more than an iteration to simplify notations and the algorithm.
This seems to be too conservative but we believe that the claims in this
paper can be shown to be still valid in other memory dependence models
with slight modifications to the proofs.

2.4.2. False Dependences

For loops with control flows, it is not a trivial matter to handle false
dependences. They cannot be eliminated completely even if each live range
is renamed before scheduling. For example, the scheduling techniques
described in Ref. 3 and 22 rely on the ‘‘on the fly’’ register allocation
scheme based on copy operations so that the schedule is constrained by
true dependences only.

In Fig. 6(a), for the x=b*2 to be scheduled above the branch node, x
should not be used for the target register of x=b*2 and, therefore, the live
range from x=b*2 to z=f(x) should be renamed. But the live range from
x=b*2 to z=f(x) alone cannot be renamed because the live range from
x=a+1 to z=f(x) is combined with the former by x. Thus, the live range
is splitted by the copy operation x=t so that t carries the result of b*2
along the prohibited region and t passes b*2 to x the result.

In Fig. 6(b), x=g() is to be scheduled across the exit branch but
x=g() is used at the exit. So the live range from x=g() to exit is expected
to be longer than an iteration, but it cannot be realized if only one register
is allocated for the live range due to the register overwrite problem. This
can be handled by splitting the long live range into ones each of which does
not span more than an iteration, say one from t=g() to x=t and one from
x=t to the exit.

Fig. 6. Copy operations used to overcome false dependences.

350 Yun, Kim, and Moon

In the next section, these copy operations used for renaming are dis-
tinguished from ones in the input programs which are byproduct of other
optimizations such as common subexpression elimination. The true
dependence carried by the live range joined by these copy operations is
represented by O

g relation as follows.

Definition 3. Given an execution path of a parallel program pe, let
Npe represent the set of all node instances in t(pe). For node instances n in
t(pe, sp), Prop(n) represents the set of copy node instances in t(pe) by which
the value defined by n is propagated, that is,

Prop(n)={nc | n O nc
1, nc

k O nc, nc
i O nc

i+1 for all 1 [i < k

where nc and nc
i (1 [i [k) are copy node instances}.

For node instances n1 and n2 in Npe, we write n1 O
g n2 if

n1 O n2 or ,nc ¥ Prop(n1), nc O n2.

Definition 4. The extended live range of n, written elr(n), is the
union of the live range of the node instance n and those of copy node
instances in Prop(n), that is,

elr(n)=t(p)[pos(n), max{pos(nc) | nc ¥ Prop(n)}].

Now we are to define a dependence chain for sequential and the parallel
programs.

Definition 5. Given a path p, a dependence chain d in p is a
sequence of node instances On1, n2,..., nkP in t(p) such that ni O ni+1 for all
1 [i < k. A dependence chain is said to be critical if it is the longest one
in p. The ith component of a dependence chain d is addressed by d[i] and
the number of components in d is denoted by |d|. For a dependence chain d
and i, j (1 [i [j [|d|), d[i, j] represents the sub-chain of d induced by the
sequence of node instances from d[i] up to d[j].

3. A FORMALIZATION OF SOFTWARE PIPELINING

In this section, we develop a formal account of transformations of
software pipelining, which will provide a basis for the proof in Section 4.
Given an input loop L and its parallel version LSP, let Pe and Pe, SP denote

Time Optimal Software Pipelining of Loops with Control Flows 351

the set of all execution paths in L and the set of those in LSP, respectively.
Let us consider a relation R: Pe × Pe, SP defined by

(pe, pe, sp) ¥ R iff , a store s, ep(L, s) — pe N ep(LSP, s) — pe, sp.

In order to formalize software pipelining, we are to restrict transformations
(that map pe into pe, sp) by the following five constraints, Constraints 6–10.

First, transformations should exploit only dependence information,
that is, they should have only the effect of reordering nodes. Some optimi-
zation techniques (e.g., strength reduction and tree height reduction) may
reduce the path length by using other semantic properties of programs
(e.g., associativity). However, the scheduler is not responsible for such opti-
mizations. These optimizations are performed before/after the scheduling
phase.

Additionally, the scheduler is not responsible for eliminating partially
dead operation nodes in pe, which are not used in pe but may be used in
another execution paths. Partially dead operations may become fully dead
by some transformations such as moving branch up and can be eliminated
on the fly, (22) but we assume that they are not eliminated until a post-pass
optimization phase. We require that all operation nodes in pe, dead or not,
be also present in pe, sp. Therefore pe, sp is required to execute the same
operations as pe in an order compatible with the dependences present in pe.
The path pe, sp, however, may have additional speculative nodes7 from other

7 In fact, most complications of the nonexistence proof in Section 4 as well as the formaliza-
tion of software pipelining are due to expanded solution space opened up by branch reor-
dering transformation.

execution paths that do not affect the final store of pe, sp and copy opera-
tions used for overcoming false dependences. (3, 22) Formally, the first con-
straint on transformations can be given as follows.

Constraint 6. Let N1 represent the set of all node instances in t(pe)
and let N2 represent the set of all effective node instances in t(pe, sp). Then,
there exists a bijective function f from N1 to N2 such that

-n ¥ N1, op(node(n))=op(node(f(n))) and

-n, nŒ ¥ N1, n O nŒ iff f(n) O
g f(nŒ).

In this case, f(n) is said to correspond to n and we use sp_nipe, pe, sp to
represent the function f for a pair of such execution paths pe and pe, sp.

Second, the final store8 of pe, sp should be equal to that of pe to pre-

8 Temporary registers are excluded.

serve the semantic of L. For this, we require that for any node

352 Yun, Kim, and Moon

n=node(n), where n is a node instance in t(pe), if the target register of n is
live at the exit of pe, the value defined by node(sp_nipe, pe, sp(n)) should be
eventually committed to regW(n) along pe, sp. For simplicity, we assume that
all registers in pe are regarded as being live at the exit of pe during software
pipelining. The liveness of each node in pe, sp is checked at post-pass dead
code elimination optimization phase. Constraint 7 concisely states this
condition.

Constraint 7. For any assignment node instance n in t(pe) such that
-i > pos(n), regW(pe[i])] regW(node(n)),

regW(node(n))=regW(node(sp_nipe, pe, sp(n))) or

,nc ¥ Prop(sp_nipe, pe, sp(n)), regW(node(n))=regW(node(nc)).

It is needed to impose a restriction on registers allocated for specula-
tive nodes. Registers defined by speculative nodes are required to be tem-
porary registers that are not used in L so as not to affect the final store.

Constraint 8. Let R be the set of registers that are defined by nodes
in L. Then the target register of each speculative node in LSP is not
included in R.

Now, we are to impose a restriction to preserve the semantic of
branches. Let us consider a branch node instance n=t(pe)[i] and the cor-
responding node instance nŒ=t(pe, sp)[iŒ]=sp_nipe, pe, sp(n). The role of n is
to separate pe from the set of execution paths that can be represented
by pe[1, i] p pf where pf represents any path such that pf[1]=pe[i],
pf[2]] pe[i+1] and pf[|pf |] is an exit node in L. nŒ is required to do the
same role as n, that is, it should separate pe, sp from the set of corresponding
execution paths. But some of them might already be separated from pe, sp

earlier than nŒ due to another speculative branch node, the instance of
which in pe, sp is redundant, scheduled above nŒ. This constraint can be
written as follows.

Constraint 9. Given an execution path pe and qe in L such that

qe[1, i] — pe[1, i] N dir(t(qe)[i])] dir(t(pe)[i]),

for any execution path pe, sp and qe, sp such that (pe, pe, sp), (qe, qe, sp) ¥ R,
there exists a branch node pe, sp[j] (j [iŒ) such that

qe, sp[1, j] — pe, sp[1, j] N dir(t(qe, sp)[j])] dir(t(pe, sp)[j])

where iŒ is an integer such that t(pe, sp)[iŒ]=sp_nipe, pe, sp(t(pe)[i]).

Time Optimal Software Pipelining of Loops with Control Flows 353

pe, sp is said to be equivalent to pe, written pe —SA pe, sp, if Constraints
6–9 are all satisfied. (The subscript SA is adapted from the expression
‘‘semantically and algorithmically equivalent’’ in Ref. 26.) Constraint 9 can
be used to rule out a pathological case, unification of execution paths. Two
distinct execution paths pe

1=ep(L, s1) and pe
2=ep(L, s2) in L are said to

be unified if ep(LSP, s1) — ep(LSP, s2). Suppose pe
1 is separated from pe

2 by
a branch, then ep(LSP, s1) must be separated from ep(LSP, s2) by some
branch by Constraint 9. So pe

1 and pe
2 cannot be unified.

Let us consider the mapping cardinality of R. Since distinct execution
paths cannot be unified, there is the unique pe which is related to each pe, sp.
But there may exist several pe, sp’s that are related to the same pe due to
speculative branches. Thus, R is a one-to-many relation, and if branch
nodes are not allowed to be reordered, R becomes a one-to-one relation. In
addition, the domain and image of R cover the entire Pe and Pe, SP, respec-
tively. Because of our assumption in Section 2.3 that all the execution paths
are executable, -pe ¥ Pe, ,s, pe — ep(L, s) and the domain of R covers the
entire Pe. When an execution path pe ¥ Pe is splitted into two execution
paths pe, sp

1 , pe, sp
2 ¥ Pe, SP by scheduling some branch speculatively, it is

reasonable for a compiler to assume that these two paths are all executable
under the same assumption and that the image of R cover the entire Pe, sp.
To be short, R − 1 is a surjective function from Pe, sp to Pe.

Let N and NSP represent the set of all node instances in all execution
paths in L and the set of all effective node instances in all execution paths
in LSP, respectively. The following constraint can be derived from the
above explanation.

Constraint 10. There exists a surjective function a: Pe, SP
2 Pe such

that

-pe, sp ¥ Pe, SP, a(pe, sp) —SA pe, sp.

