
SimDVS: An Integrated Simulation

Environment for Performance Evaluation of
Dynamic Voltage Scaling Algorithms�

Dongkun Shin, Woonseok Kim, Jaekwon Jeon, Jihong Kim, and Sang Lyul Min

School of Computer Science and Engineering
Seoul National University, Seoul, Korea

Abstract. We describe SimDVS, a unified simulation environment for
evaluating dynamic voltage scaling (DVS) algorithms, and present the
evaluation results for three case studies using SimDVS. In recent years,
DVS has received a lot of attention as an effective low-power design tech-
nique, and many research groups have proposed various DVS algorithms.
However, these algorithms have not been quantitatively evaluated, mak-
ing it difficult to understand the performance of a new DVS algorithm
objectively relative to the existing DVS algorithms. The SimDVS en-
vironment provides a framework for objective performance evaluations
of various DVS algorithms. Using SimDVS, we compare the energy effi-
ciency of the intra-task DVS algorithm and inter-task DVS algorithms,
and evaluate various heuristics for a hybrid DVS approach. We also show
that more efficient DVS algorithms may incur higher system overheads,
degrading the overall energy efficiency of the DVS algorithms.

1 Introduction

For battery-operated mobile embedded devices such as personal digital assis-
tants (PDAs) and cellular phones, power consumption is an important design
constraint. As an effective low-power design technique, dynamic voltage scaling
(DVS) recently has received a lot of attention. For example, several commercial
variable-voltage microprocessors [1, 2, 3] were introduced last 2 years, and many
DVS algorithms applicable to these microprocessors [4, 5, 6, 7, 8, 9, 10, 11, 12]
have been proposed, especially targeting for hard real-time systems.

Although proposed DVS algorithms are shown to be effective in reducing the
energy consumption of a target system under their own experimental scenarios,
these algorithms have not been quantitatively evaluated each other under a uni-
fied evaluation framework. The lack of comprehensive evaluation studies makes
it difficult to understand the energy efficiency of a new DVS algorithm relative
to that of the existing DVS algorithms. In this paper, we describe SimDVS, an
� This work was supported by grant No. R01-2001-00360 from the Korea Science &

Engineering Foundation. Woonseok Kim and Sang Lyul Min were supported in part
by the Ministry of Science and Technology under the National Research Laboratory
program.

B. Falsafi and T.N. Vijaykumar (Eds.): PACS 2002, LNCS 2325, pp. 141–156, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

142 Dongkun Shin et al.

integrated simulation environment for DVS algorithms, which can be used in
comparing the energy efficiency of various DVS algorithms.

1.1 DVS Algorithms for Hard Real-Time Systems

For hard real-time systems, DVS algorithms can be categorized into two classes,
inter-task DVS (InterDVS) and intra-task DVS (IntraDVS). InterDVS algo-
rithms determine the supply voltage on task-by-task basis while IntraDVS algo-
rithms adjust the supply voltage within an individual task boundary. InterDVS
algorithms are further divided depending on the scheduling policy employed,
say, the earliest-deadline-first (EDF) or rate-monotonic (RM) scheduling poli-
cies. Table 1 summarizes the recent DVS algorithms proposed for hard real-time
systems, six EDF InterDVS algorithms and two RM InterDVS algorithms. Inter-
DVS algorithms under the same scheduling policy are different mainly in the way
how slack times are estimated. For example, lppsEDF conservatively estimates
available slack times at scheduling points. On the other hand, lpSHE employs an
aggressive technique in estimating the slack times available.

IntraDVS algorithms can be divided into two subcategories, path-based In-
traDVS algorithms [11] and stochastic IntraDVS algorithms [12], depending on
how to estimate slack times and how to adjust speeds. In the path-based In-
traDVS algorithms, the voltage and clock speed are statically determined by
computing the differences between the execution cycles of the predicted exe-
cution path (e.g., the worst case execution path (WCEP)) and the execution
cycles of the execution path actually taken. When the actual execution deviates
from the predicted execution path (say, by a branch instruction), the change in
workload is detected and the clock speed is adjusted.

