
IN MODERN VLSI SYSTEM DESIGN, power

consumption is one of the most important design

constraints. For battery-powered portable sys-

tems such as digital cellular phones, personal

digital assistants, and mobile videophones, low

power consumption is a primary design goal

because the battery operation time is one of the

most critical performance measures. Energy con-

sumption E of CMOS circuits, which is dominat-

ed by total dynamic power consumption in most

VLSI systems, is given by E ∝ CL × Ncycle × VDD
2.1 CL

is the load capacitance, Ncycle is the number of

executed cycles, and VDD is the supply voltage.

Because energy consumption E has a quadratic

dependency on supply voltage VDD, lowering VDD

is the most effective way of reducing energy con-

sumption. However, lowering the supply voltage

also decreases the clock speed, because CMOS

circuit delay TD is given by TD ∝ VDD/(VDD − VT)
α,2

where VT is threshold voltage, and α is a veloci-

ty saturation index.

When a given task’s required performance is

lower than a VLSI system’s maximum perfor-

mance, the clock speed and its corresponding

supply voltage can be dynamically controlled to

the lowest possible level while meeting the task’s

deadline constraint. This is the key idea behind

the dynamic voltage-scaling (DVS) technique.

For example, consider a task with a deadline

of 25 ms, running on a 50-MHz processor with

a 5.0-V supply voltage. If executing the task

requires 5 × 105 cycles, the processor executes

it in 10 ms and idles for the remaining 15 ms.

However, if the clock speed and supply voltage

are lowered to 20 MHz and 2.0 V, the processor

finishes the given task just at the task’s deadline

(25 ms), resulting in an 84% energy reduction.

Recently, several research groups have inves-

tigated the DVS problem for hard real-time sys-

tems.3-6 Most research focused on real-time

systems with multiple tasks; in this case, the key

question is how to assign the proper speed to

each task dynamically while guaranteeing all task

deadlines. These techniques exploit the run-cal-

culate-assign-run strategy for the supply voltage

determination. The steps in that strategy include

1. running the current task,

2. calculating the maximum allowable exe-

cution time for the next task,

3. assigning the supply voltage for the next

task, and

Intra-Task Voltage
Scheduling for Low-Energy
Hard Real-Time Applications

Voltage Scheduling for Applications

20

A novel intra-task voltage-scheduling algorithm

controls the supply voltage within an individual

task boundary. By fully exploiting slack time, it

achieves a high-energy reduction ratio. Using this

algorithm, a software tool automatically converts

an application into a low energy version.

Dongkun Shin

Jihong Kim
Seoul National University

Seongsoo Lee
Ewha Woman’s University

0740-7475/01/$10.00 © 2001 IEEE IEEE Design & Test of Computers

4. running the next task.

These techniques determine the supply volt-

age on a task-by-task basis, a strategy we call

inter-task voltage scheduling.

While generally effective in reducing ener-

gy consumption of multitask real-time systems,

inter-task voltage scheduling has several prac-

tical limitations. For example, because a task

scheduler in an operating system determines a

task’s supply voltage, using inter-task voltage

scheduling requires OS modifications. Further-

more, these techniques cannot be applied to a

single-task environment, because the supply

voltage is determined as a constant value for a

given task. Because the single-task model is the

basis for many small, embedded mobile appli-

cations, variable-voltage processors may be dif-

ficult to widely use in practice.

Even in a multi-task environment, inter-task

voltage scheduling may not be effective in ener-

gy reduction if the execution time of one task

dominates total execution time. For example,

consider a typical videophone application with

the four tasks shown in Table 1. In this applica-

tion, the MPEG-4 video encoding task domi-

nates execution time but has the lowest priority.

For these reasons, inter-task voltage scheduling

cannot take advantage of the slack time caused

by the MPEG-4 video-encoding task; these algo-

rithms are thus ineffective in reducing energy

consumption.

For example, using the inter-task-scheduling

algorithm of Shin and Choi5 results in only a

17% energy reduction. In contrast, an offline

(theoretical) optimal voltage-scheduling algo-

rithm achieves about a 90% energy reduction.

