
Replication-Aware Leakage Management
in Chip Multiprocessors with Private L2 Caches

Hyunhee Kim
School of CSE

Seoul National University
Seoul, Korea

hh0726@davinci.snu.ac.kr

Jung Ho Ahn
Department of ICS

Seoul National University
Seoul, Korea

gajh@snu.ac.kr

Jihong Kim
School of CSE

Seoul National University
Seoul, Korea

jihong@davinci.snu.ac.kr

ABSTRACT
Power dissipation has become a critical issue in modern chip
multiprocessors (CMPs). Managing the leakage power of
their L2 caches is particularly important in realizing low-
power CMPs because most CMPs employ large L2 caches
to hide the performance gap between processors and an off-
chip memory while leakage power becomes a major portion
in the total power dissipation of CMPs as process technol-
ogy advances below 90 nm. We propose a replication-aware
leakage management technique that selectively turns off a
replicated block in a private L2 cache for leakage power re-
duction. Once a cache line is turned off, the data is lost, but
its tag maintains the coherence state. The cost of an extra
cache miss due to the turned-off replication is limited since
the data of the cache line exists in another on-chip cache.
Furthermore, the replicated block incurs no overhead if it is
invalidated by other processors in order to maintain cache
coherence. Our proposed technique can be implemented by
slightly modifying the MESI protocol with a new turned-
off shared coherence state. This state indicates that the
corresponding block is shared by other caches but turned
off. Experiments on a 4 processor CMP with private L2
caches show that the proposed technique reduces the energy
consumption of the L2 caches and main memory by 20.0%
on average without introducing significant performance loss
over the existing cache leakage management technique.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles-Cache memo-
ries

General Terms
Design

Keywords
Chip Multiprocessors, L2 caches, Leakage power manage-
ment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’10, August 18–20, 2010, Austin, Texas, USA.
Copyright 2010 ACM 978-1-4503-0146-6/10/08 ...$10.00.

P0

IL1 DL1

Private L2

Memory

Shared Bus

P1

IL1 DL1

Private L2

P2

IL1 DL1

Private L2

P3

IL1 DL1

Private L2

Figure 1: Target architecture of CMPs.

1. INTRODUCTION
Power dissipation has become one of the most important

issues in designing modern microprocessors such as chip mul-
tiprocessors (CMPs). International Technology Roadmap
for Semiconductor (ITRS) predicts that the leakage power
consumption may constitute more than 50% of the over-
all power dissipation as the process technology drops below
65 nm [1], which means that the leakage power manage-
ment should be a critical design goal for low-power CMPs.
Since the on-chip L2 cache memories often determine the
performance of CMPs, a large portion of their on-chip area
is dedicated to them, which thus becomes a major power
contributor. In this regard, reducing the leakage power con-
sumption as well as improving the performance of the L2
caches for CMPs is a critical design issue.

Considerable body of research has proposed to reduce the
leakage power consumption of caches [14, 9, 7, 3, 8, 12].
In these techniques, the leakage power consumption can be
saved by gating off a SRAM cell as proposed in [14] to turn
off inactive cells. Particularly, a cache decay technique [9]
selectively turns off cache blocks that have not been accessed
for threshold cycles as predicting them not to be accessed
in the future. In this way, if the prediction is correct, the
leakage power consumption can be saved during the turned-
off period without a performance loss. However, it causes
extra misses when the turned-off cache blocks are requested
again since the data are not preserved. To overcome these
drawbacks of the cache decay technique, the drowsy cache [7]
supplies the minimum power to preserve data.

The cache decay technique is developed for L2 caches to
save its large leakage power consumption for single proces-
sor systems [3]. It proposes a smart predictor to decide an
adaptive threshold value for each cache block by monitoring
the access interval between hits. For multiprocessor systems,
[8, 12] are proposed. Virtual Exclusion [8] considers one of

135

the multiprocessor characteristics, Multi-Level Inclusion. It
reduces the leakage power consumption by turning off the
repetitive cache blocks in the L2 caches when L1 caches have
the same cache blocks, but requires that the sizes of the L1
and L2 cache blocks be the same. Monchiero et al. [12] also
propose to reduce the leakage power of the L2 caches in
CMPs by minimizing the possibility that dirty lines become
turned off in order to improve the performance of decay.