The stochastic IntraDVS algorithms adjust the execution speed within a task
boundary based on the probability density function of execution times of a task.
This method is based on an observation that, from the energy consumption point
of view, it is better to execute with a lower speed in the beginning and increase
the execution speed later when necessary. Under the stochastic method, the clock

Table 1. Recent DVS algorithms proposed for hard real-time systems

Category Scheduling Policy DVS Algorithms

lppsEDF [7]
ccEDF [9]

EDF laEDF [9]
InterDVS DRA [8]

AGR [8]
lpSHE [13]

RM lppsRM [7]
ccRM [9]

IntraDVS Path-based Method intraShin [11]
Stochastic Method intraGruian [12]

SimDVS: An Integrated Simulation Environment 143

speed is raised at the specific times, regardless of the execution paths taken.
Unlike the path-based IntraDVS algorithms that can utilize all the slack times
from the task execution in scaling the execution speed, the stochastic IntraDVS
algorithms may leave some slack times unused when the actual execution takes
a short execution path (other than WCEP).

1.2 Our Contribution

The SimDVS simulation environment was developed to help quantitative perfor-
mance analysis and evaluation of DVS algorithms by providing a unified evalua-
tion framework. The current version of SimDVS supports all the DVS algorithms
listed in Table 1. In addition to the DVS algorithms, SimDVS includes utility
programs that are useful for DVS comparative studies. For example, SimDVS
provides a tool that automatically generates a task set with specific task char-
acteristics.

In order to demonstrate the effectiveness of SimDVS, we present three case
studies in this paper. First, we compare the energy efficiency of an IntraDVS
algorithm and InterDVS algorithms. Second, we evaluate if hybrid DVS algo-
rithms (that adopt both the IntraDVS approach and the InterDVS approach)
can perform better than pure IntraDVS algorithms or pure InterDVS algorithms.
Third, we show that more efficient DVS algorithms may experience higher system
overheads (e.g., more context switches), possibly degrading the overall energy
efficiency of the DVS algorithms.

The rest of the paper is organized as follows. In Section 2, we present the
overview of SimDVS. The detailed description of main modules of SimDVS is
given in Section 3. We present three case studies in Section 4 and conclude with
a summary in Section 5.

2 Overview of SimDVS

2.1 Design Goals

In order to effectively evaluate various DVS algorithms under a variety of simu-
lation scenarios, SimDVS was architected to meet the following design goals:

1. New DVS algorithms based on different DVS approaches should be easily
integrated into SimDVS.

2. Variations in simulation scenarios should be easily supported. Simulation
scenarios can differ, for example, in task workloads, variations in executed
paths, and task set specifications.

3. Different type of variable-voltage processors should be easily supported.

Fig. 1 shows three examples of using SimDVS for evaluating DVS algorithms.
As shown in Fig. 1(a), SimDVS can be used to compare the energy efficiency
of different DVS algorithms using the same task set specification under the
same machine configuration. Using this evaluation, one can decide the best DVS
algorithm for the given application on the given hardware platform.

144 Dongkun Shin et al.

DVS algorithm 1

task set

SimDVS SimDVS

machine
configuration

DVS algorithm 2

Energy 1

Other Cost 1

Energy 2

Other Cost 2

(a) DVS algorithm
comparison

task set 1

machine
configuration

SimDVS

Energy 1

SimDVS

DVS algorithm

task set 2

Other Cost 1

Energy 2

Other Cost 2

(b) Performance variations
with different task sets

machine
configuration 1

task set

SimDVS SimDVS

DVS algorithm

machine
configuration 2

Energy 1

Other Cost 1

Energy 2

Other Cost 2

(c) Performance variations
with different machine

configurations

Fig. 1. Three SimDVS usage examples

SimDVS can be used as well when evaluating a given DVS algorithm under
various evaluation conditions. For example, one can evaluate how the energy
efficiency of the DVS algorithm changes with different task sets (as shown in
Fig. 1(b)). A similar evaluation can be performed with different machine config-
urations (as shown in Fig. 1(c)).