We propose intra-task voltage scheduling—

which adjusts the supply voltage within an indi-

vidual task’s boundary—as a solution to over-

come the limitations of inter-task voltage

scheduling. For example, a recent work by Lee

et al.7 demonstrates that dynamic voltage scaling

within a single task boundary can significantly

reduce energy consumption. Because intra-task

voltage scheduling does not involve the OS in

adjusting the clock speed, it has an advantage in

that existing OSs can be used without modifica-

tion on a variable-voltage processor.

However, at the current state of the art, it is

fully a programmer’s responsibility to apply

intra-task voltage scheduling to applications.

For example, there are no systematic guidelines

for selecting the best program locations for

inserting voltage-scaling code. Average pro-

grammers are generally not familiar with low-

energy software issues and timing analysis

techniques. In practice, therefore, it is difficult

to use intra-task voltage scheduling for real-time

applications without the support of a systemat-

ic programming methodology.

We propose a novel intra-task voltage-sched-

uling algorithm that can automate the develop-

ment of DVS-aware, hard real-time programs on

variable-voltage processors. It is based on static

execution-time analysis techniques commonly

used in developing hard real-time programs.

Using these techniques, the proposed algorithm

selects locations for inserting voltage-scaling

code to reduce the overall energy consumption.

The proposed scheduling algorithm exploits

all the slack time from runtime variations of dif-

ferent execution paths; there is no slack time

when the scheduled program completes its

execution, thus significantly improving energy

efficiency. The novel aspect of our algorithm is

21March–April 2001

Table 1. Typical videophone application.

MPEG-4 MPEG-4 VSELP VSELP

Characteristic video encoding video decoding speech encoding speech decoding

Period or deadline (s) 66.667 66.667 40.000 40.000

Worst-case execution time (s) 50.386 9.826 1.844 1.383

Average execution time (s) 13.099 1.460 0.907 0.680

Normalized energy consumption

Inter-task voltage scheduling9 0.826

Offline optimal voltage scheduling 0.106

that voltage-scaling decisions are made in com-

pile time, although the voltage-scaling code

itself can require some runtime information in

determining an appropriate clock speed.

Furthermore, the proposed algorithm pro-

vides a systematic methodology for developing

an automatic program conversion tool to con-

vert DVS-unaware programs into DVS-aware

ones. This means the original program’s devel-

opers need no knowledge of DVS, making the

proposed algorithm very practical.

Based on the proposed algorithm, we have

developed a software tool called Automatic

Voltage Scaler (AVS). It supports a fully auto-

matic conversion of a DVS-unaware program P

into a DVS-aware, low-energy program PDVS that

satisfies the same timing requirement as P.

Basic idea
Consider hard real-time program P, as

shown in Figure 1a, with a 2 µs deadline. The

control flow graph (CFG) GP for program P is

shown in Figure 1b. In GP, each node represents

a basic block of P, and each edge indicates the

control dependency between basic blocks. The

number within each node indicates the num-

ber of execution cycles for the basic block. The

back edge from b5 to bwh models the while loop

of program P.

In developing hard real-time systems where

tasks have strict timing constraints (such as

deadlines), the tasks’ worst-case execution

times (WCETs) are estimated in advance

(before runtime) to guarantee that required

timing constraints are met. Such WCETs can be

predicted by existing WCET analysis tools,

which produce safe and accurate WCET pre-

diction results.8,9

Using a WCET analysis tool, we can find

path pworst = (b1, bwh, b3, b4, b5, bwh, b3, b4, b5, bwh,

b3, b4, b5, bwh, bif, b6, b7) as the worst-case exe-

cution path (WCEP) for the example program

P, assuming that the user sets the maximum

number of while loop iterations to three. The

predicted number of execution cycles in pworst

is 160 cycles, which is the number of worst-case

execution cycles (WCEC) of program P.

If a target processor operates at the 80-MHz

maximal clock frequency, program P com-

pletes its execution in 2 µs, resulting in no slack

time. We used execution cycles instead of exe-

cution times because as we adjust the clock

speed on a variable-voltage processor the exe-

cution time changes but the number of execu-

tion cycles remains constant.