Using a defined in Constraint 10 above and sp_nipe, pe, sp defined in
Constraint 6, another useful function b is defined, which maps each node
instance in NSP to its corresponding node instance in N.

Definition 11. b: NSP
2 N is a surjective function such that

b(n sp)=sp_nia(pe, sp), pe, sp
− 1(n sp)

where pe, sp ¥ Pe, SP is the unique execution path that includes n sp.

To the best of our knowledge, all the software pipelining techniques
reported in literature satisfy Constraints 6–10.

354 Yun, Kim, and Moon

4. TIME OPTIMALITY CONDITION

In this section, we present the Time Optimality Condition and describe
how to compute it. Before presenting the Time Optimality Condition, we
first formally define time optimality.

4.1. Time Optimality

For each execution path pe, sp in a software pipelined program LSP, the
execution time of each node instance n in t(pe, sp) can be counted from the
corresponding parallel control flow graph and is denoted by y(n). Time
optimality of the parallel program LSP is defined as follows Ref. 3 and 26.

Definition 12. LSP is time optimal if, for every execution path pe, sp

in LSP, y(t(pe, sp)[|pe, sp|]) is the length of the longest dependence chain in
the execution path pe.

The definition is equivalent to saying that every execution path in LSP

runs in the shortest possible time subject to the true dependences. Note that
the longest dependence chain in pe is used instead of that in pe, sp because
the latter may contain speculative nodes which should not be considered
for the definition of time optimality. Throughout the remainder of the
paper, the length of the longest dependence chain in a path p is denoted
by ||p||.

4.2. Time Optimality Condition

In Sections 4.3 and 5, we show that a loop L has an equivalent time
optimal program if and only if the following condition is satisfied:

Condition 1 (Time Optimality Condition).

(a) There exists a constant B1 > 0 such that for any path p in L,

||p[1, i]||+||p[i+1, |p|]|| [||p||+B1 for all 1 [i < |p| and

(b) there exist constants B2, B3 > 0 such that for any path p in L,

|p| [B2 · ||p||+B3.

Informally, the Time Optimality Condition requires that every opera-
tion be moved within a bounded range to yield the time optimal execution
for every execution path. Condition 1(a) states that for any path p in L, if
the path p is splitted into two subpaths, the sum of the lengths of the

Time Optimal Software Pipelining of Loops with Control Flows 355

Fig. 7. An example illustrating Condition 1(a).

longest dependence chains in each subpath can exceed the length of the
longest dependence chain in p at most by B1. Figure 7 illustrates Condition 1(a)
using an example path p shown in Fig. 7(a) where edges represent true
dependences. The path p sp in Fig. 7(b) shows the corresponding path in the
time optimal parallel program. Since the length of the longest dependence
chain in p is 8, p sp is executed in eight time steps. To compute the lower
bound on B1 for this case, let us substitute 7 for i in Condition 1(a). Then,
we have:

B1 \ ||p[1, 7]||+||p[8, 14]|| − ||p||=7+7 − 8=6.

Intuitively, the lower bound on B1 corresponds to the range of the
code motion required for the time optimal execution. In Fig. 7, n2 is
preceded by n1 in p, but, for the time optimal execution, n2 should be
executed at least 5 time steps earlier than n1, which is B1 − 1.

Condition 1(b) is rather trivial. It states that for any path p in L, |p| is
bounded by a linear function of ||p||. In other words, if L has an equivalent
time optimal program, there exists a fairly long dependence chain for every
path p in L.

Let us consider the example loops shown in Fig. 8. These loops were
adapted from. (26) The first one (Fig. 8(a)), which was shown to have an

356 Yun, Kim, and Moon

Fig. 8. Example loops used by Schwiegelshohn et al.

equivalent time optimal program, satisfies Condition 1. For any execution
path pe that loops k iterations, ||pe||=2k+1 and for 1 [i < j [|pe|=4k,
||pe[1, i]|| [Ki/2L+1 and ||pe[j, |pe|]|| [K4k − j/2L+2. So, we have:

||pe[1, i]||+||pe[j, |pe|]|| [2k+3 − (j − i)/2 [||pe||+2.

The second and third loops shown in Figs. 8(b) and 8(c) do not satisfy
Condition 1(a), thus having no equivalent time optimal programs as shown
in Ref. 26. For the loop in Fig. 8(b), let c1=O1, 2, 4, 5, 8, 1P and
c2=O1, 6, 7, 8, 1P. For the execution path pe(k)=ck

1 p ck
2 , we have :

||pe(k)[1, 5k]||+||pe(k)[5k+1, |pe(k)|]|| − ||pe(k)||

=(2k+1)+(2k+1)− (3k+1)=k+1.

As k is not bounded, there cannot exist a constant B for the loop and it
does not satisfy Condition 1. It can be also shown that the loop in Fig. 8(c)
does not satisfy Condition 1 by a similar way.

Theorem 13. Condition 1 is a necessary and sufficient condition for
L to have an equivalent time optimal program.

Section 4.3 gives a proof on the necessary part of Theorem 13. We
prove the sufficient part of Theorem 13 by construction, i.e., the proof for
the sufficient part follows from the optimal software pipelining algorithm
presented in Section 5. Condition 1 is intuitive and useful in deriving
the theorems, but it is not obvious how to determine if a loop satisfies
Condition 1 or not. If Condition 1 is to be directly computed from the
expressions, every execution path should be enumerated, which is impos-
sible. So we present another condition in Section 4.4 which is equivalent to
Condition 1 and can be computed more easily.

Time Optimal Software Pipelining of Loops with Control Flows 357

4.3. Necessary Part of Theorem 13

If a loop L has an equivalent time optimal program LSP but it does
not satisfy Condition 1, LSP must exhibit some anomaly. If Condition 1(a)
is not satisfied, an operation n1 in LSP should be executed infinitely earlier
than n2 that precedes n1 in L. In case that Condition 1(b) is not satisfied,
infinitely many operations should be executed at the same time slot. We show
that no closed-form parallel program satisfies this anomalous requirement.

Lemma 14. Condition 1(b) is a necessary condition for L to have
an equivalent time optimal program.

Proof. Suppose L has an equivalent time optimal program LSP. Let
B2 be the maximum height among tree parallel instructions of LSP and let
B3 be 2 · L · B2. For a path p, we define pŒ to be the same path used for the
proof of Condition 1(a). From the fact that LSP is time optimal and the
definition of B2, |pŒ| is bounded by B2 · ||pŒ||. Therefore, we have

|p| [|pŒ| [B2 · ||pŒ|| [B2 · (||p||+2 · L)=B2 · ||p||+B3. L

Lemma 15. If there exists a constant B > 0 such that for any exe-
cution path pe in L

||pe[1, i]||+||pe[j, |pe|]|| [||pe||+B for all 1 [i < j [|pe|, (1)

Condition 1(a) is satisfied.

Proof. In order to prove that (1) implies Condition 1(a), we first
substitute i+1 for j in the above condition. Then it remains to show that
the inequality also holds for every path, not only for every execution path.
For a path p, let p1 be a simple path from the loop header to p[1] and let
p2 be a simple path from p[|p|] to an exit of L. Then pŒ=p1 p p p p2 is an
execution path of L, and the above inequality holds for pŒ. Therefore, we
have

||p[1, i]||+||p[i+1, |p|]|| [||pŒ[1, i+|p1 | − 1]||+||pŒ[i+|p1 |, |pŒ|]|| [||pŒ||+B

[||p||+||p1 ||+||p2 ||+B [||p||+B+2 · L

where L is the length of the longest simple path in L. L

Throughout the remainder of this section, we assume that L does not
satisfy (1) and that LSP is time optimal. Eventually, it is proved that this
assumption leads to a contradiction showing that Condition 1 is indeed a

358 Yun, Kim, and Moon

necessary condition. Without loss of generality, we assume that every
operation takes 1 cycle to execute. An operation that takes k cycles can be
transformed into a chaining of k unit-time operations. The following
proofs are not affected by this transformation.

Lemma 16. For any l > 0, there exists an execution path pe, sp in
LSP and dependence chains of length l in pe, sp, d1 and d2, which contain
only effective node instances such that pos(d1[j]) > pos(d2[k]) and
pos(b(d1[j])) < pos(b(d2[k])) for any 1 [j, k [l.

Proof. From the assumption that L does not satisfy (1), there must
exist i1, i2 (i1 < i2) and pe such that ||pe[1, i1]||+||pe[i2, |pe|]|| > ||pe||+2 · l.
Note that both the terms of LHS is greater than l because otherwise LHS
becomes smaller than or equal to ||pe||+l, a contradiction.

There exist dependence chains d −

1 of length ||pe[1, i1]|| and d −

2 of length
||pe[i2, |pe|]|| in pe such that pos(d −

1[||pe[1, i1]||]) [i1 and pos(d −

2[1]) \ i2.
Let pe, sp be an execution path in LSP such that a(pe, sp)=pe. By Constraint 6,
there exist dependence chains d1 and d2 of length l in pe, sp such that
b(d1[j])=d −

1[j − l+||pe[1, i1]||] and b(d2[k])=d −

2[k] for 1 [j, k [l.
Then, we have for any 1 [j, k [l:

pos(b(d1[j]))=pos(d −

1[j − l+||pe[1, i1]||]) [i1 < i2 [pos(d −

2[k])

=pos(b(d2[k])).

Next, consider the ranges for y(d1[j]) and y(d2[k]), respectively :

y(d1[j]) \ |d −

1[1, j − l+||pe[1, i1]|| − 1]|=j − l+||pe[1, i1]|| − 1

y(d2[k]) [||pe|| − |d −

2[k, ||pe[i2, |pe|]||]|+1=||pe|| − ||pe[i2, |pe|]||+k.

