
438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 3, MARCH 2006

Dynamic Voltage Scaling of Mixed Task
Sets in Priority-Driven Systems

Dongkun Shin and Jihong Kim, Member, IEEE

Abstract—This paper describes dynamic voltage scaling (DVS)
algorithms for real-time systems with both periodic and aperiodic
tasks. Although many DVS algorithms have been developed for
real-time systems with periodic tasks, none of them can be used
for a system with both periodic and aperiodic tasks because of the
arbitrary temporal behaviors of aperiodic tasks. This paper pro-
poses off-line and on-line DVS algorithms that are based on exist-
ing DVS algorithms. The proposed algorithms utilize the execution
behaviors of scheduling servers for aperiodic tasks. Since there is
a tradeoff between the energy consumption and the response time
of aperiodic tasks, the proposed algorithms focus on bounding
the response time degradation of aperiodic tasks although they
delay the response time by stretching the task execution to get
high energy savings in mixed task sets. Experimental results show
that the proposed algorithms reduce the energy consumption by
48% and 35% over the non-DVS scheme under rate monotonic
(RM) scheduling and earliest deadline first (EDF) scheduling,
respectively.

Index Terms—Dynamic voltage scaling, low-power design,
mixed task systems, real-time systems, task scheduling.

I. INTRODUCTION

MANY practical real-time applications require aperiodic
tasks as well as periodic tasks. For example, consider

multimedia applications such as a Moving Pictures Expert
Group (MPEG) player. While these applications have stringent
periodic performance requirements (e.g., 30 frames/s), they also
need to serve aperiodic user requests (e.g., volume control and
playlist editing) with reasonable response times. The flight sys-
tem also has both periodic and aperiodic tasks. The system must
respond to the pilot’s command while continuing to execute
the control tasks that fly the airplane. Even when there is no
user request, the real-time systems based on automatic memory
reclamation (with garbage collection) require aperiodic tasks.
The garbage collector (GC) is invoked when the available
memory size is below a specific threshold. Generally, periodic
tasks are time driven with hard deadlines and aperiodic tasks
are event driven (i.e., activated at arbitrary times) with short
response times. In this paper, a system with both periodic and
aperiodic tasks is called a mixed task system.

In implementing mixed task systems, there are two major
design objectives. The first objective is to maintain the schedu-
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lability of (feasible) periodic tasks under the presence of
aperiodic tasks. That is, aperiodic tasks should not prevent peri-
odic tasks from completing before their deadlines. The second
objective is to serve aperiodic tasks with reasonable average
response times. To satisfy these two design objectives, many
scheduling algorithms such as deferrable servers (DS) [1],
sporadic servers (SS) [2], total bandwidth servers (TBS) [3],
and constant bandwidth servers (CBS) [4] had been proposed.
Since they set aside some portion of the system utilization for
aperiodic tasks, they are called bandwidth-preserving servers
[5]. In this paper, the authors consider as the third design
parameter the energy consumption of mixed task sets. With
the added energy consumption requirement, the overall design
objective is to minimize the total energy consumption of both
periodic tasks and aperiodic tasks while satisfying the previous
two requirements.

Among many low-power design approaches, this paper fo-
cuses on dynamic voltage scaling (DVS) [6]. Recently, DVS has
been accepted as an efficient low-power technique for real-time
systems. Under this scheme, when the required performance
of the target system is lower than the maximum performance,
the supply voltage and the clock speed can be reduced to
minimize the energy consumption. For hard real-time systems
where timing constraints must be strictly satisfied, a fundamen-
tal energy-delay tradeoff makes it more challenging to adjust
the supply voltage dynamically while minimizing the energy
consumption and guaranteeing the timing requirements. Many
on-line voltage-scheduling algorithms exist for hard real-time
systems [7]–[10]. Since most of these algorithms assume that
the system consists of periodic hard real-time tasks only and the
task release times are known a priori, they estimate slack times
based on the known release times and stretch the task execution
using the estimated slack times. Generally, the more slack times
a DVS algorithm can estimate, the better energy efficiency the
DVS algorithm can have.

However, when a DVS algorithm is applied to mixed task
sets, the DVS algorithm should tackle the arbitrary behaviors
of aperiodic tasks. Fortunately, since a bandwidth-preserving
server limits the execution of aperiodic tasks within its allocated
bandwidth, DVS algorithms can estimate slack times con-
sidering the characteristics of bandwidth-preserving servers.
Although the energy efficiency of a DVS algorithm for mixed
task sets is also related to how much slack times it can find,
the presence of aperiodic tasks in the mixed task sets raises the
tradeoff between the energy consumption of the total system
and the response time of aperiodic tasks. If the response time
of aperiodic tasks is ignored, the most energy-efficient solution
is not to serve aperiodic tasks, thus further reducing the energy
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consumption of periodic tasks. However, it is obvious that such
a solution will not be acceptable. Therefore, the main challenge
in designing DVS algorithms for the mixed task sets is to bound
the response times of aperiodic tasks while reducing the energy
consumption of periodic tasks as well as aperiodic tasks.