In multiprocessor systems, several copies of the same mem-
ory block can coexist in more than one cache when multiple
processors share the same memory block. We call such cache
blocks replications. Although the existing leakage manage-
ment techniques for CMPs are effective, they do not exploit
the characteristics of these replications in CMPs. In terms of
the performance improvement, an increasing amount of re-
search also has proposed the techniques to selectively repli-
cate cache blocks in the private L2 cache organization of
CMPs [5, 4] to achieve a balance between capacity and la-
tency. Cooperative Caching [5] proposes to replicate cache
blocks with a given probability varying from 0% to 100%.
ASR [4] also controls the replications to improve its per-
formance by dynamically monitoring the benefits and costs
of the replications. On the other hand, [16, 17] introduce
self-invalidation in order to reduce cache coherence overhead
caused by the replicated cache blocks. However, these tech-
niques do not consider the energy consumption of the L2
caches, which is an important factor in designing low-power
CMPs.

In this paper, we propose a replication-aware leakage man-
agement technique (RALM) which focuses on private L2
caches in CMPs. We assume a CMP with private L2 caches
as shown in Figure 1. This organization has the lower access
latency by replicating data close to the requesting processor
but it reduces the on-chip capacity and causes more off-chip
misses than the shared L2 cache organization. However, the
private L2 cache organization has more benefits from the
power perspective [5]: 1) a private L2 cache can be used
as a unit for resource management to save energy when its
processor is idle; 2) it can keep low set-associativity that
consumes lower power.

Based on this power-efficient target architecture, the pro-
posed technique selectively turns off a replicated block by
exploiting its sharing characteristics. For example, a repli-
cated block is often not likely to be accessed after another
cache replicates it because it would be invalidated when its
copy is updated. This sharing pattern allows us to reduce
the leakage power without any performance loss by turn-
ing off the replicated block immediately after another cache
replicates it. Furthermore, since the replicated block has its
copy in another on-chip cache, turning it off has the ben-
efit that the cost of an extra miss requires only an access
to another on-chip private L2 cache rather than the off-chip
access. The main advantage of the proposed RALM tech-
nique is that it can be implemented by slightly modifying the
existing MESI cache coherence protocol without increasing
implementation cost. Unlike the original MESI cache co-
herence protocol, our modified cache coherence protocol has
one new state, Turned-Off-Shared (TOS), in which the cache
block is shared by other processors but turned off.

Experimental results show that the proposed technique
reduces the energy consumption by 20.0% on average over
the existing leakage management technique while achieving
a similar performance gain over a private L2 cache organi-

zation. The rest of this paper is organized as follows. In
the next section, we introduce the motivation of our ap-
proach. Then, we describe the proposed replication-aware
leakage management technique in Section 3 and experimen-
tal results are discussed in Section 4. We conclude the paper
with a summary in Section 5.

2. MOTIVATION
The leakage power consumption has become a major con-

tributor to the total power dissipation as the process tech-
nology advances. Although previous research can efficiently
manage the leakage power consumption of L2 caches, they
can be improved by exploiting characteristics of the cache
blocks in CMPs. Our proposed technique is based on a sim-
ple observation that many of the replications can be turned
off to save the leakage power consumption without nega-
tively affecting the overall system performance. In this sec-
tion, we describe how the proposed technique exploits repli-
cations to reduce the leakage power consumption by classify-
ing L2 cache blocks into three categories depending on their
sharing types: exclusive blocks, read-write replications, and
read-only replications.

We call a cache block an exclusive block if it is not shared
by any processor during its lifetime (i.e., from its first miss to
its replacement). For replications that are shared by other
processors, we further classify them into two groups depend-
ing on whether they are modified or not by other processors.
We call a replication a read-write replication if there is at
least one write request to any of its replications (including
itself) during its lifetime. On the other hand, we call a repli-
cation a read-only replication if there are only read requests
to all of its replications during its lifetime.

Our proposed technique aims to selectively turn off repli-
cated blocks. For replicated blocks, we take advantage of
the following observations:

1. In the target architecture, on a cache miss, data can
be loaded into its local L2 cache from another pro-
cessor’s L2 cache (if it has the requested data) that
has a shorter access latency than the off-chip memory.
This allows that replications can be turned off aggres-
sively to save the leakage power without decreasing the
overall performance if it is guaranteed that their repli-
cations exist on-chip. Although the turned-off repli-
cations are needed again, they can be brought from
another processor’s cache.

