
To Collect or Not to Collect: Just-in-Time Garbage
Collection for High-Performance SSDs with Long Lifetimes

Sangwook Shane Hahn†, Sungjin Lee∗ and Jihong Kim†

†Department of Computer Science and Engineering, Seoul National University
∗Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

shanehahn@davinci.snu.ac.kr, chamdoo@csail.mit.edu, jihong@davinci.snu.ac.kr

ABSTRACT

For NAND flash-based storage systems, managing garbage
collection (GC) efficiently is a critical requirement to achieve
both high performance and long lifetimes. In this paper, we
propose a just-in-time GC technique, called JIT-GC, which
invokes background GC operations only when necessary de-
pending on future write demands. JIT-GC was motivated by
our measurement study, which strongly suggested that de-
ciding when to invoke background GC operations is a key
parameter for efficient GC. By accurately estimating the
amount of future SSD writes, JIT-GC can choose the best
time to invoke a background GC operation. JIT-GC reserves
necessary free space in advance so that high write perfor-
mance can be achieved while it extends the SSD lifetime
by preventing premature block erasures. Our evaluations
on real SSDs show that JIT-GC can achieve both high perfor-
mance and long lifetimes, thus overcoming the shortcomings
of existing background GC invocation heuristics.

1. INTRODUCTION
Garbage collection (GC) is the essential operation for NA-

ND flash-based storage systems. Because of the NAND’s
erase-before-write constraint, when writing new data to a
NAND page, an out-place update is used by writing new
data to a new NAND page instead of updating the original
page. Since out-place updates generate invalid pages with
old data, garbage collection is necessary to reclaim invalid
pages for future writes.

Since GC requires valid page migrations as well as block
erasures, it incurs a significant performance overhead to a
NAND flash-based storage system. In particular, if GC is
necessary for an outstanding write request (i.e., when a fore-
ground GC (FGC) operation is necessary), there can be a
significant degradation in system performance (or user expe-
rience). Furthermore, since both the NAND program time
and the number of pages per block tend to increase (e.g.,
0.2 ms and 64 pages/block at 130-nm NAND chips to 2.3
ms and 384 pages/block at 25-nm NAND chips [1, 2], re-
spectively), the impact of GC on the system performance,
when poorly managed, is expected to be even bigger in fu-
ture high-performance NAND-based storage systems.

In order to hide the performance penalty of a foreground
GC operation, background garbage collection (BGC) is com-
monly used when a storage system is idle so that most
foreground GC operations can be avoided. Although back-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06...$15.00
http://dx.doi.org/10.1145/2744769.2744918 .

ground GC operations can be effective in reducing the per-
formance penalty of foreground GC operations, careful con-
siderations are required in deciding when to invoke BGCs.
An aggressive BGC policy, which reserves a large free space
in advance, can avoid most FGC operations and achieves
high write performance. However, its performance improve-
ment comes with a shortened lifetime because the aggressive
BGC policy tends to erase NAND blocks in a premature
fashion. For example, in order to reclaim a required large
free space, blocks with soon-to-be invalidated pages may be
selected as GC victims, thus incurring a large number of
useless page migrations. On the other hand, a lazy BGC
policy, which maintains a small free space, does not sacrifice
the lifetime of an SSD. However, it can significantly degrade
the write performance because some foreground GC oper-
ations may be needed. Therefore, selecting the right time
for invoking a background GC operation is important for
designing a high-performance SSD with a long lifetime.

In this paper, we propose a just-in-time (JIT) GC tech-
nique, called JIT-GC, that performs background garbage col-
lection operations only when necessary, thus improving both
the performance and lifetime of NAND-based storage sys-
tems. JIT-GC aims to overcome the shortcomings of existing
BGC policies such as aggressive BGC and lazy BGC. In or-
der to perform garbage collection in a just-in-time fashion,
we need to know future write demands in advance because
the timeliness of GC invocations depends on how much fu-
ture writes are performed. To estimate the future write
demands, we take advantage of a typical I/O datapath be-
tween an application (that generates I/O requests) and a
storage device (that eventually serves the I/O requests).
JIT-GC employs two different prediction techniques in esti-
mating the amount of future disk writes depending on the
type of disk writes. For buffered writes, where written data
are first placed in the page cache and later flushed from
the page cache to an SSD (according to prespecified rules),
we can predict with a high accuracy that when and which
of buffered data will be written to the SSD by analyzing
the page cache management algorithm. For example, in a
Linux page cache, buffered data are flushed to an SSD af-
ter a predefined delay (e.g., 30 seconds). By scanning the
page cache, we can easily tell how much of data will be
written to the SSD, say, after 10 seconds. Furthermore, we
can identify soon-to-be-invalidated pages within the SSD by
scanning dirty pages in the page cache.