If properly instrumented, SimDVS can collect information on various system
events or performance parameters other than energy consumption. These extra
profiling data are useful when understanding how DVS algorithms affect the
general behavior of a target system. The current version of SimDVS can collect
the frequency of speed changes and the number of context switches.

2.2 Architectural Organization

Fig. 2 shows an architectural overview of SimDVS. SimDVS consists of three
main modules: 1) the InterDVS Module, 2) the IntraDVS Module and 3) the
IntraDVS Preprocessing Module. SimDVS takes two inputs: 1) a task set specifi-
cation or a DVS-aware control flow graph (CFG) of an input binary program, re-
spectively, for an InterDVS algorithm or an IntraDVS algorithm, and 2) a target
machine specification. As outputs, the energy consumption of the input task(s)
is estimated. If required, other profiling data are also collected.

The InterDVS Module is responsible for the whole operation of SimDVS.
It simulates a given task set under a selected scheduling policy using a slack
estimation and distribution heuristic. The IntraDVS Module simulates IntraDVS
algorithms using the Intra-Task Simulator. The input to the IntraDVS Module is
pre-processed by the tools available in the IntraDVS Preprocessing Module. For
faster simulations of path-based IntraDVS algorithms, we simulate the CFG of
the input program instead of the input program itself. For a comparison study,
the current version of SimDVS supports ten DVS algorithms listed in Table 1.

SimDVS: An Integrated Simulation Environment 145

Executable Program

Scaler

* . . .

* Energy
CFG

DVS−aware
Generator

CFG

IntraDVS Module Outputs

IntraDVS Preprocessing Module

Inputs

CFG

Consumption

InterDVS Module

Profile Information

Speed Transition
TableStochastic Data

Intra−Task Simulator

Energy Estimation

Machine Specification

Task Execution

Module

Module

Slack Estimation

Scaler
Voltage

Off−line
Task Set Specification

Task Set Generator

Information

Slack

Module

Fig. 2. An overview of the SimDVS simulation environment

3 Main Modules of SimDVS

In this section, we describe main modules of SimDVS (shown in Fig. 2) in detail.

3.1 SimDVS Inputs

The task set specification describes various task set characteristics that affect the
energy efficiency of a DVS algorithm while the machine specification describes
the machine characteristics that affect the energy efficiency of a DVS algorithm.

Task Set Specification The energy-efficiency of DVS algorithms can be af-
fected by the characteristics of a given task set such as the number of tasks,
the task execution time distributions, and the worst case processor utilization
(WCPU). Therefore, when evaluating DVS algorithms, it is necessary to under-
stand how the performance of the DVS algorithms varies depending on task sets
with different characteristics.

In SimDVS, the characteristics of a task set T=(τ1, τ2, · · ·, τn) is specified in
a script file that contains the following information on each task τi of the task
set T :

– IDi: the identifier of τi.
– Pi: the period of τi.
– Di: the deadline of τi.
– WCETi: the worst case execution time (WCET) of τi.
– BCETi: the best case execution time (BCET) of τi.
– Distributioni: the execution time distribution of τi.

146 Dongkun Shin et al.

In order to automatically generate a task set with specific characteristics, the
Task Set Generator is used. The Task Set Generator takes the following information
as inputs and generates as an output the corresponding script file for a task set
satisfying the requirements:

– The number of tasks.
– The range and variation of periods.
– The ratio between BCETi and WCETi.
– The worst case processor utilization of a task set.
– The scheduling policy (e.g., EDF or RM).

The Task Set Generator creates schedulable task sets only, under the scheduling
policy specified. For EDF scheduling, if the worst case processor utilization of
the task set is lower than or equal to 1.0, the task set is schedulable. For RM,
the schedulability is verified using the exact schedulability condition described
in [14].

Machine Specification A machine specification includes the available voltage
and clock levels of a target variable-voltage processor. The machine specifica-
tion reflects the characteristics of the target variable-voltage processor. Using
SimDVS, with the target task sets and DVS algorithms fixed, the DVS-related
architectural exploration is possible in designing variable-voltage processors. By
a default, SimDVS uses the machine specification described in [15]. If neces-
sary, other machine specifications are easily supported. The current version of
SimDVS includes the specifications of Intel’s XScale [3], AMD’s K6-2+ [2], and
Transmeta’s Crusoe [1] processors.

