
Just-in-Time Garbage Collection for High-Performance SSDs

with Long Lifetimes

Sangwook Shane Hahn, Hoyoon Jun, Jaeyong Jeong and Jihong Kim

Department of Computer Science and Engineering, Seoul National University, Korea

Garbage collection (GC) is the essential operation for

NAND flash-based storage systems. Because of the NAND’s

erase-before-write constraint, when writing new data to the

NAND page, an out-place update is used by writing new data

to a new NAND page instead of updating the original page.

An out-place update policy generates invalid pages with old

data that must be reclaimed by garbage collection.

Since GC requires valid page migrations as well as block

erasures, it incurs a significant performance overhead, in par-

ticular, if GC is necessary for the current write request (i.e.,

when a foreground GC (FGC) operation is necessary). In or-

der to hide the performance penalty of a foreground GC op-

eration, background garbage collection (BGC) is commonly

used when a storage system is idle so that most foreground

GC operations can be avoided. Although background GC op-

erations can be effective in reducing the performance penalty

of foreground GC operations, invoking background GC oper-

ations too aggressively can significantly degrade the lifetime

of NAND-based storage systems by erasing blocks too early.

Selecting the right time for invoking a background GC oper-

ation is important because it can affect both the performance

and lifetime of NAND-based storage systems as shown on

page 2 of the poster.

In this poster, we propose a just-in-time (JIT) GC tech-

nique, called JIT-GC, that performs background garbage col-

lection operations only when necessary, thus improving both

the performance and lifetime of NAND-based storage sys-

tems. As shown on page 2 of the poster, JIT-GC aims to

overcome the shortcomings of existing BGC policies. An ag-

gressive BGC policy, which reserves a large free space, can

avoid most FGC operations and achieves high performance.

However, its performance improvement comes with a short-

ened lifetime. On the other hand, a lazy BGC policy, which

maintains a small free space, does not sacrifice the lifetime of

a SSD but it can significantly degrade the performance.

In order to perform garbage collection in a just-in-time

fashion, we need to know future write demand in advance be-

cause the timeliness of GC invocations depends on howmuch

future writes are performed. To estimate the future write de-

mands, we exploit the page cache. Since most file I/O re-

quests are processed through the page cache, our heuristic

takes advantages of how the page cache handles file I/O re-

quests and when it moves data to a SSD. For example, since

most writes are managed using a write back policy in the page

cache, most new writes will be written to the SSD by a spe-

cial flusher thread after some delay (e.g., 30 seconds). By

scanning the page cache, it is possible to estimate with a high

accuracy when the flusher thread will write which data to the

SSD by how much. JIT-GC exploits these estimated results

in invoking GC operations. An example page cache shown

on page 3 of the poster illustrates that for each 5-second in-

terval I[Tc+5·j,Tc+5·(j+1)] (in short Ij) (where 0 ≤ j ≤ 5), we

estimate the amount of expected writesWj . That is, W0 = 25

MB,W1 = 15 MB,W2 =W3 =W4 = 0 B, andW5 = 100 MB.

Given future write estimates, Wj’s, from the page cache,

we decide how much free space should be reclaimed for each

Ij . For example, as shown on page 3 of the poster, if Wj’s

are almost zero, no GC is necessary. On the other hand, ifW5

is very large, we proactively reclaim free space from earlier

intervals so thatW5 can be written to a SSD without FGC op-

erations. Furthermore, since our heuristic can tell which data

(in the SSD) will be invalidated in a near future by the flusher

thread, similarly as proposed in Zombie Chasing [1], we pass

the addresses of soon-to-be-invalidate pages to an FTL so that

BGC avoids choosing blocks with many soon-to-be-invalidate

pages as victim blocks.

The key weakness of our page cache-based heuristic is that

our heuristic cannot handle the case when a nontrivial amount

of data is written to the SSD directly, bypassing a page cache.

For such a case, it can be difficult to estimate the amount of

future writes because such writes can happen at any time. In

JIT-GC, direct writes, which bypass the page cache, are man-

aged by using a dedicated over-provisioning space. Although

a sufficient over-provisioning area can service direct writes

without invoking FGC operations, maintaining a large over-

provisioning area has the same disadvantage of an aggressive

BGC technique. In order to maintain the right amount of the

over-provisioning area for direct writes, JIT-GC employs a

heuristic predictor for estimating future direct writes. Our

heuristic estimates future direct writes using the cumulative

data histogram of a given I/O traffic.