For direct writes, which bypass the page cache, it can
be difficult to estimate the amount of future writes because
such writes can happen at any time. In JIT-GC, direct writes
are managed by using a dedicated over-provisioning space.
Although a sufficient over-provisioning area can service di-
rect writes without invoking FGC operations, maintaining a
large over-provisioning area has the same disadvantage of an
aggressive BGC technique. In order to maintain the right
amount of the over-provisioning area for direct writes, JIT-

GC employs a heuristic predictor for estimating future direct
writes. Our heuristic estimates future direct writes using

the cumulative data histogram of given I/O traffic.
Using an estimated future write demand from two predic-

tors, JIT-GC decides when to invoke a BGC operation. Unlike
an aggressive BGC policy or a lazy BGC policy where the fu-
ture write demands are not fully exploited, JIT-GC can take
advantage of an accurate estimate on future writes, thus
choosing the best time to invoke a BGC operation. JIT-GC

further improves the GC efficiency by exploiting the infor-
mation on soon-to-be-invalidated pages from the page cache.
By modifying a GC victim selection rule to take account of
this information, JIT-GC tends to avoid blocks with many
soon-to-be-invalidated pages as GC victim blocks.

In order to evaluate the effectiveness of the proposed JIT-

GC, we have implemented JIT-GC in Samsung SM843T SSDs [3]
with a capacity of 240 GB. (The SM843T SSD, which is
based on 20-nm MLC NAND flash, are targeted for data
center SSDs.) For our JIT-GC implementation, the host in-
terface of SM843T SSD was extended to support several new
interface functions required for invoking BGC operations in
a just-in-time fashion. (For a more detailed description of
an extension to SM843T SSDs, see Sec. 4.)

Our experimental results on SM843T SSD using YCSB [4],
Postmark, Filebench [5], Bonnie++, Tiobench and TPC-C
benchmarks show that JIT-GC simultaneously achieves both
the performance of an aggressive BGC policy and the life-
time of a lazy BGC policy. In our evaluations, the lazy
BGC policy and aggressive BGC policy maintain 50% and
150% of SSD’s over-provisioning space as reserved space,
respectively. For performance, JIT-GC improves IOPS (In-
put/Output Operations Per Second) by up to 27% over the
lazy BGC policy while maintaining a similar IOPS level to
that of the aggressive BGC policy. For lifetime, JIT-GC de-
creases WAF (Write Amplification Factor) by up to 22%
over the aggressive BGC policy while maintaining a similar
WAF level to that of the lazy BGC policy.

The rest of this paper is organized as follows. In Sec. 2, we
quantitatively evaluate how existing BGC invocation heuris-
tics affect the performance and lifetime of SSDs. Sec. 3.2
describes our proposed predictors on future write demands.
In Sec. 3.3, we describe the proposed just-in-time garbage
collection in detail. Experimental results are given in Sec. 4,
and related work is summarized in Sec. 5. In Sec. 6, we con-
clude with a summary.

2. IMPACT OF BGC INVOCATION TIMES

ON PERFORMANCE AND LIFETIME
In order to understand the impact of BGC invocation

times on the performance and lifetime of SSDs, we first re-
view a typical SSD space configuration which directly influ-
ences the BGC invocation frequency. As shown in Fig. 1(a),
most SSDs divide the total physical capacity into a user ca-
pacity and an over-provisioning capacity. The over-provisio-
ning (OP) capacity COP , which is not available for storing
user data, is a reserved capacity exclusively for an SSD man-
agement software such as FTL. The OP capacity is useful in
improving both SSD performance and lifetime. For example,
the OP capacity allows to delay GC invocations because free
pages from the OP space can be transparently allocated to
user data, thus avoiding garbage collections even when there
are few free pages left in the unused space. However, as user
data fills up the user capacity of the SSD, the OP space is
also filled up with invalid pages. In order to prevent OP
from being full of invalid pages, BGC is invoked to reclaim
invalid pages (up to its reserved capacity) when a storage
system is idle.

Used Space
Over-Provisioned

(OP) Space
Unused Space

User Capacity
Total Physical Capacity

Cused Cunused COPCapacity:

(a) A typical space organization in an SSD.
Unused SpaceUsed Space OP Space

Reserved Space by lazy BGC

ClazyCapacity:

(b) A reserved space and its capacity of a lazy BGC policy.
Unused SpaceUsed Space OP Space

CaggCapacity:

Reserved Space by

aggressive BGC

(c) A reserved space and its capacity of an aggressive BGC
policy.

Figure 1: SSD space configurations under different BGC
invocation schemes.

Since the average BGC invocation rate is largely deter-
mined by a reserved capacity Cresv of a BGC policy, we
say that a BGC policy is lazy when the reserved capacity
is small. When a large reserved capacity is required, more
frequent BGC invocations are necessary. For such a BGC
policy, we call it an aggressive BGC policy. Since there is
no clear distinction between a lazy BGC and an aggressive
BGC, in this paper, we assume that a BGC policy is lazy
when Cresv of a BGC policy is smaller than the OP capacity
COP . Fig. 1(b) shows an example SSD space configuration
for a lazy BGC policy where the reserved capacity Clazy

of a lazy BGC policy is smaller than COP . For an aggres-
sive BGC policy, we make a similar assumption that the
reserved capacity Cagg of an aggressive BGC policy is larger
than COP , as shown in Fig. 1(c). For an aggressive BGC
policy, we further restrict that Cresv cannot be bigger than
the sum of Cunused and COP so that we can avoid useless
BGC operations when an SSD is filled with a large amount
of user data.

