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Abstract. Hard disks, most prevalent mass-storage devices, have high
power consumption and high response time for random I/O requests. Re-
cent remarkable technology improvement of flash memory has made it a
rising secondary storage device but flash memory still has high cost per
bit. Usage of heterogeneous storage devices such as a pair of a hard disk
and a flash memory can provide reasonable cost, relatively acceptable
response time, and low-power consumption. In this paper, we propose a
novel buffer cache replacement algorithm which targets a mobile com-
puting system with a heterogeneous storage pair of a hard disk and a
flash memory. The algorithm partitions the cache per each device and
adjusts the size of each partition based on the performance indices of
the devices, and manages each partition according to workload patterns.
Simulations show that the proposed algorithm yields a hit rate up to
two times higher than LRU on the typical mobile traces according to the
cache size and achieves also better system I/O response time and energy
consumption.
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load-aware, cache replacement

1 Introduction

As the mobile and ubiquitous computing technology progresses, end-users tend
to want that they can use high-performance and high I/O load applications such
as games and MPEG players. In the last decade, the innovational development
of processors, memories, network devices, and secondary storage devices has en-
abled this. These days mobile computing systems with high-capacity storage
devices are popular, such as PDAs, PMPs, and MP3 players. Since hard disk
drives are widely adopted for mobile computing platforms, the demand for hard
disk drives with a small form-factor (2.5′′ or less), embedded in or connected
to such systems, is also incrementally rising [1]. Concurrently, due to recent re-
markable technology improvement of flash memory, it appears a rising secondary
storage device.

However, despite attractive low cost per bit, hard disks are big power con-
sumers and have poor performance for random I/O requests. Flash memory still
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has relatively high cost per bit. For example, NAND flash memory is said to
be at least several times more expensive than disk drives with the same capaci-
ties [2]. Therefore, complementary storage architectures or techniques have been
emerging. Several researchers have proposed combined storage techniques with
a flash memory and a hard disk, which can be categorized into two: 1) using
a flash memory as a non-volatile cache [3,4,5,6,7,8,9]; 2) using a flash mem-
ory as a secondary storage device [10]. Specially, [10] studied the potential of
heterogeneous secondary storage by employing these two devices together with
data concentration techniques. The heterogeneous storage solution in this work
is expected to yield more energy saving in that it employs a flash memory as a
secondary storage device directly and can maintain a larger set of energy-hungry
blocks altogether on it compared with other work. However, the authors did not
investigate performance improvement or load balancing problems deeply.

In case of using heterogeneous devices generally, file systems require caching
algorithms that take into account the different miss penalties across file blocks
depending on which devices they belong to. But, the most commonly used cache
replacement algorithm, LRU is not aware of such different cost and treats all
cache blocks as if they have the same replacement costs. In the web cache
communities, there have been abundant research results on cost-aware cache
replacement algorithms, which consider different file size, network latency dur-
ing re-fetch due to a cache miss, file access frequency, etc. Recent web cache
algorithms may be based on or enhance the GreedyDual-Size algorithm [11],
which incorporates locality with miss penalty and file size concerns, generalizing
the LRU algorithm. In disk-based storage systems, [12] studied storage-aware
cache management algorithms using different costs on heterogeneous disks. This
work maintained one partition per each disk and adjusted partition sizes based
on the time spent per each disk (they call this wait time) over a period of
device requests, and controlled the blocks within each partition similarly to the
GreedyDual-Size algorithm. But, the authors did not take into account minutely
the case of there being a number of sequential accesses, which may be problem-
atic in their algorithms. This is because if a considerable number of sequential
accesses are requested to a disk its wait time can be lengthened and the cor-
responding partition size will increase filling this partition with less valuable
blocks. Consequently, in the worst case this algorithm may fail in obtaining
good load balance.

In this paper, we build a novel cache replacement algorithm to overcome
such limit, which targets mobile storage systems exploiting a pair of a hard disk
and a flash memory as secondary storage. Our algorithm intends to enhance
the system performance through both device-aware and workload-aware load
balancing. For the former we use cache miss counts and access time per device
and for the latter we have our algorithm manage the cache in the direction of
exploiting the fast sequential performance feature of a hard disk. To the best of
our knowledge, our work is the first attempt to design and incorporate a cost-
aware cache management algorithm on the heterogeneous combination of a hard
disk and a flash memory.
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Our first goal is to investigate how our device-aware cache replacement al-
gorithm can balance the I/O load between two heterogeneous devices on typical
mobile workloads when the target system employs a hard disk and a flash mem-
ory as mass storage, compared with LRU. Second goal is to study how well
our cache algorithm avoids cache pollution incurred by sequential block requests
while balancing the I/O load.