Consequently, we have for any 1 [j, k [l :

y(d1[j]) − y(d2[k]) \ ||pe[1, i1]||+||pe[i2, |pe|]|| − ||pe||+j − k − l+1 > 0.

Therefore, pos(d1[j]) > pos(d2[k]). L

For the rest of this section, we use pe, sp(l) to represent an execution
path which satisfies the condition of Lemma 16 for a given l > 0, and d1(l)
and d2(l) are used to represent corresponding d1 and d2, respectively. In
addition, let i1(l) and i2(l) be i1 and i2, respectively, as used in the proof of
Lemma 16 for a given l > 0. Finally, pe(l) represents a(pe, sp(l)).

Time Optimal Software Pipelining of Loops with Control Flows 359

Next, we are to derive the register requirement for ‘‘interfering’’
extended live ranges. reg(elr(n), n −) is used to denote the register that
carries elr(n) at n −.

Lemma 17. Given k assignment node instances n1, n2,...,nk in an
execution path in LSP and a node instance n in the execution path, if n
is contained in elr(ni) for all 1 [i [k, reg(elr(n1), n), reg(elr(n2), n),...,
reg(elr(nk), n) are all distinct.

Proof. The proof is by induction on k. The base case is trivial. For
the induction step, assume the above proposition holds for k=h \ 1. Con-
sider h+1 assignment node instances n −

1, n −

2,..., n −

h+1 in an execution path
pe, sp whose extended live ranges share a common node instance n −. Without
loss of generality, let us assume pos(n −

h+1) > pos(n −

i) for all 1 [i [h. Then,
the range shared by these extended live ranges can be written as
t(pe, sp)[pos(n −

h+1), pos(n −)].
By induction hypothesis, reg(elr(n −

1), n −

h+1),..., reg(elr(n −

h), n −

h+1)) are
all distinct. Moreover, regW(n −

h+1) must differ from these h registers since
the live range defined by n −

h+1 interferes with any live ranges carried by
these registers. For the same reason, at any point in t(pe, sp)[pos(n −

h+1),
pos(n −)], any register that carries part of elr(n −

h+1) differs from h distinct
registers that carry extended live ranges of n −

is. Therefore, the proposition
in the above lemma holds for all k > 0. L

For loops without control flows, the live range of a register cannot
span more than an iteration although sometimes it is needed to do so.
Modulo variable expansion handles this problem by unrolling the software-
pipelined loop by sufficiently large times such that II becomes no less than
the length of the live range. (19) Techniques based on Enhanced Pipeline
Scheduling usually overcome this problem by splitting such long live ranges
by copy operations during scheduling, which is called as dynamic renaming
or partial renaming. (22) Optionally, these copy operations are coalesced
away after unrolling by a proper number of times to reduce resource pres-
sure burdened by these copy operations. Hardware support such as rotating
register files simplifies register renaming. For any cases, the longer a live
range spans, the more registers or larger number of unrolling are needed.
There is a similar property for loops with control flows as shown below.

Lemma 18. Given an effective branch node instance nb in an exe-
cution path pe, sp in LSP and a dependence chain d in pe, sp such that for any
node instance n in d, pos(n) < pos(nb) and pos(b(n)) > pos(b(nb)), there

360 Yun, Kim, and Moon

exist at least N|d|/(M+1)M− 1 node instances in d whose extended live
ranges contain nb where M denotes the length of the longest simple path
in L.

Proof. Let pe=a(pe, sp) and MŒ=N|d|/(M+1)M. From the definition
of M, there must exist pos(b(d[1])) [i1 < i2 < · · · < iMŒ [pos(b(d[|d|]))
such that pe[i1]=pe[i2]= · · · =pe[iMŒ]. If pe[i]=pe[j] (i < j), there
must exist a node instance in pe, n − (i [pos(n −) < j) such that -k > pos(n),
regW(pe[k])] regW(node(n −)). Thus by Constraint 7, there must exist node
instances in d, n1, n2,...,nMŒ − 1, such that

regW(node(b(ni)))=regW(node(ni)) or

,nc ¥ Prop(ni), regW(node(b(ni)))=regW(node(nc)) for all 1 [i [MŒ − 1.

Since pos(ni) < pos(nb) and pos(b(ni)) > pos(b(nb)), node(ni) is spe-
culative for all 1 [i [MŒ − 1. By Constraint 8, regW(node(ni)) ¨ R and the
value defined by ni cannot be committed into r ¥ R until nb. So, elr(ni)
should contain nb for all 1 [i [MŒ − 1. L

Lemma 19. Let Nb(l) represent the set of effective branch node
instances in pe, sp(l) such that

Nb(l)={nb | pos(b(nb)) [i1(l) N pos(nb) > pos(d2(l)[1])}.

Then there exists a constant C > 0 such that

y(nb) < ||pe(l)[1, i1(l)]|| − 2 · l+C.

Proof. Let C=(M+1)(R+2) where M is defined as in Lemma 18
and R denotes the number of registers used in LSP. Suppose y(nb) \

||pe(l)[1, i1(l)]|| − 2 · l+C. From the proof of Lemma 16, we have

y(d2(l)[C]) [||pe(l)|| − ||pe(l)[i2(l), |pe(l)|]||+C − 1 < y(nb).

By Lemmas 17 and 18, at least KC/(M+1)L− 1=R+1 registers are
required, a contradiction. Therefore, we have

y(nb) < ||pe(l)[1, i1(l)]|| − 2 · l+C. L

Theorem 20. Condition 1 is a necessary condition for L to have an
equivalent time optimal program.

Time Optimal Software Pipelining of Loops with Control Flows 361

Proof. By Lemma 19, there exists an effective branch node instance
nb in pe, sp(l) such that

y(n −

b) < y(nb) < ||pe(l)[1, i1(l)]|| − 2 · l+C

where n −

b represents any branch node instance in y(n −

b) such that
pos(b(n −

b)) [pos(b(d −

1(l)[l])). Let P(nb) be the set of execution paths in
LSP such that

P(nb)={qe, sp | qe, sp[1, pos(nb)] — pe, sp(l)[1, pos(nb)]

N dir(t(qe, sp)[pos(nb)])] dir(t(pe, sp(l))[pos(nb)])}.

Then, ||qe, sp|| \ ||pe(l)[1, i1(l)]|| and, by Lemma 17, we have

||qe, sp[pos(nb)+1, ||qe, sp||]|| > l − C.

Since l is not bounded and C is bounded, the length of any path starting
from node(nb) is not bounded, a contradiction. Therefore the assumption
that LSP is time optimal is not valid and, by Lemma 14, Condition 1 is
indeed a necessary condition.

4.4. Computing Time Optimality Condition

In this section, we explain how to compute the Time Optimality Con-
dition. Directly computing the Time Optimality Condition requires that
infinitely many execution paths be enumerated, which is not possible. So,
we derive another equivalent condition that can be checked in a finite
number of steps.

Before presenting the new condition, we define a new term, a depen-
dence cycle. For straight-line loops the concept of the dependence cycle is
well known, but for loops with control flows, the dependence cycle has not
been defined formally. We define the dependence cycle for each cyclic path
in L as follows.

Definition 21. Given a cycle c (which may not be simple) in L, d is
a dependence cycle with respect to c if there exist l \ 1 and 1 [i1 <
i2 < · · · < i|d| [l · (|c| − 1) such that

i1 [|c| − 1 N i|d|=i1+(l − 1) · (|c| − 1) and

d[j]=c l[ij] for 1 [j [|d| and

d[j] Ocl[ij, ij+1] d[j+1] for 1 [j < |d|.

362 Yun, Kim, and Moon

Fig. 9. Dependence cycles.

Figure 9 shows an example of dependence cycles. We associate several
attributes with the dependence cycle, which are defined below.

Definition 22. For a dependence cycle d, the sum of latencies of
d[1], d[2],..., d[|d| − 1] is denoted by d(d). span(d) denotes l in Definition 21
and slope(d) is defined to be d(d)=span(d). Furthermore, DC(c) repre-
sents the set of dependence cycles associated with c and DCcr(c) represents
the subset of DC(c) that consists of all the dependence cycles with the
maximum slope in DC(c). A dependence cycle in DCcr(c) is called a critical
dependence cycle and its slope value is denoted by max_slope(c).

There are a finite number of simple dependence cycles in DCcr(c) as
well as in DC(c) and these dependence cycles can be enumerated using
Johnson’s algorithm. (16) It is also useful to define dependence relation on
dependence cycles. Informally, d2 is said to be dependent on d1 if there is a
dependence chain from a node in d1 to one in d2.

Definition 23. Given two cycles c1 and c2 in L such that c1[i1]=
c2[i2], d2 is said to be dependent on d1 (d1 ¥ DC(c1), d2 ¥ DC(c2)), written
d1 O C d2, if

,j1 < j2, d1[j1] Op d2[j2] for some p s.t.

p • c span(d1)+1
1 p c1[1, i1] p c2[i2, |c2 |] p c span(d2)+1

2 .

If d1[k1]=d2[k2] for some k1 and k2, d1 and d2 are said to be joined,
written d1 y d2.9

9 Note that the y relation is symmetric.

Time Optimal Software Pipelining of Loops with Control Flows 363

Let C={c1, c2,...} represent the set of all the simple cycles in L start-
ing from the loop header node and let Ck (1 [k [|C|) and C* be defined
as follows:

Ck={ci1
p ci2

p · · · p cik
| -j] l, ij] il N -j > 1, i1 < ij},

C*= 0
|C|

k=1
Ck.

Then, the following condition is equivalent to Condition 1.

Condition 2.

(a) For any cycle c in Cg, DC(c) is not empty and
(b) For each cycle ci (1 [i [|Cg|) in Cg, there exists a dependence

cycle

di ¥ DCcr(ci) such that dj O C dk for all 1 [j < k [|Cg|.

It is possible to check if a loop satisfies the Condition 2 or not in a
finite number of steps because only finite number of cycles need to be
enumerated.