In a lazy BGC policy where Clazy is small, BGC invo-
cation times are rather delayed until the unused space is
almost exhausted. Infrequent BGC invocations in the lazy
BGC policy help to avoid unnecessary data migrations so
that the SSD lifetime can be extended. On the other hand,
when the aggressive BGC policy is used, BGC operations are
more frequently invoked so that a bigger Cagg can be main-
tained. These frequent BGC invocations, however, degrade
the SSD lifetime by erasing NAND blocks too frequently.

In order to better understand the impact of the laziness/a-
ggressiveness of a BGC policy on the GC efficiency, we mea-
sured IOPS and WAF on SM843T SSDs while varying Cresv

of a BGC policy. We used four benchmarks, YCSB (an update-
intensive workload), Postmark, Filebench (a file-server work-
load), Bonnie++, Tiobench and TPC-C, which were all run
on a Linux-based PC with 8 GB memory (For a detailed
description on the benchmarks, see Sec. 4). The working set
size of each benchmark was set to half of the size of the user
capacity. As shown in Fig. 2, Cresv was changed from 0.5 ×

COP to 1.5 × COP . (For brevity, in the rest of this paper,
we denote a lazy BGC policy with Cresv = 0.5 × COP as L-

BGC and an aggressive BGC policy with Cresv = 1.5 × COP

as A-BGC, respectively.) Measurement values shown in Fig. 2
are normalized over values measured by A-BGC. As expected,
IOPS improves as Cresv increases while WAF gets smaller
with a smaller Cresv. However, the differences in IOPS and
WAF over different Cresv values were a lot bigger than ones
we expected. As shown in Fig. 2, IOPS can be different by
up to five times depending on Cresv. WAF can vary by up

0

0.2

0.4

0.6

0.8

1

0.5OP 0.75OP OP 1.25OP 1.5OP

N
o
rm

a
li

ze
d

 I
O

P
S

The reserved capacity of BGC policy

YCSB

Postmark

Filebench

Bonnie++

Tiobench

TPC-C

(a) Impact of the reserved
capacity on IOPS.

0

0.2

0.4

0.6

0.8

1

0.5OP 0.75OP OP 1.25OP 1.5OP

N
o

rm
a

li
ze

d
 W

A
F

The reserved capacity of BGC policy

YCSB

Postmark

Filebench

Bonnie++

Tiobench

TPC-C

(b) Impact of the reserved
capacity on WAF.

Figure 2: Impact of the reserved capacity on performance
and lifetime.

to twice over different Cresv’s.
Our work on JIT-GC was strongly motivated by these

measurement results which strongly indicated that the re-
served capacity of a BGC policy is a key factor for efficient
GC. Since we indirectly control the invocation frequency of
a BGC policy by Cresv, this measurement suggests that de-
ciding when to invoke BGC operations is a critical design pa-
rameter that affects the GC efficiency. Furthermore, Fig. 2
clearly shows that there is a tradeoff between the SSD perfor-
mance and lifetime using a different Cresv value. Obviously,
for example, neither L-BGC nor A-BGC can achieve the highest
performance with the longest lifetime.

Judging from Fig. 2, the ideal BGC invocation policy is
one that can dynamically changes Cresv so that only an ex-
act amount of future writes can be reserved in advance. This
ideal policy can avoid costly FGC operations while mini-
mally affecting the NAND endurance. In order for such an
ideal BGC policy to be feasible, it is important to accu-
rately estimate future write demands in advance. However,
it is quite challenging to accurately predict future write de-
mands inside an SSD with device-level access information
only. As an alternative solution for an accurate future write
predictor, we propose to exploit the page cache and its man-
agement algorithm. As described in detail in the next sec-
tion, a page cache-aware prediction on future write demands
enables us to design and implement a near-ideal BGC policy
in a practical setting.

3. DESIGN AND IMPLEMENTATION OF

JIT-GC

3.1 Overall Architecture of JIT-GC
Fig. 3(a) shows an overall architecture of JIT-GC, which

is composed of two main modules, a future write demand
predictor and a JIT-GC manager. The future write demand
predictor estimates future write traffic and forwards this in-
formation to the JIT-GC manager. As mentioned in Sec.
1, for accurate prediction of a future write demand, the fu-
ture write demand predictor uses two different prediction
methods for buffered writes and direct writes, respectively.
The JIT-GC manager is responsible for reserving a proper
amount of free space (requested by the future write demand
predictor) in the SSD so that the expected future writes can
be served without incurring FGC. To this end, the JIT-GC
manager schedules BGC to reclaim required free space dur-
ing idle times in the SSD.

Besides the information for future write traffic, the write
demand predictor sends a list of logical addresses of dirty
data in the page cache to the JIT-GC manager, which we call
a soon-to-be-invalidated page (SIP) list. Although the dirty
data stays in the page cache at a prediction time, it will be
soon evicted to the SSD. Therefore, moving old versions of
the dirty data stored in the SSD during BGC can be useless.
Using the SIP list, the JIT-GC manager can exclude blocks
containing soon-to-be-invalidated pages from BGC.

