
Load-Store Reordering for Low-Power Multimedia
Data Transfers

Woongki Baek
School of Computer Science & Engineering

Seoul National University
Seoul, Korea

wkb@davinci.snu.ac.kr

Jihong Kim
School of Computer Science & Engineering

Seoul National University
Seoul, Korea

jihong@davinci.snu.ac.kr

Abstract—We present a load-store reordering technique for
low-power multimedia data transfers. The proposed technique
is based on two common characteristics of multimedia applica-
tions: (1) Many multimedia streams have a strong spatial lo-
cality and (2) output data generated by many multimedia op-
erations are significantly different from the input data. In this
paper, we propose a compiler-level technique which combines
loop unrolling and load-store scheduling to minimize both the
self and coupled transition power on a data bus. Experimental
results show that the total amount of the transition activities is
reduced on average by 21.3% over the original code for many
image processing applications.

I. INTRODUCTION
As computation and communication have been steadily

moving toward mobile and embedded platforms, realizing
low power consumption has become a critical concern in
designing modern embedded systems. It has been shown that
a significant portion of the total power in digital CMOS cir-
cuits is dissipated on buses [1]. Thus, a considerable reduc-
tion in power dissipation of a whole system can be expected
by optimizing power consumption on buses efficiently. In
this paper, we attempt to reduce power dissipation in multi-
media applications by exploiting inherent characteristics of
multimedia streams and operations so as to minimize transi-
tion activity on a data bus.

According to [2], power dissipation on buses can be di-
vided into two major types which are self transition power
and the coupled transition power, respectively. Self transi-
tion power is referred to the dynamic power consumption
which is proportional to the frequency of transition (i.e., self
transition activity) on the each single line. On the other hand,
with the smaller feature size, power dissipated by coupling
capacitance becomes more important. For example, the lat-
eral (i.e., coupling) component of capacitance in the metal 3
layer in a 0.35-µm CMOS process reaches five times the
sum of fringing and vertical components when the substrate
serves as a bottom plane [3]. Coupled transition power is
defined as the power dissipation by coupling capacitance.

In this paper, we describe a load-store reordering algo-
rithm for low-power multimedia transfers by reducing both
self and coupled transition power on a data bus. Many mul-
timedia applications have two common characteristics. First,
many multimedia data streams have a strong spatial locality.
Second, output data processed by many multimedia process-
ing operations is very different from the input data. Due to
these two characteristics, the amount of transition activities
on a data bus can be changed significantly with different
sequences of load-store instructions. We propose a low-
power load-store reordering technique combined with loop
unrolling which reduces both the self and coupled transition
activity. Our experimental results show that the significant
amount of the power dissipation on a data bus can be re-
duced by using the proposed technique.

The rest of the paper is organized as follows. Section II
summarizes previous research efforts related to our work. In
section III, we explain our power model and give a motiva-
tional example of the proposed technique. Section IV pre-
sents the proposed load-store reordering problem to mini-
mize both the self and coupled transition power on a data bus.
We show experimental results using image processing appli-
cations in Section V. Section VI concludes with a summary.

II. PREVIOUS WORK
There have been many investigations which attempted to

minimize the power dissipation on buses at the various lev-
els of the design abstraction from the gate level to the sys-
tem level.

Panda and Dutt [4] focused on the reduction of power
dissipation in memory intensive applications by reducing
the number of transitions on the memory address bus. They
exploited regularity and spatial locality in the memory ac-
cess and determined the mapping of behavioral array refer-
ences to physical memory locations to minimize address
bus transitions. Dasgupta and Karri [5] presented algo-
rithms to minimize on-chip data bus transitions by suitably
binding and scheduling the data transfers of a Control Data
Flow Graph (CDFG). Kim et al. [6] proposed a low-power
bus encoding scheme to minimize the coupled transition

power.
The aforementioned approaches [4]-[6] are designed to

minimize either the self transition power or the coupled
transition power, but not both. On the other hand, Lyuh et
al. [2] presented an on-chip bus synthesis algorithm to
minimize the total sum of the self and coupled transition
power in the micro-architecture synthesis. Unlike the previ-
ous approaches, they minimized both the self and coupled
transition power in an integrated fashion.