Intra-task voltage scheduling is based on a

simple observation: There are large execution

time variations among different execution

paths. In particular, this strategy exploits the

fact that the average-case execution paths

Voltage Scheduling for Applications

22 IEEE Design & Test of Computers

(a)

S1;
if (cond1) S2;
else
 while (cond2) {
 S3;
 if (cond3) S4;
 S5;
 }
if (cond4) S6;
S7;

Maximum
number of
loop
iterations = 3

(b)

b1

b2

10

10

b3
10

b4
10

b6
10

b7
10

b5
10

bwh
10

bif
5

(c)

b1

b2

10

10

b3
10

b4
10

b6
5

b7
10

b5
10

bwh
10

bif
5

[160]

150, 110, 70, 30

140, 100, 60

120, 80, 40

130, 90, 50

30

20

15

10

Figure 1. Example program P (a), a real-time program with a 2-µs deadline, has this CFG representation GP (b) and

an augmented CFG GP
A with CRWEC(bi) values (c).

(ACEPs) complete

execution much earli-

er than the WCEP(s).5

The example pro-

gram shown in Figure

1b has 32 different

execution paths.

While the WCEP pworst

takes 160 cycles, eight

of 32 possible execu-

tion paths take less

than 80 cycles. If we

can identify such

short execution paths

in the early phase of

execution, we can

substantially lower

the clock speed and

significantly decrease

energy consumption.

Consider the path

p1 = (b1, b2, bif, b6, b7)

of Figure 1b; its execution takes 40 cycles. In the

ideal case—when we can perfectly predict in

advance that the actual execution path will be

p1—we can start the execution with a clock

speed of 20 MHz without violating the 2-µs dead-

line. Although this will significantly improve

energy efficiency, we cannot start with the 20-

MHz clock speed from b1, because we do not

generally know in advance which execution

path the next program execution will take.

In intra-task voltage scheduling, we take the

second best approach, with the help of a static

program-analysis technique on worst-case exe-

cution times. Assume that CRWEC(bi) represents

the remaining worst-case execution cycles

(RWEC) among all the execution paths that

start from bi. Using a modified WCET analysis

tool, for each basic block bi, we compute

CRWEC(bi) at compile time. For example, Figure

1c shows an augmented CFG GP
A with CRWEC(bi)

values. A modified WCET tool statically con-

structs the graph GP
A.

For the basic blocks (such as bwh, b3, b4, b5)

related to the while loop, the corresponding

nodes are associated with multiple CRWEC(bi) val-

ues, reflecting the while loop’s maximum three

iterations. Once GP
A is constructed, we can sta-

tically identify branching edges (of CFG G) that

drop the remaining worst-case execution cycles

faster than the current execution rate.

For example, in Figure 1c, we can identify

four such edges, (b1, b2), (bwh, bif), (bif, b7), and

(b3, b5). In Figure 1c, these edges are bold face.

When the execution control thread branches

to the next basic block through one of these

edges, say (b1, b2), the clock speed can be low-

ered because the remaining work is reduced by

the difference between CRWEC(bwh) and

CRWEC(b2). By reducing clock speed so that the

CRWEC(b2) cycles can be completed exactly at

the deadline, we ensure that the proposed tech-

nique always meets the required timing con-

straint. Because voltage-scaling decisions are

made at compile time—not runtime—there

exists no runtime overhead directly related to

the selection of voltage-scaling edges. In addi-

tion, the compile-time analysis procedure does

not require special programmer intervention

other than that typically required in developing

normal hard real-time programs (such as set-

ting the maximum number of loop iterations).

Figure 2 compares how the speed and volt-

age changes, with and without the use of intra-

task voltage scheduling. Assuming that no

energy is consumed in an idle state and E ∝ CL

× Ncycle × VDD
2 when the execution follows path

23March–April 2001

2 µ0.5 µ0

0

Time

2 µ Time

Deadline

80 MHz
(2.5V)

80 MHz
(2.5V)

16 MHz
(0.72V)

S
pe

ed
 (

vo
lta

ge
)

S
pe

ed
 (

vo
lta

ge
)

Deadline

Idle state

b1

b1

b2 b6 b7bif

b2 b6 b7bif

Figure 2. Speed and voltage changes without (a) and with (b) intra-task scheduling.

p1 = (b1, b2, bif, b6, b7), the energy consumption

ratio of Figure 2b to Figure 2a is 0.31. Using

intra-task voltage scheduling reduces the ener-

gy consumption by 69%.