Storage System

Kernel

Direct Writes

NAND Flash Memory

User Process

Disk I/O

Flash Translation Layer

Wear Leveler (W/L)

Address Remapping

Page Cache

Just-in-Time GC Manager

Extended Garbage Collector

Buffered Writes

Direct Write Predictor Buffered Write Predictor
SIP ListDbuf

Future Write Demand Predictor

Ddir

(a) An ideal implementa-
tion.

Storage System

Kernel

Direct Writes

NAND Flash Memory

User Process

Disk I/O

W/LRemapping

Page Cache

Extended Garbage Collector

Buffered Writes

Direct Write Predictor Buffered Write Predictor
SIP ListDbuf

Future Write Demand Predictor

Ddir

Flash Translation Layer

Just-in-Time GC Manager

(b) An actual implementa-
tion on SM843T.

Figure 3: An overall architecture of JIT-GC.

The most efficient implementation of JIT-GC is, as shown
in Fig. 3(a), to run the future write demand predictor in a
host OS (because it requires the detailed information of the
page cache) and to execute the JIT-GC manager in the SSD
controller (because it needs to schedule BGC). The commu-
nications between the predictor and the manager (to trans-
fer a predicted future write demand and a SIP list) can be
easily supported by adding custom commands between the
host and the SSD. (This type of an interface extension is
often specially added to deliver host-level information in
enterprise-class SSDs.) Because of practical difficulties in
modifying the SM843T’s FTL, however, it is not easy to
implement the JIT-GC manager in the SM843T SSDs. As
depicted in Fig. 3(b), instead, we implement the JIT-GC
manager in the host, which sends BGC invocation com-
mands and SIP lists to SM843T. The SM843T FTL was
slightly modified to perform BGC with a SIP list when it
gets explicit a BGC command from the JIT-GC manager.

3.2 Future Write Demand Estimation
In this subsection, we explain the details of the write de-

mand prediction techniques for buffered and direct writes.

3.2.1 Write Demand Predictor for Buffered Writes
For fast I/O performance, most modern operating sys-

tems use a write-back cache management policy. Therefore,
almost all data written or modified by user applications is
first stored in the page cache and later evicted to the SSD.
Since the modified data stays in the page cache as dirty
data for a relatively long time before its eviction, the dirty
data information from the page cache can be very useful in
predicting future write traffic.

In the Linux kernel, dirty data in the page cache is evicted
when following two conditions are satisfied. The first condi-
tion is when dirty data is older than an expiration threshold
τexpire (e.g., 30 seconds) since its last update. The second
condition is when the total size of dirty data kept in the
page cache is larger than a flush threshold τflush (e.g., 10%
of the size of the remaining free space of the page cache).
The flusher thread checks two conditions periodically. When
two conditions are met, it flushes expired dirty data to the
SSD. In this paper, we assume that the flusher thread is
executed every p seconds. We call an interval between two
consecutive flusher thread activation times as a write-back
interval Iwb. When the flusher thread is activated at the
start time s of the write-back interval Iwb = [s, e], we de-

note its future write-back interval as Ijwb(s) = [sj , ej] for
j ≥1 where sj = s + j × p and ej = s + (j + 1)× p. In the
rest of the paper, we assume that τexpire is a multiple of p
and we denote (τexpire/p) as Nwb.

The proposed write demand predictor for buffered writes,
which is designed to exploit the page cache management pol-

A B C B´ D

A C+B´ D

Page Cache

Storage System

Time (s)
User Process

20
MB

200
MB

20 MB 40 MB 200 MB

35302520151050 40 45 50

20
MB

20
MB

20
MB

A B

C B´A

DC B´A

Dbuf (5)

Dbuf (10)
Dbuf (10) = (0, 0, 0, 0, 20, 40)

Dbuf (20) = (0, 0, 20, 40, 0, 200)

Dbuf (5) = (0, 0, 0, 0, 0, 40) D1
buf(5)

D1
buf(10)

D1
buf(20)

D2
buf(5)

D2
buf(10)

D1
buf(20)

Dbuf (20)

Figure 4: An example of future write demand estimation for
buffered writes.

icy explained above, is invoked right after the flusher thread
is executed. The predictor algorithm, when invoked at time
t, estimates a sequence Dbuf(t) = (D1

buf (t), D2
buf (t), ...

,D
τexpire/p

buf) of upper bounds on write demands to the SSD

where Di
buf (t) indicates an upper bound on a write demand

to the SSD for Iiwb(t). In predicting an upper boundDi
buf (t),

we relax the second flush condition described above. We as-
sume that every dirty data is flushed from the page cache
once it gets older than τexpire without checking if the cur-
rent size of dirty data in the page cache is larger than τflush.
With this simple flush condition, it becomes straightforward
to predict an upper bound Di

buf (t) on future buffered writes

for Iiwb(t). A simple scanning of dirty pages older than
τexpire is sufficient to compute Di

buf (t)’s. While scanning
dirty pages in the page cache, the predictor algorithm also
adds the logical block address of each dirty page to a SIP
list LSIP .