In this paper, we propose the compiler and application
level technique to minimize the total sum of the self and
coupled transition power on a data bus. The aforementioned
approaches [2], [4]-[5] can be applied only to the hardware
synthesis level while our method can be still applicable
when the hardware design is already determined. Bus en-
coding schemes (e.g., [6]) need extra hardware units such as
bus encoder and decoder. However, our technique can be
used to conventional embedded processors without any ex-
tra hardware.

III. BASIC IDEA

A. Power Model
According to [6], the dynamic power consumption by in-

terconnects and drivers for the period of execution of T clock
steps is given by

2))((ddcTlsTdyn VCYCCXP ⋅⋅++⋅= (1)
where Cs and Cl are self capacitances, Cc is coupling capaci-
tance, and Vdd is the supply voltage. The capacitance ratio is
defined as γ = (Cc)/(Cs+ Cl).

As for the coupled transition activities, there are four
types of possible coupled transitions, as illustrated in Fig. 1.
Type 1 and 3 result in Cc not being charged while Type 2 and
4 cause Cc being charged up to αCcVdd and βCcVdd , respec-
tively [2]. [α and β are set to 1 and 2 in [2]].

Assuming that no Dynamic Voltage Scaling (DVS) tech-
niques are applied (i.e., Vdd is constant.), optimizing power
dissipation on a data bus is equivalent to minimizing the
weighted sum of the self and coupled transition activities ZT
which is given by

.TTT YXZ ⋅+= γ (2)

B. Motivational Example
We show a motivational example which illustrates how

load-store ordering affects both the self and coupled transi-
tion activities on a data bus in Fig. 2. Two 8-bit image pixels
which respectively have values of 01110111(2) and
01110110(2) will be inverted in bit-wise. We suppose that
image pixels will be transferred via an 8-bit on-chip data bus.
In Fig. 2(a), two pixels will be inverted by following the
load-store sequence, which is load pixel0, store inverted
pixel0, load pixel1, and store inverted pixel1. A different
load-store scheduling, which is load pixel0, load pixel1,
store inverted pixel0, and store inverted pixel1, is given
in Fig. 2(b).

In Fig. 1(a), the amount of the self transition activities
(marked with rectangular boxes in Fig. 2(a)) is 10 and the
amount of the coupled transition activities is 21, respectively.

Assuming the capacitance ratio γ is 3, the total amount of
transition activities ZT will be 10 + 3 ⋅ 21 = 73. On the other
hand, the amounts of the self and coupled transition activities
are 3 and 7, respectively, in Fig. 2(b). Thus the total amount
of transition activities becomes 24.

We can explain why the amount of transition activities
occurred by two load-store sequences in Fig. 2(a) and Fig.
2(b) are significantly different by the following two reasons.
First, there is a strong spatial locality in two input image
pixels (only 1 bit is different.). Strong spatial locality usually
can be found on many multimedia streams. If data which
have very similar values are transferred consecutively via a
data bus, small amount of transition activities can be ex-
pected. Second, the values of output data are very different
from the values of the corresponding input data because the
image processing operation in our motivational example is
image inverting. This characteristic can be found many other
multimedia processing operations. If the input data are trans-
ferred consecutively via a data bus, it will usually cause the
large amount of transition activities. This motivational ex-
ample clearly shows how important load-store scheduling is
to minimize the power dissipation on a data bus.

IV. LOW-POWER LOAD-STORE REORDERING PROBLEM
To address the low-power load-store reordering problem

formally, we need to consider two sub-problems. First, we
should determine the optimal number of loop unrolling to
reduce the power dissipation on a data bus under the given
register budget. Second, we need to find the load-store
scheduling which minimizes the transition activities on a

Figure 1. Four different types of coupled transition activities.

Figure 2. The total amount of the transition activity on a data bus while
inverting two image pixels by following two different load-store
sequences. (a) a load-store-load-store sequence. (b) a load-load-store-
store sequence.

data bus. We will discuss two sub-problems in Section IV-A
and IV-B, respectively.