Let us consider the example loop shown in Fig. 9. There are two
simple cycles c1=O1, 2, 3, 4, 5, 6, 10, 1P and c2=O1, 7, 8, 9, 10, 1P in the
loop. So, C={c1, c2} and Cg=C1 2 C2={c1, c2, } 2 {c1 p c2(=c3)}=
{c1, c2, c3}. We can easily verify that Condition 2(a) is satisfied but Condi-
tion 2(b) is not satisfied; d2=O3, 5, 4, 3P and d3=O7, 7P are the unique
elements in DCcr(c2) and DCcr(c3), respectively, but d2 is not dependent
on d3.

Lemma 24. If a loop L satisfies Condition 1, it also satisfies
Condition 2.

Proof. Condition2(a) isobviouslysatisfied.SupposethatCondition2(b)
is not satisfied for some c1 and c2. For d1 ¥ DCcr(c1), select d2 ¥ DCcr(c2)
and d3 ¥ DC(c1) such that d3 O C d2 and slope(d3) is maximum. Note that
d2 ¥ DCcr(c2) may not be dependent on any dependence cycles in DC(c1)
and then d3 is set to be an imaginary null cycle.

Let p(i)=cai
1 p cabi

2 p pf where pf denotes any simple path from the
unique loop header node to one of the exits and a, b are defined as follows:

a=˛LCM(span(d1), span(d2)) if d3 is null,
LCM(span(d1), span(d2), span(d3)) otherwise,

b=Kslope(d1)/(slope(d2) − r)L

364 Yun, Kim, and Moon

where r denotes the second largest slope in DC(c2). It is evident that one of
the longest dependence chain in p(i) can be written as

d Nai/span(d4)M− 1
4 p pD

1 p d Nabi/span(d5)M− 1
5 p pD

2

for some d4 ¥ DC(c1), d5 ¥ DC(c2), and dependence chains pD
1 and pD

2 .
Therefore, we have

||p(i)|| [d(d4) · (ai/span(d4))+d(d5) · (abi/span(d5))+a

=slope(d4) · ai+slope(d5) · abi+a

for some constant a.

Case 1: d5 ¨ DCcr(c2). We have slope(d5) [r and ||p(i)|| [slope(d1) ·
ai+r · abi+a2. From

slope(d1) · a+r · ab − slope(d3) · a − slope(d2) · ab

[a · (slope(d1)+b · (r − slope(d2))) [a · (slope(d1) − slope(d1))=0,

we have

||p(i)|| [slope(d3) · ai+slope(d2) · abi+a.

Case 2: d5 È DCcr(c2). From the definition of d3, slope(d4) [slope(d3).
Thus, we have

||p(i)|| [slope(d3) · ai+slope(d2) · abi+a.

From the assumption, d3 ¨ DCcr(c1) and slope(d3) < slope(d1). Further-
more, we have

||p1(i)|| \ slope(d1) · ai and ||p2(i)|| \ slope(d2) · abi

where p1(i)=def p(i)[1, (|c| − 1) · ai] and p2(i)=def p(i)[(|c| − 1) · ai+1, ||p(i)||].
Thus,

||p1(i)||+||p2(i)|| − ||p(i)|| \ (slope(d1) − slope(d3)) · i − a,

which implies that Condition 1 is not satisfied, a contradiction. L

Time Optimal Software Pipelining of Loops with Control Flows 365

Fig. 10. A new representation for a cycle: (a) A graph with cycles and (b) a
tree representation of c5.

Before showing that the inverse proposition also holds, we introduce a
new representation for cycles. As will be shown in Lemma 25, it is useful to
represent a cycle by a composition of given subcycles. For example, con-
sider a cycle c5 shown in Fig. 10(a), given the subcycles c1, c2, c3, and c4.
The cycle c5 can be represented by a tree shown in Fig. 10(b).

Given a cycle c, the tree representation of c, written by CT(c), can be
found by the algorithm in Appendix B. Each node in CT(c) represents a
cycle in C*. Conversely, the sequence of a cycle represented by a tree can be
found by the algorithm in Appendix C. For the sake of convenience, we
use the following notation for cycles. Given a cycle c, c(j) represents the same
cycle as c with the sequence shifted such that c(j)[i]=c[(i+j− 1 mod |c|)+1]
for 1 [i [|c|.

Lemma 25. For any cycle c in L such that c ¨ C*,

max_slope(c)= C
ci ¥ CT(c)

max_slope(ci).

Proof. For a critical dependence cycle d in c, we decompose d into
critical dependence cycles in CT(c). From Condition 2(b), d can be written
as dj p dk, (dj ¥ DCcr(cj)) where cj is a leaf node in CT(c). Then, it is
obvious that max_slope(c)=max_slope(cj)+max_slope(cŒ) where c(l)=
cj p cŒ(lŒ) for some l, lŒ, and cŒ. By applying the same argument to cŒ recur-
sively, we have max_slope(c)=;ci ¥ CT(c) max_slope(ci). L

For|C| |C| unknowns ri1, i2,...,i|C|
(1 [i1, i2,..., i|C| [|C|), we solve the

following linear system of |C*| equations in the |C| |C| unknowns.

366 Yun, Kim, and Moon

For each cycle c=cj1
p cj2

p · · · p cjk
¥ C*,

C
k − 1

h=0
rj(1+h − 1 mod k)+1, j(2+h − 1 mod k)+1,..., j(|C|+h − 1 mod k)+1

=max_slope(c).

By using a simple argument based on linear algebraic theorems, we
can easily show that the linear system has a solution such that every
ri1, i2,...,i|C|

is positive. (Actually, the solution is not unique and we select any
one of them.) Given ri1, i2,...,i|C|

, we can characterize the lengths of critical
dependence chains. Let M1 denote the length of the longest dependence
chain in cycles ci1 p ci2 p · · · p ci|C| − 1

(1 [i1, i2,..., i|C| [|C|) and let M2 denote
the length of the longest dependence chain in simple paths in L.

Lemma 26. Given a path p=ps p ci1
p ci2

p · · · p cik
p pf in L where

k \ |C|, cij
¥ |C| for all 1 [j [k and both ps and pf are simple paths, let

M3 be

C
k − |C|

h=0
ri1+h, i2+h,..., i|C|+h

.

Then, M3 [||p|| [M1+2 · M2+M3.

Proof. Let cŒ=ci|C|
p ci|C|+1 p · · · p cik

. Then, max_slope(cŒ) is equal to
M3 by Lemma 25. Therefore, we have

||p|| [||ps ||+||ci1
p ci2

p · · · p ci|C| − 1
||+||ci|C|

p ci|C|+1
p · · · p cik

||+||pf ||

[M2+M1+M3+M2=M1+2 · M2+M3.

Similarly,

||p|| \ ||ci|C|
p ci|C|+1

p · · · p cik
||=M3. L

From Lemma 26, we can compute the constants B1, B2, and B3 in
Condition 1.

Lemma 27. If B1 is selected as 2 · M1+4 · M2, Condition 1(a) is
satisfied.

Proof. For a path p=ps p ci1
p ci2

p · · · p cik
p pf in L we split p into

two subpaths p1 and p2. Then, p1 and p2 can be written as

p1=ps1
p ci1

p · · · p cil
p pf1

and p2=ps2
p cil+2

p · · · p cik
p pf2

.

Time Optimal Software Pipelining of Loops with Control Flows 367

By Lemma 26, we have

||p1 ||+||p2 || − ||p|| [1M1+2 · M2+ C
l − |C|

h=0
ri1+h, i2+h,..., i|C|+h

2

+1M1+2 · M2+ C
k − |C|

h=l+1
ri1+h, i2+h,..., i|C|+h

2

−1 C
k − |C|

h=0
ri1+h, i2+h,..., i|C|+h

2 [2 · M1+4 · M2. L

Lemma 28. If B2 and B3 are selected as

B2=max{|c|/ri1, i2,..., i|C|
| c ¥ C*, 1 [i1, i2,..., i|C| [|C|}

B3=2 · LC

where LC is the length of the longest simple cycle in L, Condition 1(b) is
satisfied.

Proof. For a path p=ps p ci1
p ci2

p · · · p cik
p pf in L,

|p| [C
k

h=1
(|cih

| − 1)+2 · LC

[C
k − |C|

h=0

1 |cih
|

ri1+h, i2+h,..., i|C|+h

· ri1+h, i2+h,..., i|C|+h
2+B3 − k

[B2 · C
k − |C|

h=0
ri1+h, i2+h,..., i|C|+h

+B3

[B2 · ||p||+B3. (By Lemma 26.) L

Note that all the constants B1, B2, and B3 can be computed in finite time.

Lemma 29. If a loop L satisfies Condition 2, it also satisfies Con-
dition 1.

Proof. Directly from Lemmas 27 and 28. L

Theorem 30. Condition 1 is decidable.

Proof. From Lemmas 24 and 29, Condition 1 is equivalent to Con-
dition 2, whose decision procedure is obvious from the given expres-
sion. L

368 Yun, Kim, and Moon

5. TIME OPTIMAL SOFTWARE PIPELINING ALGORITHM

In this section, we present a software pipelining algorithm that com-
putes a time optimal parallel program for loops satisfying Condition 1.
(The result in this section also serves as the proof for the sufficient part of
Theorem 13.) The time-optimal software pipelining algorithm is mostly
based on the algorithm by Aiken et al., (3) the latest version of Perfect
Pipelining. (2) We first present the software pipelining algorithm by explain-
ing our modifications to Aiken’s algorithm. Then, we prove that the output
of the algorithm is a time optimal parallel program if the input loop satis-
fies Condition 1.

5.1. The Algorithm

In this section, without loss of generality, we assume that every opera-
tion takes 1 cycle to execute. An operation that takes k cycles can be trans-
formed into a chaining of k unit-time delay pseudo operations, which can
be safely eliminated after scheduling. We assume that an arbitrary but fixed
loop L satisfies Condition 1.