We first tackle the design of a workload-aware cache replacement algorithm
(in short, WAC) by introducing different cost per workload pattern similarly
to the GreedyDual-Size algorithm. Then, we propose our re-partitioning policy
on the total cache based on the cache miss counts at a fixed period and finally
complete to embody our device-aware cache replacement algorithm (in short,
DAC) combining these.

The rest of this paper is organized as follows. In Section 2, we review the
features of a hard disk and a NAND flash memory to compose heterogeneous
storage on mobile platforms and describe requirements for designing a device-
aware cache replacement algorithm briefly. In Section 3, we describe our both
workload-aware and device-aware algorithms in detail. Section 4 presents our
simulation framework and simulation results. Related work is given in Section
5. Finally, we conclude in Section 6.

2 Motivation

2.1 Device Bandwidth and Sequentiality

Since our research targets heterogeneous storage systems with the configuration
of a hard disk and a flash memory, it is necessary to examine the features of
a hard disk and a flash memory. For this purpose, we simply take two typical
devices as shown in Table 1, which are appropriate for mobile storage. Fujitsu
MHT060BH has a 2.5′′ form factor, a 60 GB capacity, and 5,400 RPM while
Samsung K9K1208U is a NAND flash memory and has a 64 MB capacity, a
block size of 16 KB, and a page size of 512 B. The throughputs of the flash
memory were from [13] and those of the hard disk were obtained on our Sony
VAIO laptop computer which embeds this disk using DiskSpd [14], which can
measure disk I/O performance with various configurations including whether
I/Os are sequential or random on Windows XP.

Table 1. Throughputs of a laptop disk and a NAND flash memory

Device
Hard disk Flash memory

MHT2060BH K9K1208U

Throughput
(MB/s)

Sequential
Read 30.47 14.3

Write 30.47 1.78

Random
Read 6.6 14.3

Write 6.6 1.78
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In Table 1, the disk shows a pretty good throughput for sequential I/Os and
the value is about 5 times larger than that for random I/Os irrespective of the
I/O type. In contrast to the disk, the flash memory doesn’t concern sequential-
ity of I/Os and exhibits poor performance for write I/Os compared with reads.
Therefore, when we design and use a heterogeneous storage system with such
devices we surely need to meet performance imbalance which is likely to occur
due to distinctly separable characteristics of these devices. This is because real-
istic workloads on mobile platforms often exhibit mixed patterns of sequential
and random I/O operations like the case of concurrent execution of MP3 playing
and program compiling. In addition, the conventional operating systems might
not be designed well for I/O sequentiality coupled with this new and unfamil-
iar configuration of heterogeneous devices. For example, it seems that adequate
management of sequentiality and I/O type for block requests across these het-
erogeneous devices in the viewpoint of performance may beyond the capability
of the LRU algorithm as previously remarked.

2.2 Mobile Workloads and Sequentiality

Recent studies on mobile storage systems collected and utilized traces on applica-
tions typically used in mobile computing environments under feasible execution
scenarios [5,10]. Among these, [10] gathered traces while executing real applica-
tions which can be used for a PDA immediately on an evaluation board similar
to a PDA. The used execution scenario was repetition of file transfer, email,
file search, and sleep (no operation). We examined the behavior of this mobile
workload (hereafter, we will call PDA trace).

Since file transfer gives rise to disk reads (or writes) when files are sent to
(or from) a network, the access pattern will be shown to be long sequential.
The other applications except sleep are likely to exhibit random accesses (in
this paper, a random access type means non-sequential one). Figure 1 shows
the access pattern of the PDA trace, where x axis is virtual time (i.e., index of
arriving requests) and y axis is logical block address. We notice that there are
mixed accesses of a large number of sequential accesses, big and small loop-type
accesses, and a small amount of temporal accesses. Similar access patterns can
be found in the plots of traces gathered under programming and networking
scenarios for mobile computing platforms in [5], though there is a different level
of sequentiality compared with the PDA trace. Such observations drive us to
need to deal with frequent sequential I/O operations together with random I/Os
because if they weren’t coped with adequately at the operating system software
level there might occur critical performance degradation of the overall system.