Although a tighter future write demand can be predicted
when both flush conditions are strictly checked, we relaxed
the second flush condition of the flusher thread so that ex-
pensive FGC operations can be avoided under some spe-
cial write patterns. For example, when a large-sized (i.e., >
τflush) buffered write is requested long after the size of dirty
data in the page cache has been less than τflush, if we didn’t
relax the second condition, on the next write-back interval,
a dirty data of the size τflush will be flushed to an SSD.
Since this flush was not predictable in advance by the pre-
dictor algorithm, it is likely to cause an FGC operation. In
order to avoid such FGC operations, we relaxed the second
flush condition in predicting the future write demand. The
amount of an over-prediction, however, is always limited by
at most τflush.

Fig. 4 illustrates how our buffered write predictor esti-
mates Dbuf(t)’s using the page cache information. In this
example, p and τexpire are assumed to be 5 and 30 seconds,
respectively. Suppose that five write requests were written
to the page cache in the order of A, B, C, B′ and D, where
B′ is the update write over B. At t = 5, since there are A and
B in the page cache as dirty data and they were in the page
cache less than 5 seconds, the predictor estimates D6

buf (5)

as 40 MB while the other Di
buf (5)’s as 0 MB, thus Dbuf(5)

is given as (0, 0, 0, 0, 0, 40). Note that although A and
B become expired before t = 35, the predictor computes
their flush times to the SSD in I6wb(5) (i.e., [35, 40]) instead
of I5wb(5) (i.e., [30, 35]) because their flush holds until the
flusher thread wakes up at the beginning of I6wb(5). At t =
10, the predictor estimates Dbuf (10) as (0, 0, 0, 0, 20, 40)
reflecting B′ and C. Note that D5

buf (10) is 20 MB, not 40 MB
because B was updated to B′ (resetting B’s age to zero), thus
delaying its flush. Dbuf(20) is similarly estimated as (0, 0,
20, 40, 0, 200) including D.

3.2.2 Write Demand Predictor for Direct Writes
The future write demand cannot be accurately predicted

10 20 30 40 50 60 70 80

Observed Write Traffic (MB)

C
D

H

0.2

1.0

0.8

(a) Histogram

10 20 30 40 50 60 70 80

Observed Write Traffic (MB)

F
re

q
u

en
cy

1

3

(b) Cumulative Data Histogram (CDH)

Figure 5: An example of CDH for direct writes.

only with the page cache information because a nontrivial
amount of data is written to the SSD directly, bypassing a
page cache. For example, a database management system
(DBMS) writes important metadata directly to a storage
device without page-cache buffering. File systems also often
issue direct writes to complete file-system journaling.

In order to estimate future write demand from direct writes,
JIT-GC maintains a cumulative data histogram (CDH) of past
direct writes and uses this information to decide a reserved
free space for future direct writes. A direct write can be
distinguished from a buffered write because it is issued with
a special file-system flag (e.g., O_SYNC). (Note that an idea
of using CDH is not new and is widely used to decide future
behaviors of a system (e.g., [6]).)

Since we can predict future write demands for buffered
writes only up to τexpire seconds in the future (i.e., up to

INwb

wb (t) at time t), the CDH is built based on the amount
by direct writes over τexpire-second intervals. Fig. 5 shows
an example of how JIT-GC builds the CDH. JIT-GC internally
maintains a histogram that keeps track of the amount of
written data during past Iwb’s. Fig. 5(a) illustrates the re-
sulting histogram when 10, 20, 20, 20, and 80 MB of data are
written during the past 5 Iwb’s. The x-axis is a histogram
bin with a 10-MB range and the y-axis is its frequency. Us-
ing the histogram, JIT-GC builds the CDH (Fig. 5(b)) which
shows the cumulative probability distribution of how much
data was written to the SSD over past τexpire-second inter-
vals. From Fig. 5(b), for instance, we know that, for 80%
of the τexpire-second intervals, less than 20 MB data were
written to the SSD.

JIT-GC uses the CDH to decide the size of free space for
direct writes under the assumption that the amount of data
to be written by future direct writes would be similar to the
previously observed one. In our current implementation, the
predictor chooses δdir(t) at time t from the CDH so that re-
serving δdir(t) will avoid an FGC operation for future direct
writes at least 80% of probability. For example, in Fig. 5(b),
a reserved free space is chosen as 20 MB. It is obvious that,
more FGC operations can be avoided with a higher percent-
age value. However, too high percentage values may nega-
tively affect the overall lifetime of SSDs in a similar fashion
as A-BGC. According to empirical observations, a percent-
age value of 80% seems to be the most suitable, balancing
both performance and lifetime. When the predictor algo-
rithm is invoked at time t, it returns a sequence Ddir(t) =

(D1
dir(t), D

2
dir(t), · · ·, D

Nwb

dir (t)) of future write demands for

direct writes where Di
dir(t), which is set to δdir(t)

Nwb
, indicates

a write demand for direct writes at Iiwb(t).

