6 WALTARI, M., and HALONEN, K.: ‘Timing skew insensitive switching
for double-sampled circuits’. Proc. IEEE Int. Symp. Circuits and
Systems (ISCAS), May 1999, Vol. 2, pp. 61-64

7 SUMANEN, L., WALTARL M., and HALONEN,K.. ‘A 10-bit 200MS/s
CMOS parallel pipeline A/D converter’. Proc. 26th European
Solid-State Circuits Conf. (ESSCIRC), Sept. 2000, pp. 440443

8 PARK, Y.L, SOUNDARAPANDIAN, K., TSAY, F.,, and BARTOLOME, E.: ‘A
1.8V, 10-bit, 100MS/s CMOS pipelined ADC’. 2001 IEEE Int.
Solid-State Circuits Conf. (ISSCC), Feb. 2001

Instruction cache organisation for
embedded low-power processors

Changwoo Jung and Jihong Kim

A low-power I-cache architecture is proposed that is appropriate
for embedded low-power processors. Unlike existing schemes, the
proposed organisation places an extra small cache in parallel
alongside the L1 cache. Since it allows simultaneous accesses to
both caches, the proposed scheme introduces little performance
degradation. Using simple hardware logic (for sequential accesses)
and a compiler transformation (for loop accesses), most L1 cache
requests are served by a small cache, so that the amount of energy
consumed by the L1 cache is significantly reduced. Experimental
results show that for the SPEC95 benchmarks, the proposed
organisation reduces the energy-delay product on average by
67.2% over a conventional cache design and 16.8% over the filter
cache design.

Introduction: For high-performance embedded microprocessors, a
large on-~chip instruction cache is necessary to satisfy the need for
fast instruction access. Although a large on-chip cache is effective
in’ meeting this requirement, it dissipates a significant amount of
energy. Since many high-performance embedded microprocessors
are used for time-critical applications (where performance cannot
be sacrificed for low energy consumption), if a low-power instruc-
tion cache design technique were to be useful, it must maintain the
same performance level of the original processor while reducing
the power consumption. However, existing low-power instruction
cache design techniques, which are based on the vertical extension
of the memory hierarchy (as with the filter cache [1] and the loop
cache [2]) do not achieve this conflicting requirement in a satisfac-
tory fashion.

In this Letter, we propose a novel low-power instruction cache
organisation that reduces the energy consumption significantly
with little or no impact on performance. The proposed organisa-
tion differs from existing schemes in that a small cache is located
not between the CPU and L1 cache, but alongside the L1 cache.
With an appropriate compiler support based on cache trace infor-
mation, our scheme reduces the energy-delay product significantly
over the filter cache and loop cache organisations as well as the
conventional cache design. ‘

Enhanced mini-cache (EM-cache) organisation: A popular design
approach for a low-power on-chip cache is to introduce a small
cache (in addition to a normal L1 cache) into a memory hierarchy.
By placing a small cache between the CPU and L1 cache, a large
portion of the processor’s instruction requests is served by the
small (thus energy-efficient) cache. Although it improves the over-
all energy efficiency of the memory hierarchy, the vertical exten-
sion of the memory hierarchy incurs additional delay cycles
because ‘the small cache is bound to miss some instruction
requests.

In the proposed scheme, an extra small cache is located along-
side the L1 cache, as shown in Fig. 1. We call this small cache the
EM-cache. By putting the EM-cache alongside the L1 cache, there
is no performance degradation, since both caches can be accessed
simultaneously. To reduce the energy consumption, we selectively
disable accesses to the L1 cache by the LI Deact signal, which is
set either by hardware logic (that sets LI_Dynamic_Deact) or by
special instructions (that set LI_Static_Deact). The instruction
selection logic in the ID stage chooses the appropriate instruction
between the IRgy and IRy;. In the proposed scheme, since

554 ELECTRONICS LETTERS 26th April 2001

L1 _Deact is set to 1 for most of the L1 cache requests, the instruc-
tion in IRgy is generally used in the ID stage, leaving the L1
cache in the deactivated state most of the time. Since the instruc-
tion selection is made in the ID stage, there is no increase in the
cache access time that may be on the critical path.

next PC
generation L1_static_deactivation
logic = =
branch A\ L1_dynamic_deactivation
target address \ adr:ier:ss L1 access | /[
current Jeacti\{ation —r]
logic b instrument