2. For read-write replications, many of them are inval-
idated by other processors after they are replicated
and their copies in the replicating processors’ caches
are modified. Furthermore, we observe that, in many
cases, these are not accessed again once other proces-
sors replicate them. This allows us to turn them off
before they are invalidated without any performance
loss.

3. For read-only replications, unlike the read-write repli-
cations, they can be accessed again after being repli-
cated. If they are turned off aggressively, this might
cause extra misses. Although these extra misses re-
quire only accesses to another processor’s on-chip cache,
the performance can be degraded significantly if the
turned-off read-only replications are frequently accessed.
In this context, it is necessary that these replications

136

������������	
�
�

�
�

������������	
�
�

�

�����������������

�
�������	�

���
�
��������������	�����

�
�
��

�
�������

���
�
�
��
�
�
����������
�

�
������
�	�

���
�
��
�������

�
�
��

�
����	����������

�
�
��
�

Figure 2: The lifetime of the replications, bmi,pj
and

bmi,pk
, in the private L2 caches of the processors, pj

and pk.

are selectively turned off if they might incur the per-
formance drop.

Figure 7 shows the distribution of the L2 cache blocks with
their sharing patterns. For MPGdecoder and MPGencoder of
ALPBench [11], more than 80% of the cache blocks allocated
during the program execution are replications. Among those
replications, 52.9% and 72.0% of the blocks are classified as
read-write replications while read-only replications account
for 44.4% and 25.3% in MPGdecoder and MPGencoder, respec-
tively. A large percentage of the replications are the main
reason why the proposed technique is efficient. By turn-
ing off these replications efficiently, the proposed technique
saves the leakage power consumption without decreasing the
overall performance.

Furthermore, the proposed technique can be easily inte-
grated into the existing MESI cache coherence protocol with
small modifications. Since all of the actions required to turn
on/off the replications are performed when the transactions
in the original MESI cache coherence protocol occur, the
proposed technique can be implemented with a small hard-
ware overhead.

3. LEAKAGE MANAGEMENT BY TURN-
ING OFF REPLICATIONS

3.1 Cache Decay Technique
In the proposed technique, the time-out based cache de-

cay [9] technique is applied to all of the cache blocks except
for replications. In order to keep track of the elapsed cycles
from the last access, two levels of counters, global and local
counters, are used. The global cycle counter sends a tick sig-
nal to the local counters every certain cycles, and the local
counter of each cache block is incremented by one whenever
it gets the tick. When the local counter reaches the time-
out threshold, the corresponding cache block is turned off.
In the experiment, we use 1 million cycles for the time-out
threshold. We empirically observe that it is enough not to
incur many extra misses in private L2 caches.

The proposed scheme is also based on the private L2 cache
organization that uses the inclusion property [6], which is
usually used in multi-level caches to efficiently implement
a cache coherence in multiprocessor systems. To correctly
maintain cache coherence and the inclusion property while
employing the cache decay technique, we turn off only data
portions of the cache blocks, keeping the tags and states
of the blocks active. It allows only tags and states of the
L2 caches to be responsible for maintaining the cache co-
herence as in a private L2 cache organization that does not
employ the cache decay technique. Even though the pro-
posed technique does not turn off the tags and states, it can

1: if (read miss for mi occurs in pk) then

2: if (another processor pj has a valid bmi,pj
) then

3: if (bmi,pj
is dirty) then

4: write data back to the memory;
5: end if

6: turn off bmi,pj
;

7: Cbmi,pj
= 0;

8: end if

9: else if (read hit for mi occurs in pk) then

10: if (bmi,pk
is shared and turned off) then

11: if (Cbmi,pk
< τ) then

12: Cbmi,pk
+= 1;

13: else

14: turn on bmi,pk
;

15: end if

16: end if

17: else if (write hit for mi occurs in pk) then

18: if (bmi,pk
is shared and turned off) then

19: turn on bmi,pk
;

20: invalidate other copies of mi on-chip;
21: end if

22: end if

Figure 3: Algorithm of RALM.

significantly reduce leakage power because the energy con-
sumption of the tags and states is an order of magnitude
smaller than that of data blocks.