A. Loop Unrolling Problem
Many multimedia applications have two important char-

acteristics. (1) Many multimedia streams have a strong spa-
tial locality. (2) Most of multimedia operations change the
value of input data value drastically. As we have seen in the
motivational example, loop unrolling generally helps us to
have more chances to exploit these characteristics to reduce
the transition activities. To find the optimal number of loop
unrolling, we take a greedy approach. We show the proposed
algorithm in Fig. 3. Since no extra register spills will be
caused by the proposed algorithm, there will be no side ef-
fect on both of the performance and the power dissipation on
a data bus.

B. Load-Store Reordering Problem
To find a load-store scheduling which minimizes the

transition activities on a data bus, we formulate the problem
using a Load-Store Transition Activity Graph (LSTAG) G =
(V, E). LSTAG is a directed and weighted graph with a ver-
tex set V = {v1,…,vn}. Each vertex vi ∈ V corresponds to a
load or store instruction in the given multimedia application.
Each edge eij indicates the data dependency from vertex vi to
vj. The weight wij of the edge represents the amount of the
transition activities when instruction vj is executed right after
instruction vi. Edge weights can be determined by profiling
the amount of transition activities for the given multimedia
data and operation. Fig. 4 shows an example of the LSTAG
for an image inverting application.

Once the LSTAG graph G is constructed, we can find the
optimal load-store scheduling by finding a Hamiltonian path
on G which visits all the vertices exactly once with a mini-
mum-cost. However, due to the data dependency, each load
instruction should be ahead of the corresponding store in-
struction for the correctness of the program. Considering this
constraint, the low-power load-store reordering problem can
be reduced to solving a variant of the Asymmetric Traveling
Salesman Problem (ATSP).

Although ATSP is an NP-complete problem, we can op-
timally solve the load-store reordering problem using a
branch-and-bound-based approach. The reason is that the

number of load-store instructions in a typical multimedia
application is not quite large (i.e., relatively small solution
search space) because the number of loop unrolling is bound
by the available register budget with which loop can be un-
rolled without extra register spills.

V. EXPERIMENTAL RESULTS
We implemented all the components of the proposed

load-store reordering algorithm in C and executed them on
an Intel Xeon Pentium IV computer with 2.4GHz clock
speed. The load-store scheduling solver which was imple-
mented using a branch-and-bound-based algorithm found the
optimal solution within a reasonable time (< 1s). We as-
sumed two types of embedded micro-processors which re-
spectively have 8-bit and 32-bit on-chip data buses with 32
general-purpose registers. To validate the effectiveness of the
proposed algorithm, we performed experiments for a number
of image processing applications such as inverting, thresh-
olding, bit-plane slicing (BPS), high-pass filtering (HPF),
and histogram equalization [7] on 256 × 256 8-bit images.

Table. 1(a) and (b) summarize the reduction in the
amount of the total transition activities. We set the capaci-
tance ratio (γ) to 3 and normalized all the results to the
amount of total transition activities caused by the original
code. As shown in Table. 1(a) and (b), the proposed scheme
works well for the image inverting and thresholding pro-

Figure 4. An example of the load-store transition activity graph.

Figure 5. Overall flowchart for the load-store reordering problem.

d f
1. Find the optimal load-store scheduling of the current loop by

using the method described in Section IV-B.
2. Calculate the transition activities caused by step (1).
3. Unroll the loop once more. If extra register spills are occurred,

set the optimal number of loop unrolling to the current number
of loop unrolling and exit.

4. Find the optimal scheduling of the loop of step (3).
5. Calculate the transition activities caused by step (4).
6. If (amount of step (2) > amount of step (5))

goto step (3);
else {
 optimal # of loop unrolling = current # of loop unrolling;
 exit;
}

d f
Figure 3. A greedy loop unrolling algorithm

grams. This is because the image inverting and thresholding
make output data significantly different from the input data,
giving more rooms for an improvement by load-store reor-
dering. On the other hand, the proposed approach is less effi-
cient for the histogram equalization because the output data
are less different from the input data than the former image
processing applications and loop can be unrolled only once
due to the small budget of registers. On average, the pro-
posed reordering reduces the amount of the total transition
activities by 21.3% on a 32-bit data bus.