EM_cache_Hit /
L1_deactivation|~

instruction[31.0] [
M

L1 cache

EM cache

missed block,Tr

instruction[31.0]
L1_deactivation

IF/ID
L1_static_deactivation is disable Licache

@r is_enable_LADL

L1_dynamic_deactivation

219/

Fig. 1 Memory hierarchy with EM-cache

— coONtrol line
data line

The energy efficiency of the memory hierarchy with the EM-
cache depends on the quality of the L1 cache deactivation mecha-
nism. The proposed L1 cache deactivation mechanism consists of
two components, one in the software and the other in the hard-
ware. The hardware deactivation component exploits the spatial
locality of the sequential instruction accesses. Since many cache
accesses are sequential accesses to the same cache block, we can
disable the L1 cache if the next PC refers to the same cache block
as the current PC does. The L1 access deactivation logic (LADL)
module in Fig. 1 checks this condition for the next PC. If the next
PC points to the same cache block as the current PC does, L1_Dy-
namic_Deact is set to 1, which disables the operation of the L1
cache for the next PC access. The LI _Dynamic_Deact signal can
be set without extra time penalty while the current instruction is
fetched, because the LADL module decides if the next PC will
access the same cache block.

While the LADL-based hardware deactivation mechanism is
simple and effective in detecting consecutive instruction fetches
within the same cache block, it cannot exploit the spatial locality
across multiple cache blocks. For example, many loops (common
in computation-intensive programs) are likely to occupy multiple
cache blocks. For such loops, the hardware deactivation mecha-
nism cannot detect the. consecutive accesses across the cache block
boundary. To solve this problem, we propose an additional soft-
ware deactivation mechanism based on two special instructions:
disable_L1Cache and enable_LADL. The disable_LICache instruc-
tion deactivates the operation of the L1 cache while the
enable_LADL instruction enables the LADL module as well as the
L1 cache. Two special instructions are automatically inserted to
appropriate basic blocks by a compiler. To insert the special
instructions, the compiler classifies all the basic blocks into D g,
or Sy.ame based on cache trace information. A basic block bb is
classified into S, if the contribution from the bb basic block in
the energy-delay product is smaller when bb belongs to S than
when bb belongs to D .. Otherwise, a basic block is classified
into D ysapre-

If a basic block bb belongs to Dy, the hardware deactivation
component (i.e. the LADL module in Fig. 1) determines the oper-
ation status of the L1 cache. On the other hand, if a basic block
bb belongs to Sy the L1 cache is deactivated while the instruc-
tions in bb are executed regardless of the LI Dynamic_Deact sig-
nal value. For the basic blocks in Sy, the disable_IL1Cache
instruction is inserted before the entry point of each basic block.
For the successor basic block(s) bby,.. of a basic block bb € Sipses
the enable LADL instruction is inserted before the entry point of

Vol. 37 No.9

bbg,. unless bby,.. € Sysupe Fig. 2 illustrates how two special
instructions are inserted into various basic block combinations.

While exccuting basic block db € Sy, there can be some
EM-cache misses with the L1 cache disabled. This is because the
basic block b6 may include cache blocks that were not brought
into the EM-cache. Although it is small, the EM-cache misses
introduce a performance penalty.

bb1 [Deiganie P01 | Paisavte

disable —

bb3 | Dy,
bb3 | Djsanle ~ ©°2"°| b3 | Dyisa)

enable_LADL

—
enabl(la_LADL

!]
! {
a b c

Fig. 2 Special instruction insertions to basic blocks

Table 1: Normalised energy-delay product relative to base case

Program Filter cache Loop cache EM-cache
SPEC95 average 0.394 0.509 0.328
li 0.435 0.752 0.380
perl 0.609 0.899 0.430
hydro2d 0.363 0.422 0.303
su2cor 0.536 0.446 0.404
UTDSP average 0.375 0.374 0.293
histogram 0.545 0.497 0.401
Ipe 0.501 0.425 0.327
spectral 0.163 0.170 0.166
edgedetect 0.445 0.548 0.338

Experimental results: To evaluate the effectiveness of the proposed
cache organisation, we have performed experiments using the Sim-
pleScalar microarchitecture simulator [3]. As test programs, we
used the SPEC95 CPU benchmark and UTDSP benchmark. The
cache energy models are based on the work described in [4].
Capacitive coefficients for the energy equations are derived from
[5] assuming the 0.8um process. For the experiments, a 32KB
direct-mapped instruction cache with a block size of 32 bytes was
used as the base case. For a small additional cache, a 0.5KB
direct-mapped cache with a block size of 16 bytes was used.

Table 1 summarises the normalised energy-delay product of
three cache organisations. As shown in Table 1, the EM-cache
organisation achieves the best energy-delay product among the
three cache organisations. For the SPEC95 CPU benchmark pro-
grams, the EM-cache reduces the energy-delay product on average
by 67.2% over a conventional cache design, 16.8% over the filter
cache and 35.6% over the loop cache. For the UTDSP benchmark
programs, the EM-cache is equally effective in reducing the
energy-delay product.