Before scheduling, a sequential loop is unrolled infinite times to form
an infinite (but recursive) CFG and then the infinite CFG is incremen-
tally compacted by semantic-preserving transformations of Percolation
Scheduling. (23) During scheduling, the algorithm finds equivalent nodes n
and nŒ in the infinite CFG, deletes the infinite sub-graph below nŒ, and
adds backedges from the predecessors of nŒ to n. In this way, the infinite
CFG eventually becomes a finite parallel graph.

Aiken’s original algorithm does not handle false dependences appro-
priately. (3) An operation node which is blocked by the false dependences
but not by true dependences may not be available for scheduling. To
compute a time optimal solution, the false dependences should be over-
come so that the parallel schedule is constrained by the true dependences
only. We modify Aiken’s original algorithm such that the infinite CFG is
put into the static single assignment (SSA) form Ref. 8, the SSA form is
software pipelined into a finite parallel graph, and then the finite parallel
graph is translated back out of the SSA form.

By translating into the SSA form, the false dependences are completely
eliminated because every variable is defined by exactly one operation.
Moreover, extra f-functions do not incur additional true dependences
because the operations that use the target registers of the f-functions can
always be combined with the f-functions and be moved above the
f-functions. In Fig. 11, y=x3+1 is to be scheduled above x3=f(x1, x2).
The operation y=x3+1 is combined with x3=f(x1, x2) and split into

Time Optimal Software Pipelining of Loops with Control Flows 369

Fig. 11. Scheduling above a f-function at the join point.

y=x1+1 and y=x2+1. Furthermore, to maintain the SSA form even after
code motion above the join point, a new f-function is introduced at the
join point. In Fig. 11, two y definitions are replaced by the y1 and y2
definitions and a new f-function, y=f(y1, y2), is added.

If an operation is not true-dependent on any operations (except
f-functions) in a path, it can always be moved along the path even if it is
not free from the false dependences in the original program. When
translating a software pipelined program out of the SSA form, some copies
may remain, but all the unremovable copy operations can be executed
concurrently with any operations that are dependent on the copy opera-
tions.

Before describing the algorithm, we define some additional notations.
Let L. represent the infinite recursive graph obtained by unrolling L

infinite times. For a node n in L, let n i denote the corresponding node in
the ith unrolled copy of L in L.. For a set X of nodes in L., X j is
defined to be the set {n i+j | n i ¥ X}. Two sets of nodes in L., X1 and X2,
are said to be equivalent if X1 — Xk

2 for some k.
The proposed time-optimal software pipelining algorithm begins with

an acyclic infinite CFG L., and successively transforms L. into LSP

which consists of parallel groups. Figure 12 describes the overall processing
steps of the software pipelining algorithm. The procedure Software_
Pipeline calls the Schedule_Parallel_Group procedure (Appendix A.1)
to build a parallel group, and to build parallel groups for all the branches
of that group. If at any point the algorithm encounters the equivalent set of
available operation nodes in the second time, it uses the previously sched-
uled parallel group.

Before building a parallel group, the Compute_Available_Operations
procedure (Appendix A.2) is invoked to compute the set of all available
operation nodes that can move into the parallel group without violating the

370 Yun, Kim, and Moon

Fig. 12. The time-optimal software pipelining algorithm.

Time Optimal Software Pipelining of Loops with Control Flows 371

true dependences.10 In our algorithm, every operation node that is not

10 This procedure is functionally equivalent to the same procedure in Moon’s algorithm. (22)

blocked by the true dependences is always available for scheduling. As in
Ref. 3, we impose additional constraint on available operations: operations
are available at most k iterations. The predetermined constant k is called a
sliding window (3) and it guarantees the termination of the while loop in the
Software_Pipeline procedure.

Once the available operation nodes are computed, the Schedule_
Parallel_Group procedure repeatedly moves the operation nodes into a
group boundary. (22) 11 When a branch operation node is moved, the group

11 Since the transformations in the Schedule_Parallel_Group procedure can be imple-
mented using transformations described in Moon’s algorithm whose correctness has been
already proved, (22) they preserve program semantics.

boundary is split into multiple boundaries. When moving up an operation
node, f-functions may be encountered. In this case, the scheduled opera-
tion node is combined with the f-functions as described in the Combine_
Source_Registers procedure (Appendix A.3).

From the greediness of the algorithm, along with our modifications in
the renaming framework (which has the effect of removing the false
dependences), the algorithm exhibits the following property.

Lemma 31. Let LSP be the result of the software pipelining algo-
rithm with the sliding window of k iterations. Then, for an effective node
instance n in an execution path pe, sp in LSP such that y(n) > 1, there must
exist an effective node instance n − in pe, sp such that

y(n −)=y(n) − 1 N (b(n −) O b(n) K it(b(n)) − it(b(n −)) > k).

Proof. Suppose that such n − does not exist and consider the execu-
tion snapshot of the Software_Pipeline procedure when the set of avail-
able operations for the predecessor parallel group W of b(n) is computed.
For some path from the group boundary of W to b(n), there cannot exist
any node on which b(n) is true-dependent. Otherwise, some node on which
b(n) is true-dependent should be scheduled into W so that b(n) can be
scheduled into the successor parallel group of W, which contradicts the
assumption.

Furthermore, it(b(n)) can exceed min{it(n') | n' ¥ W} at most by k.
Therefore, when the parallel group W is built, the Compute_Available_
Operations procedure computes b(n) as available and b(n) must be
scheduled into W, a contradiction. L

372 Yun, Kim, and Moon

5.2. Time Optimality of the Algorithm

The software pipelining algorithm described in Fig. 12 always gener-
ates time optimal parallel programs for loops that satisfy Condition 1. The
proof is based on the greediness of the algorithm. Before presenting the
time optimality proof, we prove some miscellaneous properties stated in
Lemmas 32 and 33. (Recall that we have assumed that L satisfies Condi-
tion 1 and that every operation takes 1 cycle to execute.)

Lemma 32. For a path p in L and 1=i1 < i2 < · · · < il [|p|,

C
l − 1

j=1
||p[ij, ij+1]|| [||p||+(l − 2) · (B1+1).

Proof.

||p|| \ ||p[i1, i2]||+||p[i2+1, il]|| − B1

\ ||p[i1, i2]||+||p[i2, il]|| − 1 − B1

\ ||p[i1, i2]||+(||p[i2, i3]||+||p[i3, il]|| − 1 − B1) − 1 − B1

\ · · · \ C
l − 1

k=1
||p[ik, ik+1]|| − (l − 2) · (B1+1). L

Lemma 33. For node instances n1 and n2 in a path p in L such that
it(n2) − it(n1) > k,

||p[pos(n1), pos(n2)]|| \ ! (L − 1) · k+1 − B3

B2

"

where L is the length of the shortest cycle in L.

Proof. Since n1 and n2 are separated by more than k iterations, the
number of node instances between them is at least (L − 1) · k. Thus, from
Condition 1(b), we have

||p[pos(n1), pos(n2)]|| \ !pos(n2) − pos(n1)+1 − B3

B2

"

\ ! (L − 1) · k+1 − B3

B2

". L

Time Optimal Software Pipelining of Loops with Control Flows 373

We are now ready to prove the time optimality of the software
pipelining algorithm. The Software_Pipeline procedure requires the size
of sliding window as an input parameter. To achieve the time optimality,
we select the sliding window size as

WS=!2 · B2 · (B1+1)+B3

L − 1
" (2)

where L is the length of the shortest cycle in L.

Lemma 34. Let LSP be the result of the software pipelining algo-
rithm with the sliding window of WS iterations. Then LSP is time optimal.

Proof. It suffices to show that for an arbitrary but fixed execution
path pe, sp in LSP, y(t(pe, sp)[|pe, sp|])=||a(pe, sp)||. Let p denote a(pe, sp) and
GD(ND, ED) be a directed graph such that ND is the set of node instances in
t(p) and ED=E −

D 2 E'

D where

E −

D={(n1, n2) | n1 O n2} and E'

D={(n1, n2) | it(n2) − it(n1) > WS}.

We first show that the length of the longest path in GD is equal to the
length of the longest path in G −

D(ND, E −

D), the subgraph of GD induced
by E −

D. Suppose that there exists a path pD=n1 Q n2 Q · · · Q nh in GD

whose length is larger than the length of the longest path in G −

D (which is equal
to ||p||). Then, there must exist s(\ 1) edges (ni1

, ni1+1),...,(nis
, nis+1)

(i1 < i2 < · · · < is) in pD that come from E'

D. So, we have

||p|| < |pD|=i1+ C
s−1

j=1
(ij+1 −ij)+h−is

[||p[1, pos(ni1)]||+ C
s−1

j=1
||p[pos(nij+1

), pos(nij+1
)]||+||p[pos(nis+1), ||p||]||.

(3)

From Lemma 32, we have

||p|| \ ||p[1, pos(ni1
)]||+ C

s − 1

j=1
||p[pos(nij+1), pos(nij+1)]||

+||p[pos(nis+1), ||p||]||+ C
s

j=1
||p[pos(nij

), pos(nij+1)]|| − 2s · (B1+1).
(4)

374 Yun, Kim, and Moon

From (3) and (4), we have

C
s

j=1
||p[pos(nij

), pos(nij+1)]|| < 2s · (B1+1). (5)

Since (nij+1, nij
) ¥ E'

D, it(nij+1) − it(nij
) > WS.

Therefore, by Lemma 33, we have for all 1 [i [s

||p[pos(nij
), pos(nij+1)]|| \ ! (L − 1) · WS+1 − B3

B2

" \ 2 · B1+2,

which contradicts (5). So the assumption is false and the length of the
longest path in GD is equal to the length of the longest path in G −

D, which is
equal to ||p||.