Recently, DVS algorithms have been proposed for mixed
task systems satisfying this requirement for the DS and the
TBS [11]. Based on the previous work, the DVS algorithms
for mixed task systems were improved in this paper. The main
contributions of this paper can be summarized as follows. First,
more aggressive DVS algorithms are proposed for DS and SS,
which can handle the mixed task sets. The new DVS algorithms
can reduce the energy consumption by 16% over the existing
DVS algorithm in [11]. Second, DVS algorithms for CBS are
proposed. Third, a new slack distribution method for DVS
algorithms is also proposed. By assigning slack times only
to periodic tasks and executing aperiodic tasks at full speed,
the DVS algorithm can make better response times with small
increases in the energy consumption. Lastly, the authors prove
that the proposed algorithms for DS, SS, and CBS always
limit the response time penalties of aperiodic tasks, which were
traded for the lower energy consumption of the mixed task set.

The rest of this paper is organized as follows. Section II sum-
marizes related works on aperiodic task scheduling and recent
efforts to integrate dynamic voltage scheduling into aperiodic
task scheduling. Section III presents the target processor model
and the target problem. The proposed dynamic (on-line) DVS
algorithms are described in Section IV while the static (off-line)
DVS algorithm is presented in Section V. In Section VI, the
experimental results are discussed. Section VII concludes with
a summary and future works.

II. RELATED WORKS

This section reviews the main approaches for scheduling a
mixture of aperiodic tasks and periodic hard real-time tasks.

The easiest way to prevent aperiodic tasks from interfering
with periodic hard real-time tasks is to schedule them as back-
ground tasks executing only at times when there is no periodic
task ready for execution. Although this method guarantees the
schedulability of a periodic task, the execution of aperiodic
tasks may be delayed and their response times are prolonged
unnecessarily.

Another approach is to use a dedicated scheduling server
that handles aperiodic tasks. The server is characterized by an
ordered pair (Qs, Ts), where Qs is the maximum budget and
Ts is the period of the server. The utilization of a scheduling
server was denoted as Us(= Qs/Ts). The simplest server is the
polling server (PS). PS is ready for execution periodically at
integer multiplies of Ts and is scheduled together with periodic
tasks in the system according to the given priority-driven algo-
rithm. Once PS is activated, it executes any pending aperiodic
requests within the limit of its budget Qs. If no aperiodic
requests are pending, PS immediately suspends its execution
until the start of its next period. Since PS is exactly identical to a
periodic task that has the period Ts and the worst-case execution
time (WCET) Qs, the schedulability of the system can be tested
using the traditional rate monotonic (RM) or earliest deadline

first (EDF) schedulability test. However, if an aperiodic task
arrives after PS examines its aperiodic task queue, it should wait
until the next activation time of PS.

For this reason, several bandwidth-preserving servers are
proposed. They preserve the execution budget when there are
no pending aperiodic tasks and execute later if any aperiodic
task arrives. The DS [1] is the simplest of bandwidth-preserving
servers. DS also serves aperiodic tasks within the limit of its
budget Qs. At every integer multiplies of Ts, the budget is re-
plenished to Qs. Unlike PS, DS can service an aperiodic request
at any time as long as the budget is not exhausted. Although
this feature of DS provides better performance than that of PS,
a lower-priority periodic task could miss its deadline even if the
total utilization of the system with n tasks is not greater than
n(21/n − 1) because DS can defer its execution. To solve this
problem, the SS [2] was proposed. SS has a different replenish-
ment rule for its budget that ensures that each SS with period
Ts and budget Qs never demands more processor time than the
periodic task (Qs, Ts) in any time interval. Consequently, the
system designer can treat an SS exactly like the periodic task
(Qs, Ts) when they check for the schedulability of the system.

The parameters of bandwidth-preserving servers Ts and Qs

should be carefully determined. Generally, Ts determines the
priority of the scheduling server for aperiodic tasks. As Ts is
small, the scheduling server has a higher priority. This can
provide the shorter response times of aperiodic tasks if the
workloads of aperiodic tasks are smaller than Qs. However,
for the small Ts, a small Qs should be used to sustain the uti-
lization of the scheduling server below the available utilization
(Us = Qs/Ts). Moreover, as Ts decreases, the number of task
preemptions increases.

Although there are modified DS and SS algorithms for EDF
scheduling, DS and SS are mainly used for RM scheduling due
to the complexity of the modified algorithms. For EDF schedul-
ing, TBS [3] is more suitable. TBS is characterized by Us,
which is the utilization of TBS. When an aperiodic task arrives,
TBS assigns a deadline to the task such that the utilization of the
aperiodic task is equal to Us. Since TBS assigns the deadline
using the WCET of the aperiodic task, TBS cannot be used if
there are no information on the WCETs of aperiodic tasks.

Recently, CBS [4] was proposed to solve the problem of
TBS. CBS, specified by (Qs, Ts), guarantees that its contri-
bution to the total utilization factor is no greater than Us =
(Qs/Ts) using its special budget replenishment and deadline
assignment rules. The detailed mechanism of CBS is explained
in Section IV-B.

A different approach for scheduling aperiodic tasks is the
slack-stealing technique [12]. It steals all available slacks from
periodic tasks and gives it to aperiodic tasks. Although it
provides better performance than the server approaches, i.e.,
minimizes response times of aperiodic requests, its complexity
is very high. In addition, since the main idea of slack stealing is
to give as much as possible time to aperiodic tasks executing
periodic tasks at full speed, slack stealing is improper to be
integrated with DVS algorithms. So, this paper concentrates on
server techniques.