3 Device-Aware Cache Replacement Algorithm

3.1 Workload-Aware Cache Algorithm

As was described in the previous section, it is requisite to deal with mixed access
patterns which may frequently occur on generic mobile computing platforms
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Fig. 1. Plot of the logical block address of each arriving IO request to its virtual
time for the mobile trace used in [10]

as well as in our heterogeneous storage system with a hard disk and a flash
memory. As a first step towards a solution, we first tackle the design of WAC,
our workload-aware cache replacement algorithm using different cost per block
according to workload patterns similarly to the GreedyDual-Size algorithm.

Figure 2 describes the overall algorithm of WAC. WAC combines different
replacement cost and locality based on LRU. At the reference of a block x, when
a cache miss occurs and it should be fetched to the cache WAC sets L to x’s H.
If there is no free block and block eviction is needed the cache block with the
lowest H value is evicted and L is reset to this H value. If a cache hit occurs in
the cache x’s H is restored to L. How WAC updates the H values is shown in
the subroutine H update.

Fig. 2. Proposed workload-aware cache replacement algorithm (WAC). In WAC,
sequenitial I/O blocks have the most chances to stay in the cache, and random
I/O blocks vice versa.
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In designing the WAC algorithm, we tried to reflect the need that frequent
and a large amount of sequential I/O requests which can be found in typical
mobile workloads should be considered. Though there may be various ways in
determining cost of each block in the cache while realizing this need, we simply
divided the attribute, which each block can have in the cache, into 2: sequential
and random. In the algorithm, the attribute is concreted by adding C SEQ or
C RAND to the L value when the accessed block does take on sequentiality or
not. Since when a block is sequential evicting it is more beneficial, we assign
C SEQ to a small positive value (in an actual implementation, we used 1). We
expect more cache hits by keeping random blocks longer than those with sequen-
tiality and thus C RAND is assigned to a larger value than C SEQ. Therefore,
H values of cache blocks will be maintained relatively large if they are accessed
recently or randomly and there will be more chances for such blocks to remain
in the cache rather than blocks with little locality or sequentiality. This can
be thought of a generalized version of LRU. In this paper, since we want to
weight sequentiality for cache block replacement rather than I/O type, we do
not consider more separated attributes like sequential and read accesses, random
and write accesses, etc. Schemes using such more complex attributes will remain
future work.

3.2 Evaluation: WAC and LRU

We evaluated performances of WAC and LRU in terms of cache hit rate using
the PDA trace. For this, we built a trace-based cache simulator which imple-
ments WAC and LRU, and concatenated it and the simulator in [10] (Refer to
subsection 4.1).

Figure 3 shows the hit rates of WAC and LRU, which were simulated for the
PDA trace when the cache size varied from 5 to 60 MB with an incremental step
of 5 MB except 55 MB (since the hit rate is already saturated around this size,
we omitted it). We can notice that WAC outperformed LRU for all the cache
sizes. This results apparently reflects the fact that WAC better maintains valu-
able (that is, causing more cache hits) blocks in the cache, which were not if they
had been evicted early, and efficiently evicts less valuable blocks quickly, com-
pared with LRU. Since we ascertain our workload-ware cache algorithm shows
effectiveness for the mixed I/O request pattern of mobile workloads, our next
task is to augment WAC such that it can be effective under mobile workloads in
heterogeneous storage systems rather than single-device based storage systems
(in this evaluation, a single disk was used).

3.3 Device-Aware Cache Replacement Algorithm

Our device-aware cache replacement algorithm (i.e., DAC) is mainly composed
of 1) adjusting the sizes of partitions for a hard disk and a flash memory dynam-
ically based on the performance index per device; 2) managing each partition
according to the pattern of workloads by applying the WAC policy.
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Fig. 3. Hit rates of WAC and LRU for the PDA trace when the cache size varies.

In designing the DAC algorithm, we took required cache management rules
as follows: 1) the size of each partition should be adjusted so that the overall
load is balanced considering cache miss counts as well as different miss penalties
between a hard disk and a flash memory. 2) sequential I/O requests should be
managed to be evicted earlier by applying WAC to cache blocks within each
partition.