3.2 Algorithm of Replication-Aware Leakage
Management (RALM)

We assume that m memory addresses m1, m2, ..., mm are
referenced by n processors p1, p2, ..., pn during the execution
in a parallel program. In this paper, a cache block for a
memory address mi, which is requested by a processor pj , is
denoted by bmi,pj

. When multiple processors, e.g., pj and
pk, request the same memory address mi, two cache blocks
bmi,pj

and bmi,pk
are allocated in the L2 caches of pj and

pk.
In order to describe the turned-off period of the replica-

tions when using the proposed RALM technique, Figure 2
shows the lifetime of two replications of a memory address
mi, bmi,pj

and bmi,pk
, which are allocated in the private L2

caches of the processors pj and pk. As for the read-write
replications, the lifetime of bmi,pj

is overlapped by that of
bmi,pk

during the time when bmi,pk
is replicated and bmi,pj

is replaced. If pk modifies its copy bmi,pk
, bmi,pj

is invali-
dated before it is replaced. If bmi,pj

is not accessed during
the period Tinvalidated − Treplicated, it can be turned off im-
mediately after being replicated without any performance
loss. In the same way, the read-only replications can also be
turned off during the period Treplaced − Treplicated. As ex-
plained above, however, these read-only replications can be
accessed during the turned-off period. If many of them are
frequently accessed during this period, the performance may
decrease. Our proposed technique also considers this perfor-
mance degradation and selectively turns off the replications
in order to avoid it.

Figure 3 shows the algorithm of the proposed RALM tech-
nique, which includes operations that should be performed
when read miss, read hit, and write hit occur in a processor
pk. On the cases that are not shown here, the cache oper-
ates in the way the same as the original private L2 cache
that employs a MESI cache coherence protocol. When pk

137

M

E

S

I

PrWr/--

PrWr/BusRdX

PrWr/BusRdX

PrRd/

BusRd(S’)

PrRd/

BusRd(S)

PrRd/--

BusRd/Flush’

BusRd(TOS)/Flush’

PrRd/--

PrRd,

PrWr/--

BusRdX/

Flush

BusRdX/

Flush

BusRdX/

Flush’

TOS

BusRd/

Flush,

turn off

BusRd/

Flush,

turn off

BusRdX/

Flush

PrRd (P’)/

BusRd(TOS),

BusRd/-

BusRd/

Flush, turn off

PrRd (P)/

turn on,

PrWr/BusRdX

Figure 4: Modified cache coherence protocol: Bold
dashed/solid lines represent additional transitions
for RALM.

reads the memory block mi but the read miss occurs in its
L2 cache, the memory block is brought from the L2 cache of
another processor or the off-chip memory. In this context, if
another processor pj (j 6= k) already has a valid cache block
bmi,pj

, it flushes its data to pk while turning off bmi,pj
. It

should be noted that if bmi,pj
is dirty, the data is written

back to the off-chip memory before the cache block is turned
off.

In order to avoid the performance degradation explained
above, we employ an access counter for each cache block,
e.g., Cbmi,pj

for bmi,pj
, which keeps track of a number of

accesses that occur after its cache block is turned off. This
Cbmi,pj

is reset to zero when the cache block is turned off.

When pk reads mi but it has bmi,pk
that is turned off, the

proposed technique only increments Cbmi,pk
by one instead

of turning on the cache block while fetching the data from
another processor’s cache (or from the off-chip memory if
it does not exist) if its Cbmi,pk

is less than a threshold τ .
However, if Cbmi,pk

reaches τ , the proposed technique turns
on the corresponding cache block to avoid the performance
degradation. On the other hand, when the replication is
modified after being turned off, it should be turned on to
keep the new data as its Cbmi,pk

is reset to zero.

3.3 Modified Cache Coherence Protocol
In order to efficiently turn off replications without complex

hardware implementation, we integrate the proposed tech-
nique into the original cache coherence protocol by slightly
modifying it. Figure 4 shows a state transition diagram for
the modified MESI cache protocol for RALM.