Intra-task voltage-scheduling
algorithm

The intra-task voltage-scheduling algorithm

assigns each basic block a proper speed at

which to execute. For a hard real-time task, this

algorithm’s goal is to assign the speed to each

basic block to minimize energy consumption

while satisfying timing requirements. Through-

out this article, we assume the following about

the target variable-voltage processor:

■ The processor provides special instruction

change_f_V(fCLK), which can dynamically

control the processor’s clock frequency fCLK

and its corresponding voltage VDD.

■ fCLK and VDD can be set continuously within

the processor’s operational range. When the

processor changes clock and voltage, there

is a clock/voltage transition overhead peri-

od of CVTO cycles.

■ During clock/voltage transition, the processor

stops running and enters power-down mode.

Although some processors, such as

Transmeta’s Crusoe,10 can run during voltage

transition, for simplicity we assume that the

processor stops. The techniques described in

this article can support both processor types

with a slight modification of clock/voltage tran-

sition overhead modeling.

Remaining WCET-based speed
assignment

If actual execution path pact of task τ were

known in advance, the optimal execution

speed could be easily computed. For each

basic block bi in pact, S(bi) = CEC(pact)/D, where

S(bi) represents the processor clock speed in

frequency, CEC(pact) denotes the number of

clock cycles needed to execute pact, and D

denotes the deadline of task τ.

However, because the exact execution path

is generally unknown until program execution

completes, we adjust S(bi) based on the remain-

ing worst-case execution cycles CRWEC(bi). Using

a modified version of the static WCET prediction

algorithm, such as the one developed by S.-S.

Lim and colleagues,9 we can estimate CRWEC(bi)

for each basic block bi. S(bi) is set to clock speed

S at which the remaining CRWEC(bi) cycles can be

Voltage Scheduling for Applications

24 IEEE Design & Test of Computers

b1 b1

b2, bifb2, bif

b7b7

150

100

0

50

21

80 MHz

16 MHz

10.7 MHz Deadline

150

100

0

50

21

Execution
time

Idle time

80 MHz

80 MHz

80 MHz

Deadline

Time (µs) Time (µs)

(a) (b)

C
R

W
E

C
(t

)
(c

yc
le

s)

C
R

W
E

C
(t

)
(c

yc
le

s)

Execution time

Figure 3. CRWEC(t) changes over different speed-scaling algorithms: no intra-task scheduling (a) and RWEC-based

intra-task scheduling (b).

completed exactly at the deadline. The quanti-

ties CRWEC(bi) are computed at compile time with-

out incurring any runtime performance penalty.

At entry basic block b1, CRWEC(b1) is set to

WCEC, and the starting speed is set to WCEC/D.

If CRWEC(t) denotes the remaining worst-case

execution cycles at time t, as execution pro-

ceeds, CRWEC(t) decreases linearly at the same

rate as the clock speed when execution follows

worst-case execution path pworst.

However, if execution deviates from basic

block bi in worst-case execution path pworst to a

basic block bj not in pworst, CRWEC(t) drops after

the execution of bi is completed. It drops by the

difference between CRWEC(bi) − CEC(bi) and

CRWEC(bj), where CEC(bi) denotes the number of

clock cycles needed to execute bi.

Figure 3 shows how CRWEC(t) dynamically

changes during execution of path p = (b1, b2, bif,

b7) from example program P. In Figure 3a,

which illustrates an execution path that uses no

speed scheduling, CRWEC(t) drops at two points:

CEC(b1)/80 MHz and [CEC(b1) + CEC(b2) +

CEC(bif)]/80 MHz. Because the execution path

of Figure 3a uses no speed scheduling, CRWEC(t)

decreases at the rate of 80 MHz, resulting in a

slack time interval of 1.5625 µs.

Figure 3b shows the effect of speed sched-

uling for the same execution path. Because

CRWEC(t) drops right after executing b1, the

speed changes from 80 to 16 MHz, the mini-

mum speed at which the processor can com-

plete the remaining program execution before

the deadline. When CRWEC(t) drops right after bif,

the speed also changes for the same reason.

Because the proposed RWEC-based intra-task

scheduling makes all execution paths complete

execution exactly at the deadline, the RWEC-

based technique provides two benefits. It

■ eliminates slack time, thus increasing ener-

gy efficiency; and

■ guarantees that the scheduled program

always meets the timing constraint.