3.2 InterDVS Module

The InterDVS Module, responsible for scheduling tasks, plays a role of a real-time
scheduler in a hard real-time system. It takes as an input a task specification
for periodic tasks and simulates each task based on the specified scheduling
policy (e.g., RM or EDF). To simulate an InterDVS scheduling algorithm, the
InterDVS Module consists of two submodules, one for estimating available slack
times and the other for distributing the slack times to each task. The slack
estimation is done by the Slack Estimation Module which computes the total
available time for the scheduled task while the slack distribution is done by the
Task Execution Module which determines the operating speed for the scheduled
task and simulates the execution of the task. For a new InterDVS algorithm,
these two submodules should be re-defined.

Slack Estimation Module The implementation of this module is different
depending on how the target InterDVS algorithm estimates the available slack
times. This module is integrated with the InterDVS Module using the getAvail-
ableTime function. This function receives the task identifier and the start time
of the task as inputs, and returns the total available time for the task. Some

SimDVS: An Integrated Simulation Environment 147

DVS algorithms (e.g., [12]) may need off-line pre-processing steps for computing
total available times during run time. For these algorithms, the Slack Estimation
Module can take off-line slack analysis results as an additional input.

Task Execution Module This module has two roles. First, it determines the
voltage level and clock speed based on the available time for the current task and
the WCET of the task. Although most existing DVS algorithms employ a greedy
approach in distributing the available slack times, if a DVS algorithm adapts
different slack distribution methods, they can be supported in this module. Using
the available voltage levels specified in the machine specification input, this
module sets the voltage level and clock speed. With the assigned clock speed,
the activated task instance consumes all the assigned time interval if its execution
takes the WCEP.

Second, this module simulates the task execution itself. In this module, a real
workload for each task is generated based on the input workload variation factors
(i.e., Distributioni), and the unused time as well as the elapsed time is calculated
out of the available time interval. This module also sends the execution time
information and speed information to the Energy Estimation Module. When the
IntraDVS algorithm is used, this module calls the Intra-Task Simulator of the
IntraDVS Module to simulate IntraDVS.

Energy Estimation Module This module takes the timing and speed infor-
mation from theTask Execution Module, and computes the energy consumption of
the current task execution using the current machine specification. Energy con-
sumption is calculated using the equation E ∝ Ncycle ·Vdd

2, where Ncycle and Vdd

denote the number of execution cycles and the supply voltage, respectively.

3.3 IntraDVS and Its Preprocessing Module

In order to support the simulation of the IntraDVS algorithms, voltage scaling
points within a task boundary should be determined during the off-line phase.
The submodules in the IntraDVS Preprocessing Module are responsible for mak-
ing intra-task voltage scaling decisions, which are passed to the IntraDVS Module
using a DVS-aware CFG or a Speed Transition Table. To reflect the execution be-
havior of real applications, the CFG Generator produces a CFG from SimpleScalar
2.0 [16] binary programs. Each node of the CFG has several node attributes (e.g.,
the number of instructions in a basic block) that are necessary for simulation.

Voltage Scaler This module is used for the path-based IntraDVS algorithms.
It takes the CFG of a target application, and extracts the timing information
from the CFG. By analyzing the CFG, this module computes the remaining
predicted execution times (RPETs) for each basic block. Based on the RPETs
computed, the voltage scaling edges in the CFG are selected using the algorithm
described in [11]. As an output, this module generates the DVS-aware CFG which
includes the voltage scaling information.

148 Dongkun Shin et al.

Speed Transition Table To simulate the stochastic IntraDVS algorithm, the
stochastic data, i.e., the cumulative distribution function for task execution
times, is either provided by user or collected using some profiling runs. Based
on the stochastic data, the Speed Transition Table, which describes when the
execution speed is changed to which speed, is constructed.