The original MESI protocol consists of four states: mod-
ified (M), exclusive (E), shared (S), and invalid (I). In the
diagram, the notation “A/B” indicates that when the con-
troller observes the transaction “A” from a processor or bus,
it generates the bus transaction or action “B” while chang-
ing the state. “-” means that no action occurs. For both
of the original and modified protocols, the solid arcs repre-
sent transitions due to local processor transactions while the
dashed arcs represent transitions due to bus transactions. In
the original MESI, when a cache block is first read by a local

processor, PrRd in the diagram, it enters the S state if the
copy of it exists in another cache. In this case, it also gener-
ates the BusRd transaction to make the other copies enter
the S state. If its copy does not exist, it enters the E state.
When the cache block in the E state is written by a local
processor, PrWr, it can transition to the M state without
generating a bus transaction because no other cache has a
copy while writing to the cache block in the S state gener-
ates the BusRdX transaction on the bus to invalidate the
copies in other caches.

On the other hand, in the modified version, the Turned-
Off-Shared (TOS) state is added to the original one. In
this state, only the data block is turned off while its tag
is kept turned on but treated the same as in the S state.
The only difference from the S state is that when the cache
access occurs, the data is brought from the other caches as
the miss occurs. This additional state is needed in order to
maintain the access counters for each L2 cache block. In the
original protocol, the cache block enters the S state from M,
E, or S when the BusRd transaction is presented on the bus
while supplying the data to the requesting cache. However,
in the modified version, when the cache block at one of those
states receives the BusRd transaction from the bus, its state
is changed to the TOS state instead of the S state while the
data block of it is turned off. In this case, the data is flushed
to the requesting cache in the same way as the original one.

The cache block in the TOS state does not change its
state when the PrRd transaction from the local processor is
presented, which means that it remains continuously turned
off but only its access counter is incremented by one. The
requested data is fetched from another processor’s cache by
generating a BusRd transaction along with a TOS signal,
which does not turn off the cache block. The TOS block
is turned on only when either of these two following trans-
actions occurs. First, when the PrWr transaction from the
local processor occurs, the cache block is turned on while
changing its state to M. Second, when the PrRd transaction
occurs and the access counter of the TOS block reaches τ ,
the data block is turned on while changing its state to S be-
cause it is the frequently accessed block. Whether the access
counter reaches τ or not is indicated as “P” in the diagram.

Figure 5 shows the organization of RALM. The global
counter sends a tick signal to the local counters (one per
cache line) as in the cache decay technique. However, in
RALM, Power Mode Control (PMC) is added to turn off the
cache block based on the local counter signal and the state
transition. When the local counter reaches the maximum
value or the state of the cache block is changed to TOS or
I, the cache block is turned off. The additional circuit is not
on the critical path because the state transition time is the
same as in the original cache protocol and the comparison
between the access counter and τ can be processed when the
tag matching occurs.

4. EXPERIMENT

4.1 Simulation Environment
To evaluate our technique, we modified the CATS [10]

multiprocessor simulator to use a snoop based MESI pro-
tocol for the cache coherency that supports cache-to-cache
transfer of the cache block among private L2 caches. We
use in-order 4 processors, a current trend in the multipro-
cessor architecture that employs simple multiple processors

138

R
O

W
 D

E
C

O
D

E
R

Global Counter

Power-Off

Local

Counter

Cache Block

Cache Block

Local

Counter

Local

Counter

…

R
O

W
 D

E
C

O
D

E
R

Tag Addr

Tag Addr

…

MESI status

Hit/Miss

MUX

Cache Block

PMC

PMC

… …

PMC

Tag Match

WRD

Tag Addr

Access

Counter

Figure 5: RALM organization: Bold solid line rep-
resents the additional structures and PMC stands
for Power Mode Control.

Table 1: Architectural parameters.
Processor 4 Processors, in-order

L1 I/D-Cache
32 KB, 2-way
32 B block, 1 cycle latency

L2 Private Cache
512 KB, 4-way, 128 B block
6 cycle latency

Shared Bus 4 bytes bus width
Off-Chip Memory 300 cycle access latency

for low-power consumption. The energy parameters are ob-
tained from CACTI 6.0 [13] using the 70 nm technology and
the off-chip memory energy estimation [2]. We evaluated
our scheme with 5 benchmarks, MPGdecoder and MPGencoder

from ALPBench [11] and VOLREND, RAYTRACE, and CHOLESKY

in SPLASH2 [15].