Detailed DAC’s algorithm is shown in Figure 4. DAC has two LRU lists T1
and T2, each of which represents a partition assigned to cache blocks for either
of heterogeneous devices (in this paper, T1 is used for a hard disk and T2 for a
flash memory). T1 req (T2 req) is the target size of the T1 (T2) partition and
c is the total cache size. PR is the access time ratio between a hard disk and
a flash memory. W represents a partition-adjusting period, which is compared
with cumulated reference counts (cumulated ref count) for re-partitioning.

DAC largely consists of 1) a cache replacement algorithm executed at every
block reference; 2) a cache partitioning algorithm executed at W block refer-
ences. At each block access, DAC determines the access pattern and whether the
block is missed or hit. If a hit occurs in T1 (or T2), the block is moved to the
MRU position of T1 (or T2). If there occurs a miss, the subroutine List update
is invoked with miss flag which indicates in which device the missed block re-
sides. Briefly, the mechanism of List update is to control T1 and T2 so that
their sizes follow T1 req and T2 req well, respectively. This is quite important
process because good control of each partition size is based on the harmony of
adjustment issuing and its follow-up. During such operations, we employ the
subroutine H update, which was seen in WAC, for the purpose of setting values
to the cache blocks within each partition. In a period of W block references,
the algorithm re-partitions the cache depending on miss counts of random-type
blocks multiplied by PR. Multiplying PR is needed because two devices have
different miss penalties (i.e., access times).

The strong points of the DAC algorithm come from its being device-aware
as well as workload-aware: it adjusts the partition sizes based on performance
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Fig. 4. Proposed device-aware cache replacement algorithm (DAC).

skewness and manages cache blocks according to worth in the aspect of perfor-
mance by taking into account the access pattern. Thus, we expect that it may
improve the system performance better by dealing with performance imbalance
efficiently in heterogeneous storage systems, compared with LRU. We also ex-
pect that DAC may be more helpful in enhancing the performance by evicting
sequential blocks early.

There are several challenges in the DAC algorithm. First, we found that the
value of PR can vary according to the degree of temporal locality through ex-
periments in the viewpoint of the overall system performance. Therefore, in the
experiments we simply (not optimally) changed the value of PR statically in
order to obtain a better performance. Second, when we calculate delta we also
found that it was sometimes more beneficial to weight the larger value of two
random miss counts of T1 and T2 depending on the degree of temporal local-
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ity. We simulated while varying this value statically. Finally, the period of W
affected the overall performance and needs to vary depending on workload pat-
terns. However, building a fully automatically-tunable DAC to maintain optimal
parameters is a problem rather beyond the scope of this paper and will remain
future work.

4 Simulation and Results

4.1 Simulation Environment

We developed a trace-based cache simulator which incorporates LRU, WAC, and
finally DAC. In order to link cache simulation with the operation of a hetero-
geneous storage system, we augmented the multi-device power and performance
simulator in [10]. The hard disk model we used is the MK4004GAH with a 1.8′′

form factor and 4,200 RPM [10] and the flash model is the K9K1208U shown in
Table 1.

We also built a synthetic trace generator, which can generate three types of
traces by controlling sequentiality and temporal locality: SEQUENTIAL, TEM-
PORAL, and COMPOUND. Our synthetic trace generator can also control var-
ious parameters such as control request rate, read/write ratio, file size, and
request size. We ran our trace generator, varying default parameters. Default
parameter setting is as follows: average interval time between I/O requests = 70
(ms), trace time = 80 (min), maximum file size = 5 (MB), total file size = 350
(MB), and write ratio = 0.5. Default I/O access pattern is set to COMPOUND
(i.e., mixed of sequentiality and temporal locality).

For simulation, we used the PDA trace and two synthetic traces (we call
trace1 and trace2 ): trace1 uses the default parameters and trace2 also does
except that the average interval time and the maximum file size are set to 20 ms
and 1 MB, respectively. The PDC trace, trace1, and trace2 have working set sizes
of 44, 23, and 57 MB and trace file sizes of 30, 2.8, and 9.6 MB, respectively. We
evaluated the cache hit rate and average system I/O response time for DAC and
LRU as metrics. We assumed that the overheads of re-partitioning and handling
blocks per partition in DAC are acceptable in comparison with LRU and set W
to 200 and PR to 35.