Let s(n) denote the length of the longest path in GD that reaches n.
For 1 [i [||pe, sp||, we are to show that

y(t(pe, sp)[i]) [s(b(t(pe, sp)[i]))

when t(pe, sp)[i] is an effective node instance. The proof is by induction
on i. Let m be the largest integer such that y(t(pe, sp)[i])=1. Then, the
proposition holds trivially for all 1 [i [m. For the induction step, assume
that the proposition holds for all 1 [j < i. By Lemma 31, there must exist
iŒ < i such that

t(pe, sp)[iŒ] is an effective node instance and

y(t(pe, sp)[iŒ])=y(t(pe, sp)[i]) − 1 and

b(t(pe, sp)[iŒ]) O b(t(pe, sp)[i]) K it(b(t(pe, sp)[i])) − it(b(t(pe, sp)[iŒ])) > WS.
(6)

In any cases, (b(t(pe, sp)[iŒ]), b(t(pe, sp)[i])) ¥ E'

D. Therefore, by the defi-
nition of s, we have

s(b(t(pe, sp)[i])) \ s(b(t(pe, sp)[iŒ]))+1. (7)

From (6), (7), and the induction hypothesis, we have

y(t(pe, sp)[i])=y(t(pe, sp)[iŒ])+1

[s(b(t(pe, sp)[iŒ]))+1 [s(b(t(pe, sp)[i])).

Time Optimal Software Pipelining of Loops with Control Flows 375

Therefore, we have

y(t(pe, sp)[k]) [s(b(t(pe, sp)[k]))=||p||

where k is the largest integer such that t(pe, sp)[k] is an effective node
instance.

To finish the proof, we need to show that redundant node instances do
not affect the length of the schedule. Effective node instances are not
dependent on redundant node instances. Furthermore, there cannot exist a
redundant node instance following the last effective node instance. This is
because every node instance following the last effective branch node
is guaranteed to be effective by the dead code elimination after the
scheduling. L

From Lemma 34, we can state the following theorem.

Theorem 35. Condition 1 is a sufficient condition for L to have an
equivalent time optimal program.

From Lemma 34, the algorithm in Fig. 12 is a time-optimal software
pipelining algorithm, provided that the size of sliding window is comput-
able. From Lemmas 27 and 28, B1, B2, and B3 can be computed in a finite
number of steps. The size of sliding window can be directly computed
from (2). So, we have the following theorem.

Theorem 36. There exists a software pipelining algorithm that com-
putes time optimal programs for loops that satisfy Condition 1.

6. A PRACTICAL SOFTWARE PIPELINING ALGORITHM

In this section, we present a more practical software pipelining algo-
rithm. The software pipelining algorithm uses an intermediate program
representation called non-deterministic control flow graph (NCFG)12 pro-

12 Milicev used the term ‘‘predicate matrix.’’ For the rest of the paper, we use ‘‘NCFG’’
instead of ‘‘predicate matrix,’’ since the former is much more intuitive.

posed by Milicev. (20) As shown in Fig. 13, the original control flow graph
(CFG) of a loop (Fig. 13(a)) is transformed into an NCFG (Fig. 13(b)) and
the software pipelining algorithm is applied to the NCFG. Then, the
software pipelined NCFG (Fig. 13(c)) is transformed back into an equiva-
lent CFG (Fig. 13(d)). In Section 6.2, we present a software pipelining
algorithm that computes a time optimal NCFG for every loop satisfying

376 Yun, Kim, and Moon

a new condition, which is a stronger version of the Time Optimality Condition.
Before describing the software pipelining algorithm, we first explain the NCFG.

6.1. Nondeterministic Control Flow Graph

The NCFG can be understood as a nondeterministic version of the
standard control flow graph (CFG).13 There is a one-to-one correspon-

13 We apply the notations and definitions explained in Sections 2 and 4.4 to the NCFG as well.

dence between NCFGs and CFGs, as is the case with nondeterministic
finite automata (NFA) and deterministic finite automata (DFA). Given a
CFG G of a loop (before software pipelining), let P s={p s

1, p s
2,...} represent

the set of all the acyclic paths starting from the loop header to a predeces-
sor of the loop header or a loop exit. Then the corresponding NCFG
GNCFG is simply defined as follows:

NNCFG={ni, j | 1 [i [|Ps|, 1 [j [li}

ENCFG={(ni, j, ni, j+1) |1 [i [|Ps|, 1 [j < li} 2 {(ni, li , niŒ, 1) | 1 [i, iŒ < |Ps|},

where li=|p s
i | and ni, j has the same attributes as p s

i [j] (e.g., op, regW and
regsR). The path Oni, 1, ni, 2,..., ni, |li |P forms a nondeterministic basic block
(NBB), which is denoted by bi. Each node n ¥ NNCFG belongs to exactly
one NBB and the NBB is addressed by b(n). An NCFG can be abstracted
into an NBB-graph GNBB whose nodes are the NBBs of the NCFG. Ini-
tially, GNBB is a complete graph.

The CFG in Fig. 13(a) has two acyclic paths from the loop header to
its predecessor and they correspond to two NBBs of the NCFG in
Fig. 13(b). Informally, if a node is contained in more than one path of the
CFG, it is copied into the corresponding NBBs of the NCFG.

The original NCFG is expanded by the split transformation. The
original NCFG GNCFG is transformed into a k-level split NCFG GNCFG

k by
splitting each NBB of GNCFG into |NNBB|k copies. Since each copy of an
NBB contains the same operations, we describe the NBB-graph GNBB

k of
GNCFG

k to define the split transformation:

NNBB
k ={bm

i | 1 [i [|NNBB|, 1 [m [|NNBB|k}

ENBB
k =3(bm

i , bmŒ

iŒ) | mŒ=|NNBB|k − 1 · (i − 1)+! m − 1
|NNBB|

"+14 .

Figures 14(a) and 14(b) show an NCFG GNCFG and its 1-level split version,
GNCFG

1 .

Time Optimal Software Pipelining of Loops with Control Flows 377

Fig. 13. (a) A CFG before scheduling, (b) its corresponding NCFG, (c) the software-
pipelined NCFG, and (d) the (time-optimally) software-pipelined CFG. (Solid lines and
dashed lines represent control flows and dependences, respectively. Each shaded region repre-
sents a parallel group.)

A software-pipelined NCFG is transformed back into an executable
CFG, (20) which is similar to the NFA-to-DFA transformation. A nice
property of an NCFG is that the execution time of any path in the NCFG
is equal to that in the corresponding CFG. Therefore, it suffices to build a
time-optimally software pipelined NCFG.

6.2. The Software Pipelining Algorithm

As with several software pipelining algorithms based on modulo
scheduling, our software pipelining algorithm decouples the computation

378 Yun, Kim, and Moon

Fig. 14. An example of split transformation.

of a schedule and code motions. After computing a schedule, the code
motions that are implicit in the schedule are ascertained subsequently.

The scheduling algorithm first determines the latency of each NBB of
the NCFG based on linear algebraic theorems and then computes each
operation’s time offset from the beginning of its NBB. Informally, the
latency of an NBB can be understood as the initiation interval (II). For
example, the latency of the left NBB of the NCFG in Fig. 13(b) is the II of
the left path of the CFG in Fig. 13(a). We denote the latency of an NBB b
by r(b) and the time offset of n ¥ NNCFG by s(n). Given an execution path p
and a set of the latencies and the time offsets, the execution time of p[k] is
given by

y(t(p)[k])= C
|bp(p[1, k])| − 1

l=1
r(bp(p)[l])+s(p[k]) (8)

where bp(p) denotes a path in the NBB-graph which corresponds to p in
the NCFG graph. Thus, by determining the latencies and the time offsets,
we essentially build a software-pipelined schedule.

The latencies of NBBs are determined such that, for any simple cycle c
in the NBB-graph, the sum of the latencies of NBBs in c is equal to the
slope of the critical dependence cycle in the corresponding cycle c in the

Time Optimal Software Pipelining of Loops with Control Flows 379

NCFG, i.e., ; |c| − 1
i=1 r(c[i])=max_slope(c). We call such a tuple of latencies

as a tight tuple. However, a tight tuple does not always exist because the
number of equations may be larger than the number of variables (the
unknown latencies). This can be resolved by the split transformation, which
increases the number of NBBs (equivalently, the variables).

The split transformation also increases the number of simple cycles in
the NBB-graph incurring additional equations. But, some of the newly
introduced equations may be linearly dependent on other equations and,
consequently, the number of variables may exceed the number of equa-
tions. In Fig. 14(a), there are three simple cycles in the NCFG but only two
nodes in NCFG. Therefore, no solution exists for the linear equations

r(b1)=3, r(b2)=2, r(b1)+r(b2)=4.

After splitting with k=1, the number of variables increases to four but all
the newly introduced linear equations are linearly dependent on the origi-
nal equations. The new linear equations are

r(b1
1)=3, r(b2

2)=2, r(b2
1)+r(b1

2)=4,

r(b1
1)+r(b2

1)+r(b1
2)=7, r(b2

2)+r(b2
1)+r(b1

2)=7,

r(b1
1)+r(b2

1)+r(b2
2)+r(b1

2)=9

and (r(b1
1), r(b2

2), r(b2
1), r(b1

2))=(3, 2, 2, 2) is a solution. Note that the
linear dependence comes from the strong dependence relation y between
dependence cycles. If the following condition is satisfied, we can always
compute a tight tuple:

Condition 3.

(a) For any simple cycle c in GNCFG, DC(c) is not empty and

(b) For each simple cycle ci in GNCFG, there exists a dependence cycle
di ¥ DCcr(ci) such that dj y dk for every pair of simple cycles cj

and ck.

Given an NCFG that satisfies Condition 3, the optimal software-
pipelined schedule can be computed by the algorithm in Fig. 15.

Lemma 37. The schedule computed by Compute_Schedule meets
dependence constraints.