Intra-Task Simulator This module simulates the task execution using a given
DVS-aware CFG and a Speed Transition Table for the path-based IntraDVS algo-
rithms and the stochastic IntraDVS algorithm, respectively. During simulation,
it adjusts the voltage and clock speed based on the voltage scaling information
specified as a part of the input CFG or the Speed Transition Table.

To simulate the path-based IntraDVS algorithms, the Intra-Task Simulator
requires the information on the execution path actually taken. The Intra-Task
Simulator generates an execution path trace from the input CFG by randomly
selecting one of two branching edges and setting the number of loop iterations
by a random number between 0 and Nmax loop where Nmax loop is the maximum
number of loop iterations. To change the execution times of the selected execu-
tion paths, SimDVS controls two parameters, α and β, which can be specified by
user. α represents the probability of selecting the branching edge with a longer
remaining time while β indicates the ratio of the average number of loop itera-
tions to the maximum number of loop iterations for each loop. For example, if
β is set to 0.5, the average number of loop iterations becomes close to the half
of the maximum number of loop iterations. When both α and β are set to 1.0,
the execution time of the selected path is close to WCET. Fig. 3 illustrates how
the execution cycles of a task change when α and β vary. As α and β increase,
the execution time tends to increase.

Once the execution time t for the simulated task is determined by the Task
Execution Module (in the InterDVS Module), the Intra-Task Simulator generates
the execution path trace whose execution time is close to the task execution
time t. To help the path generation step, the IntraDVS Preprocessing Module
maintains the database of execution path traces with their (α, β) values and
corresponding execution times.

4 Case Studies

In this section, we present three case studies that demonstrate how SimDVS can
be used in evaluating various DVS algorithms.

4.1 Performance Evaluation of InterDVS and IntraDVS

First, we compared the energy efficiency of InterDVS algorithms and an In-
traDVS algorithm. For the evaluation study, we compared the energy efficiency
of four EDF InterDVS algorithms, the lppsEDF, ccEDF, laEDF and DRA algo-
rithms, with that of the intraShin1 algorithm. (These algorithms are listed in
1 Before the intraShin algorithm is applied for each task instance, the time slot for

each task instance is assigned by the off-line InterDVS algorithm described in [9].

SimDVS: An Integrated Simulation Environment 149

Fig. 3. Changes in the number of execution cycles when α and β vary

Table 1.) As test cases, we used two different task sets, A and B. The task set
A is homogeneous (i.e., the tasks in A have similar periods and WCETs) while
the task set B is heterogeneous (i.e., the tasks in B have large variations in their
periods and WCETs).

Fig. 4 shows the normalized energy consumption of the InterDVS algorithms
over that of intraShin. Except for a few cases, the intraShin algorithm out-
performs the InterDVS algorithms tested. We can observe that the relative per-
formance of the InterDVS algorithms is getting worse when the worst case pro-
cessor utilization gets smaller. This is because unused slack times are increasing,
in the InterDVS algorithms, when WCPU becomes smaller. On the other hand,
intraShin utilizes all the slack times, resulting in higher energy reductions.

The DRA algorithm’s performance is significantly different with two task sets.
As shown in Fig. 4(a), DRA outperforms both laEDF and intraShin when the
task set A is used. However, when the task set B is used, Fig. 4(b) shows that
DRA’s performance is inferior to that of laEDF and intraShin. This is because
the slack estimation method used in DRA does not work well when the task
utilizations are not uniform.

4.2 Performance Evaluation of Hybrid Methods

We have compared the energy efficiency of the InterDVS algorithms and the
IntraDVS algorithm in the previous section. However, there are cases where pure
IntraDVS or pure InterDVS dose not work well. Fig. 5 illustrates such cases.

In Fig. 5(a), when an InterDVS algorithm is used, the slack time generated
by the task τ1 cannot be used by the task τ2 because the release time of the task
τ2 is same to the deadline of the task τ1. This slack time could be used if the task
τ1 were scheduled using an IntraDVS algorithm. On the other hand, in Fig. 5(b),
when an IntraDVS algorithm is used, all the slack times generated by the task
τ1 are used by the task τ1. However, this slack distribution is unbalanced. If we

150 Dongkun Shin et al.

(a) Task set A (b) Task set B

Fig. 4. Normalized energy consumption of InterDVS algorithms over intraShin

used InterDVS, we could get a more efficient schedule by distributing the slack
time of τ1 for the task τ2.