Recently, several researchers have proposed DVS algorithms
for mixed task sets. Yuan and Nahrstedt [13] proposed DVS
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TABLE I
VARIABLE-VOLTAGE PROCESSORS

algorithms for another kind of mixed task sets, which consist
of sporadic tasks and aperiodic tasks. The sporadic tasks1

arrive at arbitrary times and have soft deadlines. They only
handled CBS.

Doh et al. [14] investigated the problem of allocating both
energy and utilization for mixed task sets that consist of peri-
odic tasks and aperiodic tasks. They used TBS and considered
the static (off-line) scheduling problem only. Given the energy
budget, their algorithm finds voltage settings for both periodic
and aperiodic tasks such that all periodic tasks are completed
before their deadlines and all aperiodic tasks can attain minimal
response times. While Doh et al.’s algorithm is an off-line static
speed assignment algorithm under the EDF scheduling policy,
this paper proposes both on-line and off-line algorithms.

Recently, [15] introduced several on-line voltage-scheduling
algorithms for a mixed workload. They proposed algorithms
similar to the ones here.2 However, while they handled only
TBS under the EDF scheduling policy, this paper proposed
algorithms for DS, SS, and CBS under both RM and EDF
scheduling policies. In addition, the algorithms here guarantee
the constraint on response time.

III. PROBLEM FORMULATION

A. Target System Model

Recently, many variable-voltage processors have been an-
nounced. Table I shows the representative commercial variable-
voltage processors. Most variable-voltage processors provide
software mechanisms for users to be able to control the voltage
and clock level. It was assumed that the voltage and clock levels
of the target processor can also be controlled at the operating
system level. In this paper, the execution time of a task is
assumed to be proportional to the processor speed, ignoring
the external memory access time on a cache miss. Since the
clock speed of an external memory is not changed by DVS, the
memory access time is fixed irrespective of the processor speed.
Although it is assumed that there is no cache miss for a simple
modeling in this paper, the parametric timing models such as
[16] can be used for real systems.

The target processor here is different from existing commer-
cial variable-voltage processors in several aspects. However,
the proposed techniques can be extended to support more

1Yuan and Nahrstedt [13] say that their target system is a mix of soft real-
time (SRT) multimedia and best-effort applications. However, their definition
for SRT tasks is same to sporadic tasks.

2Their work and the work here are done independently at the same time.
Especially, the mutual reclaiming (MRS) scheme in [15] is same to the
workload-based slack estimation (WSE) scheme here.

TABLE II
POWER BREAKDOWN OF THE ITSY COMPUTER [23]

complex processors. For example, as shown in Table I, real
variable-voltage processors have voltage transition overheads.
In addition, these processors provide finite numbers of voltage
and clock levels within the voltage/clock range specified. The
voltage transition overhead has been generally ignored in task-
level voltage scheduling because the overhead time can be in-
cluded into the WCET of a task [7]. The voltage transitions take
place at only task boundaries in the OS-level DVS. Although
there are additional voltage transitions when a low-priority task
is preempted by and resumed from a high-priority task that has
a different voltage level, the voltage transition overhead can
be included into the WCET of the high-priority task. Thus, a
DVS algorithm can be used without modifications even for real
variable-voltage processors. So, this paper does not consider
the voltage transition time. In addition, it was assumed that
the variable-voltage processor provides any clock speed and
voltage between the minimum and maximum values ( fmin and
fmax) for a simple modeling. For real variable-voltage proces-
sors that provide finite numbers of voltage and clock levels, the
authors can use the dithering or the greedy approach to trans-
form a clock speed generated by the proposed DVS algorithms
into available speed levels provided by the real processor [17].

In some cases, DVS may increase the energy consumption
over a non-DVS version. DVS can increase the number of task
preemptions up to 500% over non-DVS executions mainly due
to the increased task execution times [22]. The preemption
overhead may increase the energy consumption in memory
subsystems and the lengthened task lifetime may increase
the energy consumption in system devices. However, there
exist techniques that take the task preemption into account
when adjusting a supply voltage using the delayed preemption
technique [22]. The proposed approach can be extended using
these techniques to reduce the preemption overhead.

The energy consumption of system devices such as memory
and LCD was also not considered. Generally, they have a
fixed supply voltage. So, the device energy consumption is not
related with a DVS algorithm. However, as shown in Table II,
for most benchmark programs, the power consumption of a
processor core occupies the largest portion of the total power
consumption [23]. Moreover, device power consumption can
be reduced by power management techniques that change the
power state of an idle device into a low-power state [24]. So, it
is important to reduce the energy consumption of the processor
core, thus only the processor core was taken into account.
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Fig. 1. Response time of aperiodic task.

B. Dynamic Speed Assignment Problem

It was assumed that a mixed task set T consists of n periodic
tasks τ1, . . . , τn and an aperiodic task σ. The aperiodic task σ
is serviced by a scheduling server S. The scheduling server
S is characterized by an ordered pair (Qs, Ts). During the
execution of aperiodic tasks, the budget of S is consumed.
qs is used to denote the remaining budget of S. The budget
qs is set to Qs at each replenishment time. S is scheduled
together with periodic tasks in the system according to the given
priority-driven algorithm. Once S is activated, it executes any
pending aperiodic requests in FIFO queue within the limit of
its remaining budget qs. The authors denote the release (arrival)
time, the start time, and the completion time of σ as r(σ), η(σ),
and e(σ), respectively.