We call the points in Figure 3 at which

CRWEC(t) vertically drops voltage-scaling edges

(VSEs), because the speed and voltage can be

scaled at these points. The number of cycles

reduced at VSEs is Csaved.

B-type voltage-scaling edges
We classify VSEs into two categories: B and

L. B-type VSEs correspond to the CFG edge

between two basic blocks that are part of con-

ditional statements such as the if statement.

For the if statement, WCET is predicted to be

the larger of two execution times, one for the

then path and the other for the else path.

Assume that the if-statement condition is

evaluated in bcond, the then path starts at bcond,

and the else path starts at belse. If the if state-

ment is true and the then path is shorter than

the else path, CRWEC(t) is decreased by

CRWEC(belse) − CRWEC(bthen). In this case, before the

bthen block is executed, the speed can be

decreased by a ratio of CRWEC(bthen) / CRWEC(belse).

We call this ratio a speed update ratio and rep-

resent it by r(bcond → bthen).

Because the same basic block can be exe-

cuted at several different clock speeds, rather

than associate each VSE with an absolute

speed, we associate it with a speed update

ratio. For example, in Figure 1, if we were to

assign a fixed speed at the VSE between bif and

b7, 53.3 MHz (80 MHz × 10/15) should be

assigned so that pworst can complete before the

2-µs deadline. However, if the executed path up

to bif is short—say (b1, b2, bif)—the execution

will end far earlier than the deadline (resulting

in a long slack time interval) if path (bif, b7) uses

a fixed 53.3-MHz clock frequency. By assigning

a speed update ratio r(bif → b7) = 2/3 to the

VSE, we avoid this problem.

In adjusting speed/voltage at VSEs, several

instructions—other than change_f _V(fCLK)—

are required. We denote the number of cycles

needed to execute these instructions at a B-type

VSE as CVSO,B. The total number of overhead

cycles Coverhead,B for a B-type VSE, therefore, is

given by CVTO + CVSO,B. The speed update ratio

r(bi → bj) for B-type VSE (bi, bj) is

(1)

In this equation, succworst(bi) is basic block bk,

an immediate successor of bi with the largest

CRWEC(bk) among all bi’s successors.

If CRWEC(bj) ≥ CRWEC[succworst(bi)] − Coverhead, B,

r b b

C

C succ C

i j

j

i

()

()

()

→ =

[] −
RWEC

RWEC worst overhead,B

b

b

25March–April 2001

that is r(bi → bj) ≥ 1, edge (bi, bj) is not selected

as a VSE. For a VSE between bi and bj, a speed

update ratio r(bi → bj) is multiplied with the cur-

rent speed before bj starts its execution. That is,

S(bj) is set to the current speed × r(bi → bj).

As an example, consider how the speed

changes at B-type VSEs as the execution pro-

ceeds following the path (b1, b2, bif, b7) of Figure

1, assuming Coverhead,B is 0. Just before basic block

b2 executes, RWEC decreases from 150 to 30

cycles, so clock speed changes from 80 to 16

MHz (80 MHz × 30/150). The clock speed for

basic block b7 also changes from 16 to 10.7 MHz

(16 MHz × 10/15) because RWEC changes from

15 to 10 cycles. Figure 4 shows the code gener-

ated for a B-type VSE (b1, b2) in Figure 1.

L-type voltage-scaling edges
Although our technique predicts WCEC

assuming that a loop will execute the user-pro-

vided maximum number of iterations, a loop is

generally iterated fewer times than the maxi-

mum loop bound. In this case, slack time exists

and clock speed can be scaled down—a tech-

nique we call L-type scaling. L-type VSEs corre-

spond to the loop exit edges in a CFG. In L-type

scaling, saved cycles Csaved for loop l equal

Csaved(l) = CWCEC(l) × [Nworst(l) − Nexec(l)] (2)

CWCEC(l) is the worst-case number of execution

cycles to execute loop l once, Nworst(l) is the

user-provided maximum number of loops for

loop l, and Nexec(l) is the number of actual loop

iterations measured at runtime. For L-type scal-

ing, consider the edge (bwh, bif) in Figure 1,

which is an example L-type VSE. When we

denote the total number of overhead cycles at

an L-type VSE as Coverhead,L, S(bif) is updated as

(3)

Assuming S(bwh) = 80 MHz, Nexec(l) = 1, and

Coverhead,L = 0, then S(bif) decreases to 16 MHz

before executing bif.