4.2 Simulation Results

In Figure 5, plots (a) and (b) show the hit rates of DAC and LRU and average
system I/O response times and energy consumptions of DAC normalized over
LRU, respectively, for the PDA trace with the cache size varied. In the plot
(a), DAC has higher hit rates than LRU in all cases. The higher hit rates of
DAC affected the average I/O response times and these values of DAC appeared
smaller than those of LRU overall, as shown in the plot (b).

Two exceptions are when the cache sizes are 5 and 50 MB. We found that
though there occurred the same device accesses for DAC and LRU the degree of
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Fig. 5. Simulation results of DAC and LRU for the PDA trace when the cache
size varies: (a) Hit rates of DAC and LRU (b) Average system I/O response
times and energy consumptions of DAC, which are normalized over LRU.05101520253035 1 2 4 8 10 20cache size (MB)hit rate (%) DACLRU
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Fig. 6. Simulation results of DAC and LRU for synthetic traces when the cache
size varies: (a) Hit rates of DAC and LRU for the trace1 (b) Hit rates of DAC
and LRU for the trace2.

clustering in the device (exactly, disk) queue was lower for DAC, that is, a little
more non-sequential accesses occurred and they caused more seek time. This
phenomenon rather seems to be related with adjustment of parameters described
in subsection 3.3 for the case of two extremes of the cache sizes. We also notice
that there were more chances for power-down in the devices. Consequently, the
energy consumption of DAC was observed to be smaller than that of LRU almost
always.

Figure 6 shows the hit rates of DAC and LRU for two synthetic traces with the
cache size varied: (a) for the trace1 and (b) for the trace2. We notice that DAC
showed almost equal or better results in hit rates for both traces. Comparing
the hit rates in the plots (a) and (b) depending on working set sizes and varying
cache sizes, we can notice that the trace2 has more temporal I/O accesses. This
means that DAC might be effective regardless of the amount of sequentiality.
To examine this, we evaluated two more synthetic traces with temporal access
patterns, which have the same parameters of trace1 and trace2 except that the
I/O access pattern is set to TEMPORAL (we call these traces trace1 temp and
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trace2 temp). For the trace1 temp, we found that the hit rates of DAC and LRU
with a 4 MB cache were 53.0% and 54.1% (actually, with different setting of W
and PR, we could obtain the almost same hit rate). For the trace2 temp, the
hit rates were 97.1% for both DAC and LRU with a 10 MB cache. We omitted
the average system I/O response time and energy consumption due to the space
limit, but we found that DAC has better performance in these two metrics than
LRU similarly to the results of the PDA trace.

5 Related Work

[3,4,5,9] have all proposed using flash memory as a non-volatile cache, maintain-
ing blocks which are likely to be accessed in the near future, and thus allowing a
hard disk to spin down for longer time. [4] focused on the use of a flash memory
as a write buffer cache, while [5] has recently studied a technique of partitioning
a flash memory into a cache, a prefetch buffer, and a write buffer to save energy.
[9] mainly considered reducing the power consumption of a main memory by
using a flash memory as a second-level buffer cache. Hybrid HDD solution co-
developed by Samsung and MS uses a flash memory as an on-board non-volatile
cache in addition to a hard disk, which aims at performance boosting, low power,
and high reliability on mobile computers [6,7].

Our work is distinct from the above research in that it studies performance
improvement in a heterogeneous storage system which uses a flash memory to-
gether with a hard disk as secondary storage. Our approach suggests an effec-
tive buffer cache management algorithm aiming at performance improvement,
depending on both device-awareness and workload-awareness.

6 Conclusions

We have proposed a novel buffer cache replacement algorithm which targets a
mobile computing system with a heterogeneous storage pair of a hard disk and
a flash memory. The proposed algorithm partitions the cache per each device
and adjusts the size of each partition based on the performance indices of the
devices, and manages each partition according to workload patterns.

Trace-based simulations showed that the proposed technique can lead to up
to a two times higher hit rate than LRU according to the cache size with a
pair of a 1.8′′ hard disk and a NAND flash memory on realistic mobile traces.
In addition, our algorithm reduced the average system I/O response time and
energy consumption by up to 12% and 19%, respectively, compared with LRU.

As future work, we plan to study software techniques including cache al-
gorithms in order to mitigate the write/erase cycles of a flash memory while
maintaining the performance. We also plan to research the performance and
energy consumption using DAC under various data layouts.
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