A periodic task τi is specified by (Cτi
, Tτi

), where Cτi
and

Tτi
are the worst-case execution cycles (WCEC) and the period

of τi, respectively. It was assumed that periodic tasks have
relative deadlines equal to their periods. The jth instance of
τi and the kth instance of σ are denoted by τi, j and σk, re-
spectively. The authors assume that the aperiodic task instances
σ1, . . . , σm are executed during the hyper period H of periodic
tasks. The operating speed of a periodic task τi (an aperiodic
task σk) is s(τi)(s(σk)). s(τi)(s(σk)) can be any value between
fmin and fmax. It was assumed that fmax = 1 and fmin > 0.

If an aperiodic task instance σk can be serviced with-
out any interference by periodic tasks or another aperiodic
task instance, the response time of the aperiodic task σk is
c(σk)/s(σk), where c(σk) and s(σk) are the number of execu-
tion cycles and the clock speed of σk, respectively. However,
the execution of the aperiodic task σk is delayed due to the
following factors.

1) Budget delay: σk should wait until the next replenishment
time if qs of the scheduling server S is 0. The authors
define the budget delay formally as the sum of time
intervals between r(σk) and e(σk) of an aperiodic task
σk where qs = 0.

2) Queuing delay: σk should wait until the completion time
of the aperiodic task instances released before σk. The
authors define the queuing delay formally as the sum of
time intervals between r(σk) and η(σk) of an aperiodic
task σk where qs > 0.

3) Preemption delay: σk should wait until the completion
time of the periodic tasks that have higher priorities than

the priority of S. The authors define the preemption delay
formally as the sum of time intervals between η(σk) and
e(σk) of an aperiodic task σk where qs > 0 and σk is not
executed.

The authors denote the budget delay, the queuing delay, and
the preemption delay as b(σk), w(σk), and p(σk), respec-
tively. Then, the response time of σk can be represented as
c(σk)/s(σk) + b(σk) + w(σk) + p(σk). Fig. 1 illustrates these
three kinds of delays. When an aperiodic task σk, whose
execution cycles are seven time units, arrived at the time r(σk),
it waits until the task σk−1 is completed (e(σk−1)). When
σk consumes all the budget, it also waits until the budget
replenishment time R1. At the time η(τ), σk is preempted
by the periodic task τ until e(τ). The response time of σk is
c(σk) + b(σk) + w(σk) + p(σk) = 7 + 10 + 2 + 2 = 21.

If the response time of σk is t in the non-DVS scheme,
the response time will be increased to t + D(σk) by the DVS
algorithm because s(σk), b(σk), w(σk), and p(σk) are changed.
The increase D(σk) in the response time is called the response
time delay. The authors are to bound D(σk) by the maximum
response time delay δ.

Therefore, the objective is to minimize the total energy
consumption of both periodic and aperiodic tasks using a DVS
algorithm while satisfying the timing constraints of periodic
tasks and bounding the response time delay. Consequently, the
problem of dynamic speed assignment problem for mixed task
systems (DSAMTS) can be formulated as

Dynamic Speed Assignment Problem

Given T = {τ1, . . . , τn, σ}, S and δ,

find s(τ1,1), . . . , s
(
τn, H

Tτn

)
and s(σ1), . . . , s(σm) such that

E =
n∑

i=1

H/Tτi∑
j=1

E(τi,j) +
m∑

k=1

E(σk) is minimized

subject to ∀i, j, e(τi,j) ≤ jTτi
and ∀k,D(σk) ≤ δ

where s(τi, j), E(τi, j), and e(τi, j) are the clock speed, the en-
ergy consumption, and the completion time of the task instance
τi, j , respectively. E(σk) denotes the energy consumption of the
aperiodic task instance σk.

This paper proposes DVS algorithms that provide solutions
for the DSAMTS problem where δ can be represented with the
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Fig. 2. Stretching-to-NTA DVS algorithm. (a) Before stretching. (b) After
stretching.

Fig. 3. Priority-based slack-stealing DVS algorithm. (a) Before stretching.
(b) After stretching.

parameters of the scheduling server such as Ts and Qs in order
that a system designer can control the value of δ.

Existing on-line DVS algorithms such as [7]–[10] are not
directly applicable to the DSAMTS problem. As discussed in
[6], most existing heuristics are based on three techniques:
1) stretching-to-NTA; 2) priority-based slack stealing; and 3)
utilization updating. For example, consider the stretching-to-
NTA technique. The technique stretches the execution time of
the periodic task ready for execution to the next arrival time
of a periodic task (NTA) when there is no other periodic task
in ready queue as shown in Fig. 2 [7]. To use the stretching-
to-NTA technique for a mixed task system, the DVS algorithm
should know the next arrival time of an aperiodic task as well
as a periodic task. Although the arrival times of periodic tasks
can be easily computed using their periods, the arrival times of
aperiodic tasks cannot be known since they arrive at arbitrary
times. If the arrival of aperiodic tasks is ignored, there will be a
deadline miss of periodic hard real-time task when an aperiodic
task arrives before the next arrival time of a periodic task.
Consequently, the stretching-to-NTA technique should assign
the full speed to all tasks in the mixed task system.