Unlike for a B-type VSE, calculating the

speed update ratio of an L-type VSE requires

runtime information such as Nexec(l). The speed

update ratio may be larger than 1, depending

on the value of Nexec(l) and Coverhead,L. To avoid

this problem, we select a loop exit edge of loop

l as an L-type VSE if CWCEC(l) > Coverhead,L. Doing

so means that if Nexec(l) < Nworst(l), the speed

update ratio is always smaller than 1. When

Nexec(l) = Nworst(l), the speed is not changed.

Despite the increased code complexity for

L-type VSEs, the overall reduction in energy

consumption is still significant. This is because

slack time arising from the execution of loops

is generally far larger than that from condition-

al statements. For an L-type VSE (bwh, bif) in

S

S
C

C C l C

b

b
b

b

if

wh

RWEC if

RWEC if saved overhead,L

() =

() ×
()

() + () −

Voltage Scheduling for Applications

26 IEEE Design & Test of Computers

Code B

Code L

SpeedUpdateRatio = SpeedTable (b1,b2);
NewSpeed = CurSpeed × SpeedUpdateRatio;
change_f_V (NewSpeed);

Scaling
code LoopIterNum(bwh) = 0

bwh

b2

bif b3

Scaling
code LoopIterNum(bwh)+ = 1

SpeedUpdateRatio =

NewSpeed = CurSpeed × SpeedUpdateRatio;
change_f_V (NewSpeed);

RWEC(bif) + 40 × [3 − LoopIterNum (bwh)];

RWEC(bif)

b1

Figure 4. Given the control flow diagram on the right, our technique would insert B- and L-type voltage-scaling

code as shown.

Figure 1, Figure 4 shows the code sequence

generated.

Automatic Voltage Scaler
We developed a software tool, the Auto-

matic Voltage Scaler, to automate the develop-

ment of hard real-time programs on a

variable-voltage processor. This tool uses the

intra-task scheduling algorithm. AVS takes as an

input DVS-unaware program P and its timing

requirements. It produces DVS-aware low-ener-

gy program PDVS, which satisfies the same tim-

ing requirements as P. Converted program PDVS

contains voltage-scaling code that handles all

the idiosyncrasies of scaling speed/voltage on

a variable-voltage processor.

Using AVS, DVS-unaware hard real-time pro-

grams can be converted to DVS-aware low-ener-

gy programs in a way completely transparent to

software developers. In the current version of

AVS, we used the MIPS R3000 instruction set

architecture as the target processor.

The WCET Prediction module estimates the

CRWEC(bi) values of all the basic blocks in an

input program. To estimate CRWEC(bi) of given

basic block bi, AVS uses a modified version of

a timing tool developed by S.-S. Lim and his col-

legues.9 Their original timing tool estimates the

WCET of an entire program by traversing the

program’s syntax tree bottom-up and applying

the timing formulas of the extended timing

schema (ETS). Because AVS uses RWEC from

each basic block, we modified the original tim-

ing tool accordingly. As shown in Figure 5, the

WP module, like the original timing tool,9 takes

as an input a high-level language program and

27March–April 2001

b1

b1

b1
b2
b3

b1
b1 b3

160K
100K
50K

b3 if

b2 null

Special

Cond Branch

if (cond)
S1:

b2S2:

b3S3:

C program

S1:

S2:

S3:

Transformed
assembly code

S1:

S2:

S3:

Assembly code

WCET Predictor (WP) module

Automatic voltage scaler

Timing analyzer

80 MHz
0.5

Voltage Scaler (VS) module

Speed allocator

Speed table

Code transformer

Modified compiler

Loop bound

Deadline = 2 ms

User-provided
information

Syntax tree

Basic block CRWEC

Figure 5. Automatic Voltage Scaler tool’s overall structure.

the user-provided information (such as the loop

bound) to estimate CRWEC(bi) values.