In this section, we investigate whether hybrid DVS algorithms (HybridDVS
algorithms) with both IntraDVS and InterDVS features perform better than pure
IntraDVS algorithms or pure InterDVS algorithms. Although both intraShin
and intraGruian can be used for performance comparison, we use intraShin
as the base IntraDVS algorithm. This is because intraShin is less likely to
generate dynamic slack times, thus making the distinctions among the different
HybridDVS methods clearer.

HybridDVS algorithms select either the intra mode or the inter mode when
slack times are available during the execution of the current task. At the inter
mode, the slack time is used not for the current task but for the following tasks.
Therefore, the speed of the current task is not changed by the slack time pro-
duced by the current task. At the intra mode, all the slack time is used for the
current task, reducing its own execution speed.

task

τ2τ1deadline() = release()

τ2task

speed

time

slack

τ
interval

1

(a) The case where InterDVS can not
utilize the slack time.

task τ2task

τ2release() τ1deadline()

speed

τ
time

1

(b) The case where the slack
distribution is not balanced due to

IntraDVS.

Fig. 5. Cases where pure InterDVS or pure IntraDVS performs poor

SimDVS: An Integrated Simulation Environment 151

Table 2. Heuristics for HybridDVS algorithms

Heuristic Description

H0 always uses the inter mode (i.e., the pure InterDVS approach).

H1 uses the inter mode as a default but uses the intra mode if no activated
task exists.

H2 uses the inter mode at first, but changes into the intra mode when the
unused slack time is more than a predefined amount of slack time.

H3 alternates the intra mode and the inter mode keeping the balance of slack
consumption in each mode.

H4 uses the intra mode at first, but changes into the inter mode when the
current task has used a predefined amount of slack time.

H5 always uses the intra mode.

Table 2 summarizes six heuristics for HybridDVS algorithms we consider
in this section. The heuristics are different in that how close they are to the
pure IntraDVS approach or pure InterDVS approach. H0 is identical to the pure
InterDVS approach. H1 and H2 are closer to the pure InterDVS approach while
H4 and H5 are closer to the pure IntraDVS approach. H1 uses the intra mode
only when there is no following task which can utilize the slack time from the
current task.

We have evaluated six heuristics in Table 2 with six InterDVS algorithms in
Table 1. Fig. 6 shows the energy efficiency comparison results of the HybridDVS
algorithms over the power-down method varying WCPUs. In the power-down
method, active tasks execute with the full speed. When there is no active task,
the system enters into the power-down mode. The HybridDVS algorithms, H1,
H2, H3 and H4, generally reduce the energy consumption by 5∼20% over that
of the pure DVS algorithms, H0 and H5.

Fig. 6 shows that the energy efficiency of HybridDVS algorithms are strongly
affected by the efficiency of on-line slack estimation methods used by each In-
terDVS algorithm. In laEDF, DRA, AGR, and lpSHE where slack times are ag-
gressively identified, it is a good idea that some (or all) of slack time produced
by the current task is passed to the following tasks (as in Fig. 5(b)). However,
in lppsEDF/RM and ccEDF/RM where slack times are less aggressively identified,
there are many cases where the current slacks are wasted unless used by the
current task (as in Fig. 5(a)). In this case, it is better for the current task to
utilize most of the slack time generated. Therefore, if a HybridDVS algorithm is
based on laEDF, DRA, AGR, or lpSHE, H1 and H2 are better choices. On the other
hand, for lppsEDF/RM and ccEDF/RM, H4 and H5 are better choices.

Fig. 7 shows the spectrum of HybridDVS heuristics, and summarizes well-
matching hybrid heuristics for each InterDVS algorithm. For example, if laEDF
is extended to a HybridDVS algorithm, H1 is a good candidate for a matching
hybrid heuristic. However, if lppsRM is modified for a hybrid DVS algorithm, H4
is a better hybrid heuristic.