The priority-based slack-stealing method exploits the basic
properties of priority-driven scheduling such as RM and EDF
scheduling policies. The basic idea is that when a higher-
priority task completes its execution earlier than its WCET,
the following lower-priority tasks can use the slack time from
the completed higher-priority task [8]. It is also possible for a
higher-priority task to utilize the slack times from completed
lower-priority tasks [10]. However, the latter type of slack
stealing is computationally expensive to implement precisely.
Fig. 3 shows an example of a priority-based slack-stealing
method. When the higher-priority task τ1 completes before its
WCET, the lower-priority task τ2 uses the slack time and starts
with a lower clock speed.

The utilization-updating technique estimates the required
processor performance at the current scheduling point by re-
calculating the expected worst-case processor utilization using
the actual execution times of completed task instances [9].

Fig. 4. Utilization-updating DVS algorithm. (a) Before the execution of T1.
(b) After the completion of T1. (c) After the completion of T2.

When the processor utilization is updated, the clock speed can
be adjusted accordingly. Fig. 4 shows a utilization-updating
technique. Before the execution of τ1, the DVS scheduler
should assign the clock speed based on the worst case processor
utilization, 1.0. But after the completion of τ1, the DVS sched-
uler can know that the processor utilization is reduced to 0.7 by
the early completion of τ1. So, the clock speed was reduced to
70 MHz. After the completion of τ2, the clock speed can also be
reduced to 50 MHz because the processor utilization is changed
to 0.5. The main merit of this method is its simple implemen-
tation, since only the processor utilization of completed task
instances has to be updated at each scheduling point.

To use the priority-based slack-stealing method or the
utilization-updating method, the DVS scheduler should be able
to identify a slack time due to aperiodic tasks as well as periodic
tasks. The slack time of a periodic task can be easily defined
as the difference between the WCET and the real execution
time of the task. However, for aperiodic tasks, the slack time
cannot be identified from the early completion of an aperiodic
task because the scheduling server can service aperiodic tasks
if the remaining budget is larger than 0. Therefore, the DVS
algorithm should be concerned about the scheduling server
rather than aperiodic tasks because the utilization of scheduling
server is related with the schedulability condition. Therefore,
on-line DVS algorithms need to be modified to utilize the
characteristics of scheduling servers.

IV. DYNAMIC SCHEDULING FOR MIXED TASK SETS

A. Scheduling Algorithms in Fixed-Priority Systems

1) DS and SS: For fixed-priority systems, the RM schedul-
ing policy is targeted in this paper. Fig. 5(a) shows the task
schedule using an SS. There are two periodic tasks τ1 = (1, 5)
and τ2 = (2, 8) and one SS = (1, 4). The RM scheduler sched-
ules each periodic task and the SS. The utilization of the SS is
0.25 (= Qs/Ts = 1/4). The budget of SS qs is set to Qs at time
0. The budget is changed by the following rules.

1) Consumption rule: When SS executes an aperiodic task
σk, the execution budget of the server is consumed at a
rate of s(σk) per unit time.

2) Replenishment rule: If SS consumes θ amount of budget
during the time [t1, t2], the execution budget of the
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Fig. 5. Task schedules with an SS: (a) SS without DVS, (b) SS/lppsRM-S, and (c) SS/lppsRM-B.

server qs is replenished by the amount of θ at the time
t1 + Ts.

SS preserves its budget qs if no requests are pending when
released. An aperiodic request can be serviced at any time
(at server’s priority) as long as the budget of SS is not exhausted
(e.g., task σ1). If the budget is exhausted, aperiodic tasks should
wait until the next replenishment time. For example, although
the task σ4 arrived at the time of 19, it is serviced at the
time of 20.

DS uses the same consumption rule to SS, but has a following
replenishment rule: The execution budget of the server is set to
Qs at time instants kTs, for k = 0, 1, 2, . . ..

2) Stretching-To-NRT3 (SNRT) Scheme: A modified
stretching-to-NTA algorithm SNRT for DS and SS is first

3NRT means next replenishment time.

proposed. Since the arrival times of aperiodic tasks cannot
be known, the stretching-to-NTA method should be modified
such that the execution behavior of DS and SS is utilized.
So, the following two stretching rules for DS and SS are
proposed.

1) Stretching rule for aperiodic task: If there is no peri-
odic task in the ready queue, execute an aperiodic task
at the speed of max(1, qs/(min(NTA, R) − t)), where
NTA, R, and t are the next arrival time of a periodic
task, the next replenishment time of the scheduling server,
and the current time (the start time of aperiodic task),
respectively.

2) Stretching rule for periodic task: If there is only one
periodic task in the ready queue and qs is 0, stretch the
periodic task to min(NTA, R). This is because the arriv-
ing aperiodic task is delayed until the next replenishment
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time if qs is 0. If qs > 0, the speed of the periodic task
cannot be scaled down even although there is only one
periodic task in the ready queue.