380 Yun, Kim, and Moon

Proof. We would like to show that

-p -k, kŒ(k < kŒ) s.t. p[k] Op[k, kŒ] p[kŒ],

y(t(p)[k])+d(p[k]) [y(t(p)[kŒ]).
(9)

By virtue of the longest path inequalities, we have

s(p[k])+r((p[k], p[kŒ])) [s(p[kŒ]), which implies

s(p[k])+d(p[k]) − d((p[k], p[kŒ])) · r(b(p[k])) [s(p[kŒ]). (10)

Fig. 15. The algorithm to compute a software-pipelined schedule.

Time Optimal Software Pipelining of Loops with Control Flows 381

Therefore, we have

y(t(p)[k])+d(p[k]) − y(t(p)[kŒ])

= C
|bp(p[1, k])| − 1

l=1
r(bp(p)[l])+s(p[k])+d(p[k])

− C
|bp(p[1, kŒ])| − 1

l=1
r(bp(p)[l]) − s(p[kŒ])

=− C
|bp(p[1, kŒ])| − 1

l=|bp(p[1, k])|
r(bp(p)[l])+s(p[k]) − s(p[kŒ])+d(p[k])

[− C
|bp(p[1, kŒ])| − 1

l=|bp(p[1, k])|
r(bp(p)[l])+d((p[k], p[kŒ])) · r(b(p[k])). (11)

If b(p[k]) — b(p[kŒ]), we have

y(t(p)[k])+d(p[k]) − y(t(p)[kŒ])

[d((p[k], p[kŒ])) · r(b(p[k]))=0 · r(b(p[k]))=0.

Otherwise, we have

y(t(p)[k])+d(p[k]) − y(t(p)[kŒ])

[− r(b(p[k]))+d((p[k], p[kŒ])) · r(b(p[k]))

=−r(b(p[k]))+1 · r(b(p[k]))=0.

So, the schedule meets dependence constraints. L

Given a schedule, operation nodes are moved by the algorithm in
Fig. 16. The procedure Move_Code first initializes each NBBs and invokes
the Move_op procedure for each operation nodes. The procedure Move_op
places each operation node such that the execution time of each operation
instance becomes Eq. (8). From the definition of the tight tuple of latencies
of NBBs, it can be easily seen that the software-pipelined NCFG is time-
optimal.

7. EXPERIMENTAL RESULTS

In order to evaluate how practical the proposed software pipelining
algorithms are, we have performed several experiments using a SPARC-
based VLIW testbed. (24) We used 1317 innermost loops (with control flows)
extracted from SPEC95 integer benchmark programs. We considered loops

382 Yun, Kim, and Moon

Fig. 16. The algorithm to move operations in NCFG.

with up to 64 operations. We assumed that load operations take three
cycles while all the other operations take one cycle.

Figure 17(a) explains an overview of experimental scenario. In the first
experiment (i.e., E1 in Fig. 17(a)), we measured how many loops satisfy
Condition 2 (i.e., the Time Optimality Condition). Because the computa-
tion of Condition 2 may require excessive time,14 we set the upper bound

14 The problem of determining if Condition 2, i.e., the Time Optimality Condition, is satisfied
or not can be easily proved to be NP-hard by reducing from the 3-satisfiability problem.

Tth on computing Condition 2. If the computation takes longer than Tth, the
computation gives up, assuming that a loop does not satisfy Condition 2.
When Tth was set to be 30 seconds, we could not determine Condition 2

Time Optimal Software Pipelining of Loops with Control Flows 383

L1 L2
L3

L4 L5

(a)

CPU time
> Tth ?

E1: Compute
Condition II

Satisfy?

L1 L2

No

E2: Compute
Condition III

Yes
Satisfy?

L3

No

E3: Apply
optimal SP
algorithm

Yes

CPU time
> Tth ?

Yes

No

E4: Measure
resource

requirement

No

L5

L4

Yes

(b)

L1: 3.7% L2: 7.2% L3: 9.9% L4: 2.4% L5: 76.8%

Fig. 17. (a) Experiment scenario and (b) loop classification based on the experimental
results. (The area of each region roughly represents the relative size of the corresponding set
of loops when Tth=30 seconds.)

within the threshold time for about 3.7% of 1317 loops tested. In
Fig. 17(a), the set of such loops is denoted by L1. Among the loops for
which Condition 2 can be checked within Tth, 92.5% of them satisfied
Condition 2. (That is, 89.1% of the loops tested satisfied Condition 2.)

Next, we turned our attention on the practicality of the practical
software pipelining algorithm presented in Section 6. In the second exper-
iment (i.e., E2 in Fig. 17(a)), we measured how many loops satisfy Condi-
tion 3 (i.e., the stronger version of the Time Optimality Condition pre-
sented in Section 6). Unlike the first experiment (i.e., E1), we could deter-
mine Condition 3 within the threshold time for all the loops (except those
in L1 and L2) since Condition 3 can be more efficiently evaluated. In the
experiment, 79.2% of total loops satisfy Condition 3, which indicates that
Condition 3 does not impose a much additional constraint on Condi-
tion 2. In Fig. 17(a), L3 represents the set of loops that do not satisfy
Condition 3.

384 Yun, Kim, and Moon

Table I. Resource Requirement for Optimally Software-Pipelined Programs.

% of Loops

of FUs [8 9–12 13–16 > 16 Total

[32 39.5 8.2 8.0 13.2 68.9
of 33–64 3.2 3.1 5.3 15.1 26.7
Regs. > 64 0 0 0.3 4.1 4.4

Total 42.7 11.3 13.6 32.4 100

In the third experiment (i.e., E3 in Fig. 17(a)), we applied the proposed
practical software pipelining algorithm to the loops satisfying Condition 3
and measured the running time of the algorithm. In rare cases, the algo-
rithm did not run within the threshold time Tth. In Fig. 17(a), the set of
such loops is denoted by L4 and the set of loops for which optimally
software pipelined loops are computed within Tth is denoted by L5, respec-
tively. The portion of loops belonging to L4 and L5 are 2.4% and 76.8%
(of total loops), respectively. Figure 17(b) summarizes graphically the
results of three experiments, E1, E2, and E3.

In the final experiment (i.e., E4 in Fig. 17(a)), we were concerned with
the resource requirement of optimally software pipelined loops (in L5). We
measured the number of functional units and the number of registers in the
optimally software-pipelined programs and the results are summarized in
Table I.15 (We assumed homogeneous FUs.) Among the loops in L5, 42.7%

15 In counting the number of FUs, we omitted copy operations used for renaming. Most of the
renaming copy operations can be eliminated by post-pass optimizations such as copy propa-
gation or register coalescing after unrolling, (17) which is applicable even to unreducible loops.

of the loops require at most 8 FUs while only 32.4% of the loops require
more than 16 FUs. We believe that the resource requirement can be further
reduced if the proposed software pipelining algorithm is augmented by post-
pass local code motions (e.g., moving operations in non-critical dependence
chains). For the register requirement, we obtained more positive results,
95.6% of the loops require at most 64 registers. Furthermore, for 68.9% of
the loops, 32 registers were sufficient without causing any spill.

Our experimental results show that a significant portion of real loops
have their time-optimal software-pipelined programs. Furthermore, the
time-optimal programs can be computed with realistic levels of hardware
support within a reasonable time limit.

Time Optimal Software Pipelining of Loops with Control Flows 385

8. CONCLUSION AND FUTURE WORK

In this paper, we presented a necessary and sufficient condition for
loops with control flows to have their equivalent time optimal programs
and described how to compute the condition. We also presented a software
pipelining algorithm that computes a time optimal solution for every
eligible loop satisfying the condition. The results solve two fundamental
open problems on time optimal software pipelining of loops with control
flows.

As a practical alternative, we presented a more practical optimal
software pipelining algorithm which covers most eligible loops and runs
faster with less code expansion and less resource requirement. Our experi-
mental results strongly indicates achieving the optimality in the software-
pipelined programs is a viable goal in practice with reasonable hardware
support. As a future work, we are interested in developing a resource-con-
strained near-optimal software pipelining algorithm guided by the results
shown in this paper.

APPENDIX A: SOFTWARE PIPELINING SUBROUTINES

A.1. Algorithm for Building a Parallel Group

procedure Schedule_Parallel_Group(LŒ, ndummy, A, frontiers)
boundaries :={ndummy}
sort elements in A by the priority order
foreach (n ¥ A)

make LŒ delete consistent for (r, n)
nnew :=Combine_Source_Registers(LŒ, ndummy, n)
if (n is an assigment)

foreach (non-blocking ni ¥ duplicates(n))
replace every (nŒ, ni) by (nŒ, succ(ni)) and delete ni

end foreach
insert nnew above ndummy

else /* n is a branch */
duplicate the subgraph induced by nodes in paths

from ndummy to preds(n)
boundaries :=boundaries 2 {the duplicate of ndummy}
replace (nŒ, n) by (nŒ, succF(n)) for every nŒ ¥ preds(n)
insert (nœ, succT (n)) for every duplicate nœ of nŒ ¥ preds(n)

386 Yun, Kim, and Moon

replace (np, ndummy) by (np, nnew)
succF(nnew) :=ndummy

succT(nnew) :=the duplicate of ndummy

end if
end foreach
foreach (nb ¥ boundaries)

frontiers :=frontiers 2 {(np, nb)}
end foreach

end procedure

A.2. Algorithm for Computing Available Operations

procedure Compute_Available_Operations(LŒ, ndummy, window_size)
min_it :=it(succ(ndummy))
A :={}
foreach (n s.t. n is reachable from ndummy and it(n) < min_it+
window_size)

if (, ndummy M
p n s.t. n is not blocked along p)