Conclusion: A low-power I-cache architecture, EM-cache, for
high-performance embedded processors has been described.
Unlike the existing schemes, the proposed organisation places an
extra small cache in parallel alongside the L1 cache. Although the
EM-cache organisation allows simultaneous accesses to the EM-
cache and L1 cache, most L1 cache accesses are blocked by simple
hardware logic (for sequential accesses) and a compiler transfor-
mation (for loop accesses), thus reducing the energy consumption
significantly. Since the L1 cache is accessed (if necessary) at the
same time when the EM-cache is accessed, there is no or little per-
formance penalty. Experimental results show that the EM-cache
achieves the best energy-delay product among the existing
schemes.

Acknowledgment: This research is supported in part by the Minis-
try of Information & Communication of Korea (‘Support Project
of University Foundation Research(’00) supervised by IITA).

ELECTRONICS LETTERS 26th April 2001

© IEE 2001 6 November 2000

Electronics Letters Online No: 20010380
DOI: 10.1049/el:20010380

Changwoo Jung and Jihong Kim (Schoo! of Computer Science and
Engineering, Seoul National University, San 56-1, Shilim-dong,
Kwanak-ku, Seoul 151-742, Korea)

E-mail: jihong@davinci.snu.ac.kr

References

1 KIN,], GUPTA, M., and MANGIONE-SMITH, W.H.: ‘The filter cache: an
energy efficient memory structure’. Proc. Int. Symp.
Microarchitecture, 1997, pp. 45-49

2 BELLAS,N., HAJ, 1, POLYCHROPOULOS,C., and STAMOULIS, G.:
‘Architectural and compiler techniques for energy reduction in
high-performance microprocessors’, IEEE Trans. VLSI Syst., 2000,
8, (3), pp. 317-326

3 BURGER,D. and AUSTIN,TM. °‘The SimpleScalar tool set,
version2.0’, Comput. Archit. News, 1997, pp. 13-25

4 KAMBLE, M.B.,, and GHOSE, K.: ‘Analytical energy dissipation models
for low power caches’. Proc. Int. Symp. Low-Power Electronics
and Design, 1997, pp. 143-148

5. WILTON, S.E., and JOUPPI, N.. ‘An enhanced access and cycle time
model for on-chip caches’. Technical report, DEC WRL, 1994

Switching activity evaluation of CMOS
digital circuits using logic timing simulation

J. Juan-Chico, M.J. Bellido, P. Ruiz-de-Clavijo,
C. Baena, C.J. Jiménez and M. Valencia

The degradation delay model is applied to accurately estimate the
switching activity in CMOS digital circuits. The model overcomes
the limitations of conventional gate-level logic simulators to
handle the propagation of glitches, a main source of switching
activity. Model results of a four-bit multiplier are within 4% with
respect to HSPICE, while Verilog overestimations are up to 68%.

Introduction: Accurate estimation of the switching activity
(number of logic transitions) in CMOS digital circuits is crucial in
calculating the power consumption of the devices [1, 2]. It has
been stated that an important component of the switching activity
is due to the propagation of glitches (spurious transitory signal
pulses) [2]. The contribution of glitches to the overall switching
activity ranges from 15 to 70%, depending on the circuit [2]. Accu-
rate evaluation of this switching activity has only been possible by
using electrical simulators like HSPICE [3]. However, these simu-
lators are limited to rather small circuits and consume a large
amount of computational resources. In contrast, gate-level logic
simulators (like VERILOG [4] or VHDL standard simulators) are
able to handle very big circuits, but are not accurate at simulating
glitches, mainly because the delay models they use only consider
the inertial effect when dealing with narrow pulses. This is a first-
order approximation which yields large overestimations of the
switching activity. To solve this problem, a simplistic dynamic
delay model was proposed in [2], improving the accuracy, even if
this was still far from the results obtained using electrical simula-
tors.

In previous work, we have shown the importance of digital sig-
nal degradation [5], and a very accurate delay model known as the
degradation delay model (DDM) has been developed, which han-
dles the generation and propagation of glitches very accurately
[6, 7]. In this Letter, we show that the DDM, when applied to
logic simulation, provides a very accurate and fast way to estimate
the switching activity of digital CMOS circuits, combining the
benefits of electrical and logic simulators.

Degradation delay model: The degradation delay model considers a
new dynamic parameter (7) in the calculation of the propagation
delay of a logic block. This parameter measures the clapsed time
since the last transition of the gate’s output. It has been shown in
[6] that the use of this parameter makes it possible to calculate the
correct propagation delay even if almost simultaneous input tran-
sitions take place arbitrarily close in time. When this happens, a

Vol. 37 No. 9 555