Using these two rules, the authors modified existing on-line
DVS algorithms. Fig. 5(b) shows the task schedule using the
SS/lppsRM-S algorithm, which is the modified version of
lppsRM [7] for SS. lppsRM uses the stretching-to-NTA
method. The aperiodic tasks σ1 and σ2 are stretched to the
next arrival times of periodic tasks (5 and 15), respectively,
because there is no periodic task in the ready queue. The
periodic tasks τ1,5, τ2,3, and the latter part of τ2,4 are stretched
to min(NTA, R) because qs is 0. The tasks τ1,2 and τ1,3

cannot be stretched because qs is larger than 0. Under the
task stretching rules, it can be guaranteed that the maximum
increase of the average response time is Ts −Qs. This paper
provides the proof. Although DS has a different replenishment
rule with SS, both DS and SS can use the same DVS algorithm.

Definition 1: The replenishment time R(σk) is the last
replenishment time of a scheduling server among the replen-
ishment times, which is earlier than the completion time of
σk, e(σk).

Definition 2: The execution cycles C(σk) are the execution
cycles of σk that are executed after the last replenishment time
R(σk).

Lemma 1: The last replenishment times of σk, R(σk), are
the same in both DS/lppsRM-S (or SS/lppsRM-S) and DS
(or SS).

Proof: The last replenishment time R(σk) is determined
by the replenishment rule, the server budget Qs, the server
period Ts, the release times of aperiodic tasks, and the ex-
ecution cycles of aperiodic tasks. However, none of them is
changed by DS/lppsRM-S (or SS/lppsRM-S). So, it can be
concluded that the last replenishment times are the same in both
algorithms. �

Lemma 2: The numbers of C(σk) are the same in both
DS/lppsRM-S (or SS/lppsRM-S) and DS (or SS).

Proof: Since the stretching rules of DS/lppsRM-S (or
SS/lppsRM-S) do not stretch tasks over the replenishment time,
the number of execution cycles of a task executed between two
replenishment times is not changed by the DVS algorithms. By
Lemma 1, the last replenishment time is unchanged. Therefore,
this lemma is true. �

Theorem 1: By the DS/lppsRM-S and SS/lppsRM-S algo-
rithms, D(σk) ≤ Ts −Qs for all σk.

Proof: The authors prove that the completion time of σk

in DS/lppsRM-S (or SS/lppsRM-S), e′(σk), is smaller than
e(σk) + Ts −Qs when σk is completed at e(σk) in DS (or SS).
The authors prove the theorem for two cases.

Case 1 η(σk) ≤ R(σk): In this case, there is no queuing
delay after R(σk) because σk has already started. The budget
delay after R(σk) is also 0 by the definition of R(σk). Since
qs > 0 between R(σk) and e(σk) (or e′(σk)), all periodic tasks
are executed at full speed by the stretching rule for periodic
tasks. So, the preemption delay after R(σk), P(σk), in DS (or
SS) is same to the preemption delay P

′(σk) in DS/lppsRM-S
(or SS/lppsRM-S) by Lemma 2. The remaining execution
cycles of σk, C(σk), are also the same in both algorithms by
Lemma 2. C(σk) is not larger than the budget of the scheduling

server by the definition of R(σk), i.e., C(σk) ≤ Qs. When σk

is resumed at t (t ≥ R(σk)) and R is the next replenishment
time after the completion of σk, it can be said that the time
interval [t,min(R,NTA)] is smaller than or equal to Ts be-
cause R− R(σk) ≤ Ts. Therefore, the authors can show that
e′(σk) − e(σk) ≤ Ts −Qs as

e(σk) = R(σk) + C(σk) + P(σk)

e′(σk) = R(σk) + C(σk)

× (min(R,NTA) − t)
Qs

+ P
′(σk)

e′(σk) − e(σk) = C(σk)
(min(R,NTA) − t)

Qs
− C(σk)

=
C(σk)
Qs

((min(R,NTA) − t) −Qs)

≤ ((min(R,NTA) − t) −Qs)

≤ (Ts −Qs).

Case 2 η(σk) > R(σk): In this case, the authors can treat
all aperiodic tasks σk−j , . . . , σk−1, σk that are completed after
R(σk) as one aperiodic task σk−j,...,k that has the execution
cycles of c(σk−j,...,k) =

∑k
i=k−j c(σi). Then, the proof is equal

to that in Case 1. �
Consequently, it can be concluded that D(σk) ≤ Ts −Qs

for all σk scheduled by the DS/lppsRM-S and SS/lppsRM-S
algorithm.

3) Bandwidth-Based Slack-Stealing (BSS) Scheme: Al-
though the energy consumption can be reduced by the SNRT
algorithm, the algorithm can show poor energy performance
when the workload of aperiodic tasks is small. In this case,
since the budget qs is larger than 0 at most scheduling points,
the DVS algorithm cannot use the stretching rule for a periodic
task. Extremely, when there is no aperiodic request, there
is nothing to do for the DVS algorithm. Therefore, a more
advanced DVS algorithm that can be applicable to the mixed
task system with a low aperiodic workload is needed. For this
purpose, the authors propose a new slack estimation method,
bandwidth-based slack stealing, which identifies the maximum
slack time for a periodic task considering the bandwidth of a
scheduling server. Fig. 5(c) shows the SS/lppsRM-B algorithm,
which is based on SS/lppsRM-S but uses the bandwidth-based
slack-stealing method additionally. When qs is larger than 0
and there is only one periodic task in the ready queue, the
slack estimation method calculates the maximum available time
before the arrival time of next periodic task.