A :=A 2 {n}
end if

end foreach
return A

end procedure

A.2. Algorithm for Combining Source Registers with f-Functions

procedure Combine_Source_Registers(LŒ, ndummy, n)
nŒ :=any non-blocking duplicate of n
p :=any path from ndummy to nŒ

nr :=create a duplicate of n
for (i :=|p| to 1)

if (p[i] is a f-function)
combine nr with p[i]

end if
end for
return nr

end procedure

Time Optimal Software Pipelining of Loops with Control Flows 387

APPENDIX B: ALGORITHM FOR BUILDING A CYCLE TREE

procedure build_cycle_tree(c, C={c1, c2,...})
/* c: the cycle to decompose, C: the set of simple cycles */
covered[1..|c| − 1] :={F,...,F}
V[CT(c)] :={}
E[CT(c)] :={}
while (,i, covered[i] — F)

j :=1
for (k :=1 to |c| − 1)

if (covered[k] — F)
orig_index[j] :=k
remained[j++] :=c[k]

end if
end for
find the smallest l and m (l < m < j) such that remained[l] —

remained[m]
find r and s such that

cr(s) — Oremained[l], remained[l+1],..., remained[m]P
V[CT(c)] :=V[CT(c)] 2 Ocr(s), [orig_index[l], orig_index[m]]P
for (k :=l to m − 1)

covered[orig_index[k]] :=T
end for

end while
foreach (x1=Ocr1 (s1), [j1, k1]P, x2=Ocr2

(s2), [j2, k2]P ¥ V[CT(c)])
if (j1 < j2 N k1 > k2)

E[CT(c)] :=E[CT(c)] 2 [(x1, x2)
end if

end foreach
foreach ((x1, x2) ¥ E[CT(c)])

if (,x3, (x1, x3), (x3, x2) ¥ E[CT(c)])
E[CT(c)] :=E[CT(c)]− (x1, x2)

end if
end foreach
root[CT(c)] :=the unique node with no in-edge
return CT(c)

end procedure

388 Yun, Kim, and Moon

ALGORITHM C: ALGORITHM FOR FINDING THE CYCLE FROM A

CYCLE TREE

procedure found_sequence(T, C={c1,...})
/* T: the tree corresponding to a cycle, C: the set of simple cycles */

sequence[1..M]/* where root[T]=Ox, [1, M]P*/
post_order(root[T], sequence, 1)
return Osequence[1], sequence[2],..., sequence[M]P

end procedure

procedure post_order(n, sequence, i)
Oc, [i1,i2]P :=n/*it must be i — i1*/
for (j :=1 to outdeg(n))
OcŒ, [k1, k2]P :=child(n, j)
for (l :=i to k1 − 1)

sequence[l] :=c[i1++]
end for
i=post_order(child(n, j), sequence, k1)

end for
for (j :=i to i2 − 1)

sequence[j] :=c[i1++]
end for
return i2

end procedure

ACKNOWLEDGMENTS

We would like to thank anonymous referees for their helpful com-
ments and suggestions. This work was supported by Grant No. R01-2001-
00360 from the Korea Science and Engineering Foundation. The RIACT
at Seoul National University provides research facilities for the study.

REFERENCES

1. A. Aiken and A. Nicolau, Optimal Loop Parallelization, in Proc. of the ACM SIGPLAN
’88 Conference on Programming Language Design and Implementation, pp. 308–317 (1988).

2. A. Aiken and A. Nicolau, Perfect Pipelining, in Proc. of the Second European Symposium
on Programming, Lecture Notes in Computer Science, Vol. 300, Springer-Verlag,
pp. 221–235 (1988).

3. A. Aiken, A. Nicolau, and S. Novack. Resource-Constrained Software Pipelining, IEEE
Trans. Parall. Distr. 6(12):1248–1270 (1995).

Time Optimal Software Pipelining of Loops with Control Flows 389

4. J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, Conversion of Control Depen-
dence to Data Dependence, in Proc. of the 10th ACM Symposium on Principles of Pro-
gramming Languages, pp. 177–189 (1983).

5. E. R. Altman, R. Govindarajan, and G. R. Gao, Scheduling and Mapping: Software
Pipelining in the Presence of Structural Hazards, in Proc. of the ACM SIGPLAN ’95
Conference on Programming Language Design and Implementation, pp. 139–150 (1995).

6. P.-Y. Calland, A. Darte, and Y. Robert, Circuit Retiming Applied to Decomposed
Software Pipelining, IEEE Trans. Parall. Distr. 9(1):24–35 (1998).

7. L.-F. Chao and E. Sha, Scheduling Data-Flow Graphs via Retiming and Unfolding,
IEEE Trans. Parall. Distr. 8(12):1259–1267 (1997).

8. R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck, Efficiently Computing
Static Single Assignment Form and the Control Dependence Graph, ACM Trans. Progr.
Lang. Sys. 13(4):451–490 (1991).

9. K. Ebcioğlu, Some Design Ideas for a VLIW Architecture for Sequential Natured Soft-
ware, in Proc. of IFIP WG 10.3 Working Conference on Parallel Processing, pp. 3–21
(1988).

10. J. Farrante, K. Ottenstein, and J. Warren. The Program Dependence Graph and Its Use
in Optimization, ACM Trans. Progr. Lang. Sys. 9(3):319–349 (1987).

11. F. Gasperoni and U. Schwiegelshohn, Generating Close to Optimum Loop Schedules on
Parallel Processors, Parallel Process. Lett. 4(4):391–403 (1994).

12. F. Gasperoni and U. Schwiegelshohn, Optimal Loop Scheduling on Multiprocessors:
A Pumping Lemma for p-Processor Schedules, in Proc. of the 3rd Interna-tional Con-
ference on Parallel Computing Technologies, pp. 51–56 (1995).

13. F. Gasperoni and U. Schwiegelshohn, List Scheduling in the Presence of Branches:
A Theoretical Evaluation, Theoret. Comput. Sci., 196(2):347–363 (1998).

14. R. Govindarajan, E. R. Altman, and G. R. Gao. A Framework for Resource-Constrained
Rate-Optimal Software Pipelining, IEEE Trans. Parall. Distr. 7(11):1133–1149 (1996).

15. J. Janssen and H. Corporaal, Making Graphs Reducible with Controlled Node Splitting,
ACM Trans. Progr. Lang. Sys. 19(6):1031–1052 (1997).

16. D. Johnson, Finding All the Elementary Circuits of a Directed Graph, SIAM J. Comput.
4(1):77–84 (1975).

17. S. Kim, S.-M. Moon, J. Park, and K. Ebcioğlu, Unroll-based Copy Elimination for
Enhanced Pipeline Scheduling, IEEE Trans. Comput. 52(9):977–994 (2002).

18. D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. Wolfe, Dependence Graphs and
Compiler Optimizations, in Proc. of the 8th ACM Symposium on Principles of Program-
ming Languages, pp. 207–218 (1981).

19. M. Lam, Software pipelining: An Effective Scheduling Technique for VLIW Machines, in
Proc. of the ACM SIGPLAN ’88 Conference on Programming Language Design and
Implementation, pp. 318–328 (1988).

20. D. Milicev and Z. Jovanovic, Control Flow Regeneration for Software Pipelined Loops
with Conditions, Int. J. Parallel Prog. 30(3):149–179 (2002).

21. S.-M. Moon and S. Carson, Generalized Multi-Way Branch Unit for VLIW Micropro-
cessors, IEEE Trans. Parall. Distr. 6(8):850–862 (1995).

22. S.-M. Moon and K. Ebcioğlu, Parallelizing Non-Numerical Code with Selective Schedul-
ing and Software Pipelining, ACM Trans. Progr. Lang. Sys. 19(6):853–898 (1997).

23. A. Nicolau, Uniform Parallelism Exploitation in Ordinary Programs, in Proc. of the
International Conference on Parallel Processing, pp. 614–618 (1985).

24. S. Park, S. Shim, and S.-M. Moon, Evaluation of Scheduling Techniques on a SPARC-
Based VLIW Testbed, in Proc. of the 30th Annual International Symposium on
Microarchitecture, pp. 104–113 (1997).

390 Yun, Kim, and Moon

25. K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill, Dependence Flow
Graphs: An Algebraic Approach to Program Dependences, in Proc. of the 18th ACM
Symposium on Principles of Programming Languages, pp. 67–78 (1991).

26. U. Schwiegelshohn, F. Gasperoni, and K. Ebcioğlu, On Optimal Parallelization of Arbi-
trary Loops, J. Parallel. Distr. Com. 11(2):130–134 (1991).

27. S. Shim and S.-M. Moon, Split-Path Enhanced Pipeline Scheduling for Loops with
Control Flows, in Proc. of the 29th Annual Symposium on Microarchitecture, pp. 93–102
(1998).

28. A. Uht, Requirements for Optimal Execution of Loops with Tests, IEEE Trans. Parall.
Distr. 3(5):573–581 (1992).

29. D. W. Wall, Limits of Instruction-Level Parallelism, in Proc. of the 4th International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pp. 176–188 (1991).

30. N. Warter, S. Mahlke, W-M. Hwu, and B. Rau, Reverse If-Conversion, in Proc. of the
ACM SIGPLAN ’93 Conference on Programming Language Design and Implementation,
pp. 290–299 (1993).

Time Optimal Software Pipelining of Loops with Control Flows 391

	1. INTRODUCTION
	PRELIMINARIES
	A FORMALIZATION OF SOFTWARE PIPELINING
	TIME OPTIMALITY CONDITION
	TIME OPTIMAL SOFTWARE PIPELINING ALGORITHM
	A PRACTICAL SOFTWARE PIPELINING ALGORITHM
	7. EXPERIMENTAL RESULTS
	8. CONCLUSION AND FUTURE WORK
	APPENDIX A: SOFTWARE PIPELINING SUBROUTINES
	APPENDIX B: ALGORITHM FOR BUILDING A CYCLE TREE
	ALGORITHM C: ALGORITHM FOR FINDING THE CYCLE FROM A CYCLE TREE
	ACKNOWLEDGMENTS