4.2 Results
We evaluate the proposed technique, RALM, by compar-

ing it to BASELINE and DECAY. BASELINE indicates
the baseline private L2 cache technique that does not em-
ploy any leakage management technique but the low power
mode is applied to all of the cache blocks during the exe-
cution. Other techniques evaluated in the experiment also
employ the low power mode when the cache blocks are ac-
tive. Even though it increases the hit time, it can save the
leakage power consumption. In the DECAY technique, the
time-out based leakage management technique proposed in
[9] is applied to all inactive cache blocks in each private L2
cache. We also evaluate RALM NSEL that does not con-
trol the TOS blocks, as well as the proposed RALM tech-
nique, in order to see how the performance decreases when
the replications are always turned off. In the experimen-
tal results, we only show the results that use 16 for τ as
a threshold value in RALM. We evaluated other values for
τ and found that the largest energy reduction is achieved
when 16 is used with only a small hardware overhead in our
configuration. In addition, for the DECAY and proposed
RALM and RALM NSEL techniques, the cache blocks are
also turned off when they enter the I state.

Figure 6 shows the execution time and energy consump-
tion of the L2 cache and the memory for each technique
normalized to BASELINE. The DECAY technique shows
the negligible performance degradation because we use the
time-out threshold that is long enough not to incur many ex-

���������� ����	�����
����� ������ �������� �������

���

���

���

��

��!

"��

"�"

"�#

$����%�� ����� ���&���� ���

�
�
�'

�
()
*
�
�
+�
,
�
�
-
.)
�
	
+�
) '
�

���������� ����	�����
����� ������ �������� �������

���

���

���

���

���

���

���

��	

��

���

���

�
�
��

�
��
�
	

��

	
��
�
��
�

�
�
�
�
��
�

Figure 6: Normalized execution time and energy
consumption.

tra misses. In RALM NSEL, the performance degradation is
less than 2% for most of the benchmarks except for MPGde-

coder. For MPGdecoder, the performance degrades by up
to 11.3% because many read-only replications of this bench-
mark, especially for the instructions of IDCT, are frequently
accessed and they affect the performance consequently. On
the other hand, in RALM, the performance degradation be-
comes similar to the DECAY technique because it can pro-
hibit the replications that are frequently accessed from en-
tering the TOS state.

We considered both of the dynamic and leakage power
consumption of the L2 cache and the memory. For the dy-
namic energy consumption, it includes the dynamic energy
consumption of the extra L2 cache and memory accesses
caused by turning off the replications too early in the pro-
posed technique as well as turning off the cache blocks in
the cache decay technique. We also take into account the
dynamic and leakage power consumption overhead of the
additional counters for the proposed technique. In addition
to the 10-bit global counter and the 10-bit local counters
used in the cache decay technique, the proposed technique
requires the 4-bit access counter for controlling the TOS
block and 1 additional bit per cache block for the new state
in the modified MESI protocol, which increases by 1% of the
energy consumption and area of the total cache in compar-
ison with BASELINE. The extra logic for the Gated-Vdd
technique [14] is also considered, which becomes less than
3% of the total cache leakage.

As can be seen in Figure 6, RALM NSEL reduces the
energy consumption by 63.7% and 22.6% on average over
BASELINE and DECAY, respectively. In particular, for
MPGdecoder and MPGencoder, RALM NSEL can reduce the
energy consumption by up to 19.3% and 44.2% over DECAY
while the SPLASH2 benchmarks show smaller reduction. In
the proposed technique, the amount of reduction in the leak-
age power consumption depends on the percentage of repli-
cations. The more replications exist, the more leakage power
can be reduced. Figure 7 shows how many replications are

139

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MPGdecoderMPGencoder VOLREND RAYTRACE CHOLESKY

D
is
tr
ib
u
ti
o
n
 o
f
R
e
p
lic
a
ti
o
n
s

Exclusive Blocks Read-Only Replications Read-Write Replications

Figure 7: Distribution of replications.

allocated during the execution of each benchmark depend-
ing on their sharing patterns. For the benchmarks such as
MPGdecoder and MPGencoder that have a larger number of
replications, the proposed technique can reduce the energy
consumption significantly. On the other hand, since the sci-
entific benchmarks such as CHOLESKY in SPLASH2 do not
have many replications, it has less opportunity to turn off
the cache blocks.