Fig. 6 shows the bandwidth-based slack-stealing method.
Assume that a periodic task τ is released at the time t and
the remaining budget of the scheduling server is qs. Tτ is
the period of τ , NTA is the next periodic task arrival time,
and R is the next replenishment time of a scheduling server.
Two different cases should be considered depending on the
priority of the scheduling server. Fig. 6(a) shows the case when
Tτ > Ts. In this case, the maximum blocking time by aperi-
odic tasks before the next task arrival time (NTA) should be
identified. Before R, the scheduling server can use qs at most.
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Fig. 6. Bandwidth-based slack stealing in SS/lppsRM-B. (a) TT > Ts. (b) TT < Ts.

And, from R to NTA, the server can occupy 
(NTA −R)/
Ts�Qs + min(NTA −R− 
(NTA −R)/Ts�Ts, Qs) at max-
imum (dotted squares).

Fig. 6(b) shows the case when Tτ < Ts. In this case, the task
τ is stretched to min(R,NTA) − qs. Although there is no dead-
line miss even when the periodic task τ is completed after R,
the proposed DVS algorithm is designed to limit the response
time delay. Under this policy, the preemption delay increases,
but the DVS algorithm can guarantee that D(σk) ≤ Ts −Qs

for all σk because σk is not delayed above the replenishment
time R.

From Fig. 6, the maximum available time MAT of a task τ
can be calculated as

if (Tτ > Ts) MAT

= NTA − t− qs −
⌊

NTA −R

Ts

⌋
Qs

− min
(

NTA −R−
⌊

NTA −R

Ts

⌋
Ts, Qs

)

if (Tτ < Ts) MAT

= min(R,NTA) − t− qs.

In Fig. 5(c), the periodic tasks τ1,2, τ1,3, and τ2,1 are
stretched by the bandwidth-based slack-stealing method.
For example, at the time 5, the task τ1,2 has the available
time 2 (= NTA − t− qs = 8 − 5 − 1). A side effect of the
bandwidth-based slack-stealing method is that aperiodic tasks
tend to be executed at full speed. Due to the side effect, the DVS
algorithm using the bandwidth-based slack-stealing method
generates better average response times.

4) Periodic Only Slack Distribution (POSD) Scheme: In the
previous two schemes, both periodic and aperiodic tasks use
the identified slack times. However, if all the slack times are
given to only periodic tasks, a better response time can be
obtained. In this case, aperiodic tasks are always executed at
full speed (or the initial clock speed assigned by the off-line
algorithm). The authors call such a slack distribution technique
as a POSD scheme. A POSD scheme shows better response
time than SNRT and BSS schemes with a slight degradation on
energy performance. The POSD scheme can be applied to both
fixed-priority and dynamic-priority systems.

B. Scheduling Algorithms in Dynamic-Priority Systems

1) CBS: For dynamic-priority systems, the EDF scheduling
policy was assumed. The authors propose the slack estimation
algorithm for CBS. Fig. 7(a) shows the task schedule using
CBS, assuming two periodic tasks τ1 = (2, 8) and τ2 = (3, 12)
and one CBS = (2, 4). The maximum utilization of CBS (Us)
is 0.5(= 2/4). If Up + Us ≤ 1, where Up is the maximum
utilization of periodic tasks, the task set is schedulable.

For the description of CBS, the following terms were
defined.

1) A CBS is said to be active at time t if there are pending
aperiodic tasks; that is, if there exists a served task σi

such that r(σi) ≤ t < e(σi), where r(σi) and e(σi) are
the arrival time and the completion time of the task σi.
When a task σi arrives and the server is active, the request
is enqueued in a queue of pending tasks according to a
given (arbitrary) nonpreemptive discipline (e.g., FIFO).

2) A CBS is said to be idle at time t if it is not active.
3) At each instant, a server deadline dk is associated with

CBS. The server deadline is updated by the following
deadline assignment rules. Each served aperiodic task σi

is assigned a dynamic deadline equal to the current server
deadline dk. At the beginning, d0 = 0.

When an aperiodic task finishes, the next pending task, if
any, is served using the current budget and deadline. If there
are no pending tasks, the server becomes idle. At any instant,
an aperiodic task is assigned the last server deadline generated
by the server.

CBS uses following special rules to sustain its utilization
below Us.

1) Budget replenishment and deadline assignment rule 1:
When qs = 0, the server budget is replenished to the
maximum value Qs and a new server deadline is gen-
erated as dk+1 = dk + Ts.

2) Budget replenishment and deadline assignment rule 2:
When an aperiodic task σi arrives at r(σi) and the server
is idle (when CBS does not service aperiodic tasks),
if qs ≥ (dk − r(σi))Us the server generates a new dead-
line dk+1 = r(σi) + Ts and qs is replenished to the max-
imum value Qs, otherwise the task is served with the
last server deadline dk using the current budget.
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Fig. 7. Task schedules with a CBS: (a) CBS without DVS and (b) CBS/DRA-W.