3.3 JIT-GC Manager
At the beginning of each Iwb = [s, t] (i.e., every p seconds),

the JIT-GC manager receivesDbuf(s) andDdir(s) from the
future write demand predictor. As described in Secs. 3.2.1
and 3.2.2, Dbuf(s) and Ddir(s) represent the sequences of
future write demands at [s+ p, s + p+ τexpire] for buffered
and direct writes, respectively. The JIT-GC manager also

5

Time (s)2520 30 35 401510

20 40

5

40

5

Dbuf (10) = (0, 0, 0, 0, 20, 40)

Ddir (10) = (5, 5, 5, 5, 5, 5) 555

Dreclaim (10) = 0 MB Dreclaim(10)

(a) An example of Tidle > Tgc with Cfree(10) = 50 MB.

5

Time (s)3530 40 45 502520

20 40 200

5

48.5

5

Dbuf (20) = (0, 0, 20, 40, 0, 200)

Ddir (20) = (5, 5, 5, 5, 5, 5) 555

384448.548.512.5Dreclaim (20) = 12.5 MB

Dreclaim(20)

(b) An example of Tidle < Tgc with Cfree(20) = 50 MB.

Figure 6: Examples of allocating GC in advance with esti-
mated future write demands.

gets the capacity Cfree(s) of free space available in the SSD
at time s. (Note that Cfree(s) can be obtained from the
SSD through the custom command described in Sec. 3.1)

In order for the JIT-GC manager to decide if an BGC
operation should be invoked or not at time t, the JIT-GC
manager checks if Cfree(t) is large enough for the sum of fu-
ture write demands. That is, the JIT-GC manager checks if
Cfree(t)>Creq(t) where Creq(t) =

∑Nwb
i=1 (Di

buf (t) +Di
dir(t))

and Nwb =
τexpire

p
. If Cfree(t) > Creq(t), the JIT-GC man-

ages does not invoke a BGC operation at time t.
If Cfree(t) < Creq(t), the JIT-GC manager schedules re-

quired BGC operations as lazy as possible to reserve the
required capacity of (Creq(t) − Cfree(t)). Assuming that
we know an average write bandwidth Bw(t) and an aver-
age GC bandwidth Bgc(t), we estimate the total amount
of idle times Tidle(t) in [t + p, t + p + τexpire] as Tidle(t)
= τexpire − Tw(t) where Tw(t), computed as Creq(t)/Bw(t),
is the time taken to write a request of a capacity Creq(t)
to a SSD. The time Tgc(t) for performing BGC operations
for reserving (Creq(t) − Cfree(t)) is similarly computed as
(Creq(t)− Cfree(t))/Bgc(t).

Once Tidle(t) and Tgc(t) are computed, the JIT-GC man-
ager checks if Tidle(t) > Tgc(t), that is, if it is possible to
skip a BGC operation at the current write-back interval. If
Tidle(t) > Tgc(t), the JIT-GC manager does not invoke a
BGC operation at this interval. If Tidle(t) < Tgc(t), the
JIT-GC manager invokes BGC operations to reclaim a free
capacity of (Tgc(t)− Tidle(t))×Bgc(t).

Fig. 6 illustrates that how the JIT-GC manager works
with Dbuf(t), Ddir(t) and Cfree(t). In this example, p
and τexpire are set to 5 and 30 seconds, respectively. Both
Cfree(10) and Cfree(20) are set to 50 MB. We assume that
Bw(10) andBw(20) are 40 MB/sec while Bgc(10) andBgc(20)
are 10 MB/sec. At t = 10, as shown in Fig. 6(a), the JIT-
GC manager receives Dbuf (10) and Ddir(10) from the fu-
ture write demand predictor and compares Creq(10) with
Cfree(10). Since Creq(10) is 90 MB while Cfree(10) is 50
MB, JIT-GC manager needs to check whether BGC is neces-
sary or not at the current write-back interval. Since Tidle(10)
> Tgc(10), that is, (30 - 90/40) > 40/10, JIT-GC man-
ager decides not to trigger BGC during [10, 15], thus set-
ting the requested reclaim demand Dreclaim to 0. On the
other hand, at t = 20, the JIT-GC manager estimates much
heavier future write requests, that is, Creq(20) = 290 MB.
Since Creq(20) > Cfree(20), the JIT-GC manager computes
Tidle(20) and Tgc(20). Since Tidle(20) < Tgc(20), that is (30
- 290/40) = 22.75 < 240/10 = 24, the JIT-GC manager
invokes BGC during [20, 25] with Dreclaim = 12.5 MB.

Benchmark YCSB Postmark Filebench Bonnie++ Tiobench TPC-C

Buffered writes 88.2% 81.7% 85.8% 72.4% 46.3% 0.1%
Direct writes 11.8% 18.3% 14.2% 27.6% 53.7% 99.9%

Table 1: Breakdowns of write types in six benchmarks.