The Voltage Scaler module identifies VSEs

based on CRWEC(bi) values within the program

syntax tree, assigns proper speeds to these

edges, and generates a converted program. The

Speed Allocator module in Figure 5 selects

VSEs using the VSE selection algorithm and

allocates appropriate speed update ratio r to

each VSE. For example, in Figure 5, the speed

update ratio of 0.5 is assigned to edge (b1, b3).

Experimental results
To evaluate the power reduction perfor-

mance of AVS, we have experimented with an

MPEG-4 video decoder. Because we don’t have

the proper hardware platform (one with a vari-

able-voltage processor), we developed an ener-

gy simulator for the experiment. The energy

simulator takes an assembly program and its exe-

cution trace as inputs and calculates the total

energy consumption of the program’s execution.

In this simulation, we assume that both DVS-

aware and DVS-unaware systems enter into a

power-down mode when the system is idle. We

assume the energy consumption of power-down

mode is 5% of the normal mode running at max-

imum clock frequency.1 Supply voltage for a

given clock frequency

comes from fCLK = 1/TD,

which is proportional

to (VDD − VT)
α/VDD,2

where VDD, VT, and α
are assumed to be

2.5V, 0.5V, and 1.3.

Clock/voltage transi-

tion overhead CVTO is

assumed to be 0 to

about 20,000 cycles,

corresponding to 0 to

about 200 µs of transi-

tion time with a 100-

MHz clock frequency.

Figure 6 shows the

energy consumption

of the AVS-converted

MPEG-4 decoder pro-

gram. (In converting

the MPEG-4 decoder

program, AVS took

less than 100 ms.) Results were normalized over

the energy consumption of the original pro-

gram running on a DVS-unaware system. In

Figure 6, the number of voltage transitions rep-

resents how many times voltage-scaling code

was executed during the program execution.

The AVS-converted program consumes less

than 7% of the original program’s energy con-

sumption.

When CVTO < 1,000 cycles, the number of

voltage transitions decreases sharply, but ener-

gy consumption does not increase rapidly

because the discarded VSEs have little effect on

energy reduction. When CVTO > 5,000 cycles, the

number of voltage transitions remains nearly

constant. The increase in energy consumption

is due to the increased overhead cycles.

The number of VSEs—which represents how

many copies of voltage-scaling code AVS insert-

ed into the converted program—indicates the

increase in code size caused by inserting volt-

age-scaling code via an inline expansion. For

the AVS-converted MPEG-4 decoder, about 10

VSEs are sufficient when CVTO > 5,000 cycles,

meaning that insertion of voltage-scaling code

hardly increases total code size. This is because

only a few voltage-scaling edges are responsible

for a large portion of the total power reduction.

Voltage Scheduling for Applications

28 IEEE Design & Test of Computers

0.10

0.08

0.06

0.04

0.02

0

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

20,000

16,000

12,000

8,000

4,000

0

N
um

be
r

of
 v

ol
ta

ge
 tr

an
si

tio
ns

0 5,000 10,000

Transition overhead (cycles)

15,000 20,000

Energy comsumption
Number of voltage transitions

Figure 6. Energy consumption of the AVS-converted MPEG-4 decoder program normalized

with respect to a conventional DVS-unaware system.

BY USING the RWEC information for each basic

block, the proposed technique makes it easier

to apply intra-task voltage scheduling to DVS-

unaware programs. First, it automatically

selects appropriate program locations for per-

forming voltage scaling to decrease overall

energy consumption. Second, the proposed

technique transparently inserts voltage-scaling

code to the selected program locations. By

automating these two steps, our algorithm

makes it possible for programmers to develop

DVS-aware programs on a variable-voltage

processor without any knowledge of DVS.

Our work can be extended in several direc-

tions. We have based the speed assignment on

RWEC but most program executions do not

take the WCEP at runtime. We are currently

devising the improved algorithm where the

speed assignment is based on the ACEP.

We believe that both inter-task voltage

scheduling and intra-task voltage scheduling

have relative advantages and disadvantages

over each other. It will be an interesting

research topic to compare the two scheduling

approaches quantitatively. ■

Acknowledgment
This work was supported in part by the

Ministry of Information & Communication of

Korea (Support Project of University foundation

research < ‘00 > supervised by IITA). We thank

Sung-Soo Lim for providing us with his WCET

tool and explaining the tool’s internals.