For MPGdecoder, the performance degradation shown in
Figure 6 is caused by a large number of read-only replica-
tions because they should be read from the other on-chip
cache whenever a read miss occurs if they are turned off
while the read-write replications do not cause the significant
performance degradation. However, by controlling the num-
ber of TOS blocks, RALM reduces the energy consumption
by 62.4% and 20.0% on average over BASELINE and DE-
CAY, respectively. Although the energy reduction is smaller
than that in RALM NSEL because RALM selectively turns
off the replications, it can keep its performance similar to
that of DECAY technique.

5. CONCLUSIONS
We proposed a replication-aware leakage management tech-

nique that is based on a power-efficient private L2 cache
organization for CMPs. The proposed technique turns off
the replications immediately after the other on-chip cache
makes the copy of it. Turning off the replications reduces
the leakage energy consumption without significant perfor-
mance loss because the cost of an extra miss only requires
the on-chip access that is much faster than the off-chip access
and the many replications are invalidated after making their
copies in other caches. To turn off the replication efficiently
without much hardware overhead, we slightly modified an
original MESI cache coherence protocol. The experimental
results show that RALM reduces the energy consumption
by 62.4% and 20.0% compared to the BASELINE and DE-
CAY technique on average without significant performance
degradation.

6. ACKNOWLEDGEMENTS
This work was supported by the Korea Science and En-

gineering Foundation (KOSEF) grant funded by the Korea
government (No. R0A-2007-000-20116-0) and World Class
University (WCU) program through KOSEF funded by the
Ministry of Education, Science and Technology (No. R33-
2008-000-10095-0). This work was also supported by the
Brain Korea 21 Project in 2010 and Research Settlement

Fund for the new faculty of SNU. The ICT at Seoul Na-
tional University and IDEC provided research facilities for
this study.

7. REFERENCES
[1] ITRS (International Technology Roadmap for

Semiconductor). http://public.itrs.net.

[2] Calculating Memory System Power for DDR. Micron
Technology Inc., 2005.

[3] J. Abella, A. González, X. Vera, and M. O’Boyle.
IATAC: A Smart Predictor to Turn-off L2 Cache
Lines. In TACO, 2(1):55-77, 2005.

[4] B. M. Beckmann, M. R. Marty, and D. A. Wood.
ASR: Adaptive Selective Replication for CMP Caches.
In Proc. of Micro, pages 443-454, 2006.

[5] J. Chang and G. S. Sohi. Cooperative Caching for
Chip Multiprocessors. In Proc. of ISCA, pages
357-368, 2006.

[6] D. E. Culler, J. P. Singh, and A. Gupta. Parallel
Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, 1999.

[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy Caches: Simple Techniques for
Reducing Leakage Power. In Proc. of ISCA, pages
148-157, 2002.

[8] M. Ghosh and H. S. Lee. Virtual Exclusion: An
Architectural Approach to Reducing Leakage Energy
in Caches for Multiprocessor Systems. In Proc. of
ICPADS, pages 1-8, 2007.

[9] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power. In Proc. of ISCA, pages 240-251, 2001.

[10] D. Kim, S. Ha, and R. Gupta. CATS: Cycle Accurate
Transaction-driven Simulation with Multiple Processor
Simulators. In Proc. of DATE, pages 749-754, 2007.

[11] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and
E. Debes. ALPBench Benchmark Suite for Complex
Multimedia Applications. In Proc. of IISWC, pages
34-45, 2005.

[12] M. Monchiero, R. Canal, and A. González. Using
Coherence Information and Decay Techniques to
Optimize L2 Cache Leakage in CMPs. In Proc. of
ICPP, pages 1-8, 2009.

[13] N. Muralimanohar, R. Balasubramonian, and N. P.
Jouppi. CACTI 6.0: A Tool to Model Large Caches.
In http://www.hpl.hp.com/research/cacti, 2009.

[14] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N.
Vijaykumar. Gated-Vdd: A Circuit Technique to
Reduce Leakage in Deep-submicron Cache Memories.
In Proc. of ISLPED, pages 90-95, 2000.

[15] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations.
In Proc. of ISCA, pages 24-36, 1995.

[16] A. R. Lebeck and D. A. Wood. Dynamic
Self-Invalidation: Reducing Coherence Overhead in
Shared-Memory Multiprocessors. In Proc. of ISCA,
pages 48-59, 1997.

[17] A.-C. Lai and B. Falsafi. Selective, Accurate, and
Timely Self-Invalidation Using Last-Touch Prediction.
In Proc. of ISCA, pages 139-148, 2000.

140