4. EXPERIMENTAL RESULTS

4.1 Experimental Settings
In order to evaluate the effectiveness of JIT-GC, we imple-

mented JIT-GC on the extended SM843T SSD connected to
a PC host running the Linux kernel (version 3.11.1). The
extended SM843T has the user capacity of 240 GB with the
COP capacity of 16 GB. As shown in Fig. 3(b), we imple-
mented the future write predictor module in the Linux ker-
nel. Furthermore, we added the JIT-GC manager module
as well in the Linux kernel (instead of the inside SM843T)
so that the existing SM843T FTL can be minimally modi-
fied in supporting JIT-GC. In addition to exchangingDbuf(t),
Ddir(t), LSIP and Cfree using an extended SM843T host
interface for JIT-GC, the extended host interface also sup-
ports several profiling functions (that can be called from
the host). For example, using one of these functions, we
can measure WAF values from SM843T. In the current im-
plementation, the extend interface functions use the SG_IO
(SCSI generic I/O) ioctl command. The SG_IO ioctl
command, which is available from Linux 2.6, allows the host
to send SCSI commands to a storage device. The SG_IO
ioctl command requires a time overhead of about 160 µs
in transferring data between SM843T and the host.

The six benchmarks were used for our evaluations: YCSB
(Yahoo! Cloud Serving Benchmark running on Cassandra),
Postmark (a mail-server workload benchmark), Filebench
(a file-server workload benchmark), Bonnie++ (a file sys-
tem and storage system performance benchmark), Tiobench
(a multi-thread I/O benchmark) and TPC-C (one of on-line
transaction processing benchmarks running on MySQL). As
shown in table 1, six benchmarks are different in their ratios
between buffered writes and direct writes. The working set
size of each benchmark was set to 120 GB (which is half the
size of the 240 GB user capacity of SM843T) so that the
unused user space can be used for the reserved space of GC
policies such as A-BGC and JIT-GC.

In our evaluations, we compared IOPS values and WAF
values of several different BGC management techniques, in-
cluding JIT-GC, L-BGC and A-BGC. All the measurement values
were normalized over the values measured with A-BGC. Since
COP of SM843T was set to 7% of the 240 GB user capacity,
the reserved space capacities, Clazy and Cagg, of L-BGC and
A-BGC are set to 8 GB (i.e., 0.5 × COP) and 24 GB (i.e., 1.5
× COP), respectively.

4.2 Evaluation Results
Fig. 7(a) shows normalized IOPS for six benchmarks with

four different techniques. The adaptive GC technique (ADP-

GC) dynamically changes the capacity of the reserved space
but the future write demand estimation is completely per-
formed inside an SSD so that the future write predictor does
not distinguish between direct writes and buffered writes.
The future write demand predictor of ADP-GC is based on
the same write demand predictor used for direct writes for
JIT-GC (which was described in Sec. 3.2.2). Furthermore,
the ADP-GC technique does not exploit the SIP information
in selecting a GC victim block. JIT-GC improves IOPS by
182%, on average, over L-BGC. The improvement ratios on
IOPS are proportional to the prediction accuracy of future
write demands. For example, as shown in Table 2, our pre-
dictor can predict very accurately the future write demands

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
li

ze
d

 I
O

P
S

L-BGC A-BGC ADP-GC JIT-GC

(a) Normalized IOPS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a
li

ze
d

 W
A

F

L-BGC A-BGC ADP-GC JIT-GC

(b) Normalized WAF

Figure 7: Comparisons of normalized IOPS and WAF.

of YCSB, thus achieving almost the same IOPS as A-BGC. On
the other hand, JIT-GC wasn’t so efficient in predicting the
future write demands of TPC-C (which consists of mostly di-
rect writes). With the prediction accuracy of 72.5%, the
IOPS value of JIT-GC was about 72% of that of A-BGC.

Fig. 7(b) shows that JIT-GC also improves WAF by 44%, on
average, over A-BGC. Furthermore, JIT-GC achieves lower WAF
values over (even) L-BGC for YCSB, Postmark, Filebench and
Bonnie++ because of an efficient GC victim-block filtering
method of JIT-GC. The improvement ratio on WAF is roughly
proportional to the number of filtered blocks shown in Ta-
ble 3. For example, JIT-GC can decrease the WAF value
of Postmark by 14% over L-BGC. Combining Figs. 7(a) and
7(b), JIT-GC shows that it can closely achieve the IOPS level
of A-BGC while it outperforms the WAF level of L-BGC for
YCSB, Postmark, Filebench and Bonnie++. On the other
hand, for Tiobench and TPC-C, JIT-GC doesn’t perform as
good as A-BGC on IOPS (although it is as good as L-BGC on
WAF.) This is because it is fundamentally difficult to predict
future write demands of direct writes (which are dominant
in Tiobench and TPC-C) with the 90% prediction accuracy.

We also evaluated the effect of the buffered write predictor
(which utilizes the page cache information) by comparing
JIT-GC and ADP-GC. As shown in Figs. 7(a) and 7(b), JIT-GC

outperforms ADP-GC by 15% on average for IOPS and reduces
WAF by 11% on average over ADP-GC. These differences can
be explained by the difference in the prediction accuracy as
shown in Table 2. The prediction accuracy of JIT-GC is higher
than that of ADP-GC by up to 20.4%.