152 Dongkun Shin et al.

(a) lppsRM (b) ccRM

(c) lppsEDF (d) ccEDF

(e) AGR (f) laEDF

Fig. 6. Energy efficiency comparison results of the HybridDVS algorithms

SimDVS: An Integrated Simulation Environment 153

H1 H2 H3 H4

InterDVS IntraDVS

H5H0

laEDF AGR DRA
lppsEDF
lppsRM

ccEDF
ccRM

Fig. 7. Spectrum of HybridDVS heuristics

4.3 Overhead Measurement of InterDVS Algorithms

In designing an InterDVS algorithm, it is common to assume that the voltage
scaling overhead is negligible. However, since efficient InterDVS algorithms gen-
erally lengthen the active execution intervals of tasks, InterDVS may affect other
system performance factors, possibly causing negative side effects on the overall
energy efficiency. In this section, using SimDVS, we evaluate how the InterDVS
algorithm affects the number of context switches. In particular, we investigate
whether it increases significantly.

The example task set in Table 3 illustrates that DVS can increase the num-
ber of context switches due to preemption. As shown in Fig. 8(a), the example
task set can be scheduled with the maximum frequency fmax under the EDF
scheduling policy. In this case, there is no preemption. When the same task set
is scheduled by an InterDVS algorithm, the schedule may look like one shown in
Fig. 8(b). If we assume that there is no system overhead as well as energy over-
head due to extra preemption, the schedule in Fig. 8(b) consumes less energy
than one in Fig. 8(a) because it operates under the slower speed flower. How-
ever, the energy-efficient schedule in Fig. 8(b) increases the number of context
switches due to extra preemption. For example, since the execution time of τ1

is increased by the InterDVS algorithm, τ1 cannot complete its execution before
t = 2, thus it is preempted by the second instance of τ2.

Fig. 9 shows how the number of context switches changes with the InterDVS
algorithms. The number of context switches is measured varying the number of
tasks and the number of voltage levels available in the target machine. The results
are normalized by the number of context switches by the power-down method.
The laEDF, DRA and lpSHE algorithms show high rates of increase in preemption.
When a task is preempted, the number of cache misses and memory accesses may

Table 3. An example task set

Task Period WCET Actual Execution Time

τ1 6 1 1
τ2 2 1 0.5

154 Dongkun Shin et al.

1 32 4 5 6

fmax

cl
oc

k
fr

eq
ue

nc
y

(a)
time

1 32 4 5 6

flower

cl
oc

k
fr

eq
ue

nc
y

(b)
time

Fig. 8. Extra preemption due to DVS

(a) Number of Tasks (b) Voltage Levels

Fig. 9. Changes in the number of context switches

increase as well. Therefore, more energy is consumed in the memory and bus.
Furthermore, as the number of context switches increases, the live length2 of
a task is lengthened. If the live length of a task is increased, more memory
blocks are simultaneously required, increasing the probability of page faults.

Our experimental results indicate that when the preemption cost is consid-
ered, DVS algorithms need to be evaluated differently. For example, although
lppsEDF is less energy-efficient than other InterDVS algorithms under the as-
sumption of no context switching overhead, it might be more efficient when
a context switch consumes a significant amount of energy because tasks under
lppsEDF preempt each other less frequently.

5 Conclusion

In this paper, we have described SimDVS, a unified simulation environment
for performance comparison of dynamic voltage scaling algorithms, and demon-
strated its effectiveness as a DVS evaluation tool using three case studies. Based
2 The time duration between the arrival time and completion time of a task instance.

SimDVS: An Integrated Simulation Environment 155

on the modular design structure, SimDVS supports both IntraDVS algorithms
and InterDVS algorithms and allows an easy integration of new DVS algorithms
such as HybridDVS algorithms.

Using SimDVS, we compared the energy efficiency of the IntraDVS algorithm
and InterDVS algorithms. Although, the IntraDVS algorithm generally outper-
formed the InterDVS algorithms, the relative energy efficiency was dependent
on the task set characteristics.