References
1. T. Burd and R. Broderson, “Processor Design for

Portable Systems,” J. VLSI Signal Processing,

vol. 13, no. 2, 1996, pp. 203-222.

2. T. Sakurai and A. Newton, “Alpha-Power Law MOS-

FET Model and Its Application to CMOS Inverter

Delay and Other Formulas,” IEEE J. Solid State Cir-

cuits, vol. 25, no. 2, Feb. 1990, pp. 584-594.

3. I. Hong et al., “Synthesis Techniques for Low-

Power Hard Real-Time Systems on Variable Volt-

age Processor,” Proc. 19th IEEE Real-Time

Systems Symp. (RTSS 99), IEEE CS Press, Los

Alamitos, Calif., 1999, pp. 178-187.

4. Y. Lee and C.M. Krishna, “Voltage-Clock Scaling

for Low Energy Consumption in Real-Time

Embedded Systems,” Proc. 6th Int’l Conf. Real-

Time Computing Systems and Applications

(RTCSA 99), IEEE CS Press, Los Alamitos, Calif.,

1999, pp. 272-279.

5. Y. Shin and K. Choi, “Power Conscious Fixed Pri-

ority Scheduling for Hard Real-Time Systems,”

Proc. 36th Design Automation Conf., IEEE Press,

Piscataway, N.J., 1999.

6. F. Yao, A. Demers, and S. Shenker, “A Schedul-

ing Model for Reduced CPU Energy,” Proc. 36th

Ann. Symp. Foundations of Computer Science

(FOCS 96), IEEE CS Press, Los Alamitos, Calif.,

1995, pp. 374-382.

7. S. Lee and T. Sakurai, “Runtime Voltage Hopping

for Low-Power Real-Time Systems,” Proc. 37th

Design Automation Conf., IEEE Press,

Piscataway, N.J., 2000, pp. 806-809.

8. C.A. Healy, D.B. Whalley, and M.G. Harmon,

“Integrating the Timing Analysis of Pipelining and

Instruction Caching,” Proc. 16th IEEE Real-Time

Systems Symp. (RTSS 95), IEEE CS Press, Los

Alamitos, Calif., 1995, pp. 288-297.

9. S.-S. Lim et al., “An Accurate Worst-Case Timing

Analysis for RISC Processors,” IEEE Trans. Soft-

ware Eng., vol. 21, no. 7, July 1999, pp. 593-604.

10. M. Fleischmann, “Crusoe Power Management:

Reducing the Operating Power with LongRun,”

Proc. Hot Chips 12 Symp., Palo Alto, Calif., 2000.

Dongkun Shin is a PhD
student at the School of
Computer Science and
Engineering, Seoul National
University. His research
interests include low-power

systems, computer architecture, and embedded
and real-time systems. Shin has a BS in com-
puter science and statistics and an MS in com-
puter science, both from Seoul National
University, Korea. He is a member of the ACM.

Jihong Kim is an assistant
professor in the School of
Computer Science and
Engineering, Seoul National
University, Korea. His
research interests include

computer architecture, embedded systems,
Java computing, and multimedia and real-time

29March–April 2001

systems. Kim has a BS in computer science and
statistics from Seoul National University, and an
MS and PhD in computer science and engineer-
ing from the University of Washington. He is a
member of the IEEE and ACM.

Seongsoo Lee is a
research professor in the
Department of Information
Electronics, Ewha Woman’s
University, Korea. His
research interests include

low-power VLSI systems, dynamic voltage scal-
ing, and VLSI implementation of MPEG-2 and
MPEG-4. Lee has a PhD degree in electrical
engineering from Seoul National University,
Korea. He is a member of the IEEE Circuits and
Systems Society.

Voltage Scheduling for Applications

30 IEEE Design & Test of Computers

Learn
Something

New
Built-In Self-Test for SOCs

An online tutorial from the

IEEE Computer Society

http://computer.org/
DT-tutorials/BIST

The first step in the

D&T Community Project

you@computer.org
FREE!

All IEEE Computer Society
members can obtain a free,

portable email
alias@computer.org. Select your
own user name and initiate your
account. The address you choose
is yours for as long as you are a
member. If you change jobs or
Internet service providers, just

update your information with us,
and the society automatically

forwards all your mail.

Sign up today at
http://computer.org