To study the effect of the size of data buses on the total
transition activities, we performed experiments with two
different micro-processors which have 8-bit and 32-bit data
buses, respectively. As shown in Table. 1(a) and (b), reduc-
tion in the total transition activities on a 32-bit data bus is
generally less than the one on an 8-bit data bus. We can ex-
plain this phenomenon by following two reasons. First, due
to the interference between different pixels which are loaded
and stored simultaneously on a 32-bit data bus, additional
transition activities have been occurred as a side-effect. Sec-
ond, with a 32-bit data bus, less number of loop unrolling

can be done than with an 8-bit data bus due to the insuffi-
cient register budget. However, the amount of reduction in
the total transition activities is still considerable as shown in
Table. 1(b). Thus we can expect that the proposed technique
will work well with modern embedded micro-processors
which have large size of data buses.

We also performed an experiment to study the effect of
the capacitance ratio on reducing the power dissipation (refer
to Fig. 6). We changed the capacitance ratio from 0 (i.e.,
only the self transition activities are considered.) to 4. The
proposed method works less efficiently with thresholding
and bit-plane slicing as the capacitance ratio increases, while
the other multimedia applications remained almost unaf-
fected. However, even with the high capacitance ratio, our
method still reduces the amount of the total transition activi-
ties considerably (21.3% with γ=3 and 22.5% with γ=4).
According to [2] the capacitance ratio will be increasing with
the smaller feature size. From the experimental result, we
can expect that the proposed method will be still quite effec-
tive as the scale of process technology shrinks.

VI. CONCLUSION
We presented a load-store reordering technique for re-

ducing the amount of transition activities on a data bus. Our
method is based on the observation that many multimedia
streams have a strong spatial locality and most of multimedia
operations generate the output data which is significantly
different from the input data. To exploit these characteristics,
we combined loop unrolling and load-store instruction reor-
dering to reduce the transition activities on a data bus. Ex-
perimental results show that the proposed approach is quite
effective, achieving about 21.3% reduction in the amount of
transition activities on average for many image processing
applications.

ACKNOWLEDGMENT
This work was supported by University IT Research Cen-

ter Project.

REFERENCES
[1] A. P. Chandrakasan, S. Shung, and R. Brodersen, “Low-Power

CMOS Digital Design,” IEEE Journal of Solid-State Circuits, vol.27,
No.4, pages 473-484, April 1992.

[2] C. Lyuh, T. Kim, and K. Kim, “Coupling-Aware High-Level
Interconnect Synthesis,” IEEE Trans. Computer-Aided Design, vol.
23, pp. 157-164, Jan. 2004.

[3] Y. Shin and T. Sakurai, “Coupling-driven bus design for low-power
application-specific systems,” in Proc. Design Automation Conf.,
2001, pp. 750-753.

[4] P. R. Panda and N. D. Dutt, “Low-power memory mapping through
reducing address bus activity,” IEEE Trans. VLSI Syst., vol. 7, pp.
309-320, Sept. 1999.

[5] A. Dasgupta and R. Karri, “Simultaneous scheduling and binding for
power minimization during microarchitecture synthesis,” in Proc. Int.
Symp. Low Power Design, Apr. 1995, pp. 69-74.

[6] K. Kim, K. Baek, N. Shanbhag, C. L. Liu, and S. Kang, “Coupling-
driven signal encoding scheme for low-power interface design,” in
Proc. Int. Conf. Computer-Aided Design, 2000, pp. 318-321.

[7] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-
Wesley, 1992, pp. 161-249.

application the number of loop
unrolling

reduction in transi-
tion activities (%)

inverting 4 54.9
thresholding 4 34.0

BPS 4 31.6
HPF 4 16.7

histogram 2 14.6
average 30.4

(a)

application the number of loop
unrolling

reduction in transi-
tion activities (%)

inverting 4 48.6
thresholding 4 23.1

BPS 2 17.8
HPF 2 9.9

histogram 1 7.1
average 21.3

(b)

Table 1. Reduction in the total transition activities (γ = 3). (a) on an
8-bit data bus. (b) on a 32-bit data bus

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

capacitance ratio (r)

no
rm

al
iz

ed
 tr

an
si

tio
n

ac
tiv

iti
es

inverting
thresholding
BPS
HPF
histogram

Figure 6. Effect of the capacitiance ratio on the total transition activities
on a 32-bit data bus