As the second case study, we also evaluated various heuristics for the Hybrid-
DVS algorithms which use both IntraDVS and InterDVS features. The heuristics
close to the pure InterDVS algorithm worked better when they are based on the
aggressive InterDVS algorithms while the heuristics close to the pure IntraDVS
algorithm performed better when they are based on the non-aggressive InterDVS
algorithms.

Finally, we showed that more efficient DVS algorithms may suffer from more
system overhead such as the context switches.

Acknowlegement

The RIACT at Seoul National University provided research facilities for this
study.

References

[1] M. Fleischmann. Crusoe Power Management: Reducing The Operating Power
with LongRun. In Proc. of HotChips 12 Symposium, 2000. 141, 146

[2] Advanced Micro Devices, Inc. AMD PowerNow Technology, 2000. 141, 146
[3] Intel, Inc. The Intel(R) XScale(TM) Microarchitecture Technical Summary,

2000. 141, 146
[4] F. Yao, A. Demers, and S. Shenker. A Scheduling Model for Reduced CPU En-

ergy. In Proc. of 36th Annual Symposium on Foundations of Computer Science,
pages 374–382, 1995. 141

[5] I. Hong, G. Qu, M. Potkonjak, and M.B. Srivastava. Synthesis Techniques for
Low-Power Hard Real-Time Systems on Variable Voltage Processor. In Proc. of
Real-Time Systems Symposium, pages 178–187, 1998. 141

[6] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for Dynamically Vari-
able Voltage Processors. In Proc. of International Symposium On Low Power
Electronics and Design, pages 197–202, 1998. 141

[7] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-Time Embedded
Systems on Variable Speed Processors. In Proc. of International Conference on
Computer-Aided Design, pages 365–368, 2000. 141, 142

[8] H. Aydin, R. Melhem, D. Mosse, and P.M. Alvarez. Dynamic and Aggressive
Scheduling Techniques for Power-Aware Real-Time Systems. In Proc. of Real-
Time Systems Symposium, 2001. 141, 142

[9] P. Pillai and K.G. Shin. Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems. In Proc. of 18th ACM Symposium on Operating
Systems Principles (SOSP’01), 2001. 141, 142, 148

156 Dongkun Shin et al.

[10] G. Quan and X. Hu. Energy Efficient Fixed-Priority Scheduling for Real-Time
Systems on Variable Voltage Processors. In Proc. of Design Automation Con-
ference, pages 828–833, 2001. 141

[11] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for Low-Energy
Hard Real-Time Applications. IEEE Design and Test of Computers, 18(23):20–
30, Mar. 2001. 141, 142, 147

[12] F. Gruian. Hard Real-Time Scheduling Using Stochastic Data and DVS Pro-
cessors. In Proc. of International Symposium on Low Power Electronics and
Design, pages 46–51, 2001. 141, 142, 147

[13] W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling Algorithm for
Dynamic-Priority Hard Real-Time Systems Using Slack Time Analysis. In Proc.
of Design, Automation and Test in Europe (DATE’02), pages 788–794, 2002. 142

[14] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In Proc. of Real-Time Sys-
tems Symposium, pages 166–171, 1989. 146

[15] T. Burd, T. Pering, A. Stratakos, and R. Brodersen. A Dynamic Voltage Scaled
Microprocessor System. In Proc. of International Solid-State Circuits Confer-
ence, pages 294–295, 2000. 146

[16] D. Burger and T.M. Austin. The SimpleScalar Tool Set, version 2.0. Technical
Report 1342, University of Wisconsin-Madison, CS Department, Jun. 1997. 147

	SimDVS: An Integrated Simulation Environment for Performance Evaluation of Dynamic Voltage Scaling Algorithms
	Introduction
	DVS Algorithms for Hard Real-Time Systems
	Our Contribution

	Overview of SimDVS
	Design Goals
	Architectural Organization

	Main Modules of SimDVS
	SimDVS Inputs
	InterDVS Module
	IntraDVS and Its Preprocessing Module

	Case Studies
	Performance Evaluation of InterDVS and IntraDVS
	Performance Evaluation of Hybrid Methods
	Overhead Measurement of InterDVS Algorithms

	Conclusion