In order to evaluate our proposed scheme, we implemented

JIT-GC on a modified Samsung SSD (SM843T) [2] connected

to a PC host running the Linux kernel. We implemented

the future write predictor module in the Linux kernel (ver-

sion 3.11.1). In order to trigger GC in the modified SSD, we

used the SG IO (SCSI generic I/O) ioctl command which al-

lows the host to send SCSI commands to a storage device.

The three benchmarks, Yahoo Cloud Serving Benchmark [3],

Filebench (a file-server workload benchmark) [4] and TPC-C

(one of online transaction processing benchmarks), were used

for our evaluations. Our evaluation results show that JIT-GC

improves the overall system performance by increasing IOPS

by up to 220% over the lazy BGC policy which invokes BGC

when the free space becomes less than 3% of the total capacity

of the SSD. The lifetime is also improved by lowering WAF

by up to 38% over the aggressive BGC policy which invokes

BGC when the free space becomes less than 9% of the total

capacity of the SSD.

References

[1] Y. Lee, et al., “Zombie Chasing: Efficient Flash Management Considering Dirty
Data in the Buffer Cache,” IEEE Transactions on Computers, 2013.

[2] SAMSUNG 843T Data Center Series,
http://memorysolution.de/mso upload/out/all/SM843T Specification v1.0.pdf

[3] B.F. Cooper, et al., “Benchmarking cloud serving systems with ycsb,” in Proceed-
ings of the 1st ACM symposium on Cloud computing, pp. 143-154, 2010.

[4] P. Sehgal et al., “Evaluating Performance and Energy in File System Server Work-
loads,” in Proc. USENIX Conf. File and Storage Technologies, pp. 19-33, 2010.



Just-in-Time Garbage Collection for
High-Performance SSDs with Long Lifetimes

Sangwook Shane Hahn, Hoyoon Jun, Jaeyong Jeong and Jihong Kim
Department of Computer Science and Engineering, Seoul National University

Garbage Collection in SSD

Estimation of Future Write Workload

Example Scenario Experimental Results

Just-in-Time GC

Tradeoff between 
Performance and Lifetime 

• Normalized IOPS (Input/Output Operations Per Second) 

• Normalized WAF (Write Amplification Factor)

• Unique NAND characteristics
– Out-place update

– Different operation unit (Read/Write: Page, Erase: Block)

• Our approach

- Perform GC only when necessary

by monitoring both kernel and SSD

-35 -30 -25 -20 -15 -10 -5 0 5 10

A
Expired

Time (s)

B

C

Updated

D

E

Flush

A
B
C

D E

15 20 25 30

10 MB

5 MB

10 MB

15 MB

100 MB

Time (s)

E

25 MB

15 MB 100 MB

Will be Flushed

Time (s)

Write Write Write 

Current time

Aggressive BGC
No delay

w/ more erasures

Lazy BGC
Delay

w/ less erasures

Just-in-Time GC
No delay

w/ less erasures

Target Free Space Ratio of BGC

50

60

70

80

90

100

0 10 20 30 40 50

Normalized Performance Normalized Lifetime

Lazy BGC Aggressive BGC

• Page cache with write-back policy
– Buffered I/O: performance improvement from data locality

• Dilemma of BGC
– Need to choose one of performance and lifetime

• Comparisons between JIT-GC and existing BGC schemes
– Measure response time delay and number of GC under same workload

• Foreground GC (FGC)
– Invoked at empty free space 

• Background GC (BGC)
– Invoked at idle time 

JIT-GC

FGC Extra BGC

2

3 4

5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Yahoo! Cloud Benchmark Filebench (File Server) TPC-C

N
o
rm

a
li

ze
d

 I
O

P
S

Lazy BGC (3%) Aggressive BGC (9%) JIT-GC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Yahoo! Cloud Benchmark Filebench (File Server) TPC-C

N
o
rm

a
li

ze
d

 W
A

F

Lazy BGC (3%) Aggressive BGC (9%) JIT-GC