5. RELATED WORK
Performing garbage collection in background to hide its

high overhead has been studied by several researchers [6,7].
For example, Park et al. presented an adaptive garbage col-
lection technique that triggered BGC only when long idle
periods were expected [7]. This technique can be useful
in minimizing degradations in the user-perceived I/O re-
sponse time by preventing from too aggressively exploiting
idle times for background GC operations. Lee et al. [6] pro-
posed a BGC technique that delays BGC as late as possi-
ble so that useless BGC operations can be avoided. The
proposed JIT-GC is, however, fundamentally different from
existing techniques in that it performs BGC in a just-in-
time manner based on accurate system-level estimations on
future write demands. Furthermore, unlike most existing
techniques, which focus on only one aspect of quality met-
rics of an SSD (e.g., user response time or WAF), JIT-GC

can improve both performance and lifetime of the SSD at
the same time because it can proactively reserve only the
required free space for future writes.

Exploiting the current status of a page cache for improving
a NAND-based storage is not new. For example, Lee et al. [8]
and Lee et al. [9] presented techniques that avoided useless
copies for soon-to-be-invalidated pages in a page cache (or a
buffer cache). While these techniques exploit the page cache

Benchmark YCSB Postmark Filebench Bonnie++ Tiobench TPC-C

Prediction accuracy
98.9 93.2 97.3 89.8 86.1 72.5

of JIT-GC (%)

Prediction accuracy
87.7 72.8 82.0 73.4 74.1 71.2

of ADP-GC (%)

Table 2: Prediction accuracy of future write predictors of
JIT-GC and ADP-GC.

Benchmark YCSB Postmark Filebench Bonnie++ Tiobench TPC-C

Filtered GC
12.2% 20.6% 17.5% 8.7% 4.9% 1.1%

victim blocks

Table 3: The effect of the SIP lists.

for a limited purpose only (e.g., such as reducing extra I/O
operations during GC), JIT-GC takes a full advantage of the
page cache for improving the performance and lifetime of
the NAND-based storage.

6. CONCLUSIONS
We have presented a just-in-time GC technique, called

JIT-GC, which invokes BGC operations only when necessary
based on predicted future write demands. JIT-GC is moti-
vated by our empirical finding that deciding right BGC in-
vocation times affects the GC quality significantly. By accu-
rately estimating the amount of future write demands with
host-side information, JIT-GC chooses the best time to in-
voke a BGC operation. JIT-GC creates an exact free space
required for future writes in advance while preventing pre-
mature block erasures. Our evaluation results with Samsung
SM843T SSDs showed that JIT-GC improved IOPS by 182%,
on average, over L-BGC and reduced WAF by 44%, on av-
erage, over A-BGC, overcoming the shortcomings of existing
BGC heuristics. Furthermore, JIT-GC outperforms a page
cache-oblivious adaptive GC technique, ADP-GC, on average
by 15% and 11% for IOPS and WAF, respectively.

ACKNOWLEDGEMENTS
We would like to thank Samsung Electronics for providing
SM843T SSDs with an extension for our research. This work
was supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Ministry of Science, ICT and
Future Planning (NRF-2013R1A2A2A01068260). The ICT
at Seoul National University and IDEC provided research
facilities for this study.

REFERENCES
[1] H. Nakamura et al., “A 125mm

2 1Gb NAND Flash Memory
with 10MB/s Program Throughput,” in Proc. IEEE Solid-State
Circuits Conf., pp. 106-107, 2002.

[2] M. Goldman et al., “25nm 64Gb 130mm
2 3bpc NAND Flash

Memory,” in Proc. IEEE Int. Memory Workshop, 2011.
[3] SAMSUNG 843T Data Center Series,

http://memorysolution.de/mso upload/out/all/SM843T Spec-
ification v1.0.pdf

[4] B.F. Cooper et al., “Benchmarking Cloud Serving Systems with
YCSB,” in Proc. ACM Symp. Cloud Computing, pp. 143-154,
2010.

[5] P. Sehgal et al., “Evaluating Performance and Energy in File
System Server Workloads,” in Proc. USENIX Conf. File and
Storage Technologies, pp. 19-33, 2010.

[6] S. Lee et al., “Improving Performance and Capacity of Flash
Storage Devices by Exploiting Heterogeneity of MLC Flash
Memory,” IEEE Trans. Computers, vol. 63, no. 10, pp.
2445-2458, 2014.

[7] S.-H. Park et al., “An Adaptive Idle-Time Exploiting Method
for Low Latency NAND Flash-Based Storage Devices,” IEEE
Trans. Computers, vol. 63, no. 5, pp. 1085-1096, 2014.

[8] S. Lee et al., “BAGC: Buffer-Aware Garbage Collection for
Flash-Based Storage Systems,” IEEE Trans. Computers, vol.
62, no. 11, pp. 2141-2154, 2013.

[9] Y. Lee et al., “Zombie Chasing: Efficient Flash Management
Considering Dirty Data in the Buffer Cache,” IEEE Trans.
Computers, no. 1, pp. 1, PrePrints, 2013.