For example, in Fig. 7(a), when an aperiodic task σ1 arrives
at time 3, CBS sets its deadline d1 to 7 (= r(σ1) + Ts = 3 + 4)
and σ1 uses the deadline. When an aperiodic task σ2 arrives at
time 6, CBS sets σ2’s deadline to 10 (= r(σ2) + Ts = 6 + 4)
and qs is replenished to 2 because qs = 1 is greater than
(d1 − r(σ2)) Us = (7 − 6) 0.5 = 0.5. When a task σ3 arrives
at 14, CBS sets σ3’s deadline to 18 and σ3 preempts the
task τ2,2. When an aperiodic task σ4 arrives at 15, CBS sets
σ4’s deadline to 18 (= d4) because qs = 1 is smaller than
(d4 − r(σ4)) Us = (18 − 15) 0.5 = 1.5. When qs = 0 at time
16, CBS changes σ4’s deadline to a new deadline d5 = d4 +
Ts = 22 and qs is replenished to 2. In this manner, CBS
maintains its bandwidth under Us.

2) Workload-Based Slack Estimation (WSE) Scheme: For
CBS, the stretching rule for periodic tasks used for DS and SS
cannot be employed because there are no finite intervals of time
in which the budget is equal to zero. To use the priority-based
slack-stealing [6] method for CBS, the slack times of the CBS
should be identified. The slack time can be estimated using the
WSE method. When the workload of CBS is lower than Us, the
slack times can be identified.

Fig. 8 shows the WSE algorithm for CBS. The algorithm uses
four variables: aperiodic_run, Cslack, Cidle, and Cactive. The
aperiodic_run is a flag variable to know whether an aperiodic
task is being executed. Cactive contains the number of execution
cycles of the completed aperiodic tasks. When an aperiodic task
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Fig. 8. WSE in CBS.

is completed, Cidle, which is the number of idle cycles required
to make the workload of CBS equal to Us, is calculated. When
an aperiodic task is not executed, Cidle is decreased. When
Cidle becomes 0, the workload of CBS is equal to Us. If the
idle interval of CBS continues, the workload of CBS becomes
smaller than Us and Cslack is increased. Cslack can be used for
periodic tasks to stretch the execution time.

Fig. 7(b) shows the task schedule using the CBS/DRA-W
algorithm, which is the modified version of DRA [8] for CBS
using the WSE scheme. In Fig. 7(b), the time intervals, where
Cslack > 0, are marked with arrow lines. For example, when a
task τ2,1 is scheduled at time 1, there is a slack time 1.5 (1 from
the early completion of τ1,1 and 0.5 from CBS during the time
interval [0,1]). Using the slack time, the task τ2,1 is scheduled
with the speed of 0.67 (= 3/(3 + 1.5)). When the task τ2,1 is
preempted at time 3, the slack time 1.0 from CBS is transferred
to the remaining part of τ2,1.

CBS/DRA-W generally increases the preemption delay of
an aperiodic task. However, the authors can guarantee that
D(σk) ≤ Ts −Qs for all σk.

Lemma 3: The deadline d′k assigned by the CBS/DRA-W
algorithm is identical to the deadline dk assigned by the CBS
algorithm.

Proof: There are two cases when a new deadline is as-
signed in CBS. First, when all the budget is consumed (qs = 0),
a new deadline dk+1 = dk + Ts is generated. Since Ts is same
in both CBS/DRA-W and CBS, dk+1 and d′k+1 are also same.
Second, when CBS is inactive and qs ≥ (dk − r(σi))Us, a new
deadline dk+1 = r(σi) + Ts is assigned if an aperiodic task σk

arrives at r(σk). The new deadline assignment occurs to sustain
the utilization of CBS below Us. Since the DRA algorithm
transfers only the unused slack times of higher-priority task to
low-priority task, there is no change of the utilization of CBS at
r(σi). Therefore, dk and d′k for all k are same. �

Lemma 4: The numbers of C(σk), which is the remain-
ing execution cycle after R(σk), are same in both CBS and
CBS/DRA-W.

Proof: CBS/DRA does not change the replenishment rule
of the scheduling server. The budget of CBS is only consumed
by aperiodic tasks. Therefore, the amount of executed aperiodic
tasks before R(σk) is not changed. �

Theorem 2: By the CBS/DRA-W algorithm, D(σk) ≤ Ts −
Qs for all σk.

Proof: When the completion times of σk in DRA and
CBS/DRA-W are denoted as e(σk) and e′(σk), respectively,

TABLE III
SUMMARY OF DVS ALGORITHMS FOR MIXED TASK SETS

the authors should show that e′(σk) − e(σk) ≤ Ts −Qs. The
theorem is proven for two cases.

Case 1: During the execution of σk, there is no replenish-
ment of the budget of CBS.

In this case, it can be known that the execution cycle of
σk, c(σk), is smaller than Qs. By Lemma 3, e′(σk) ≤
d′(σk) = d(σk). From the deadline assignment rule, d(σk) −
r(σk) ≤ Ts. Therefore, it can be shown that e′(σk) − e(σk) ≤
Ts −Qs as

e′(σk) − e(σk) ≤ d(σk) − e(σk)

≤ d(σk) − (r(σk) + c(σk))

= (d(σk) − r(σk)) − c(σk)

≤Ts − c(σk)

≤Ts −Qs.

Case 2: During the execution of σk, there are one or more
replenishments of the budget of CBS.

From Lemma 4, it can be known that C(σk) is same in both
DRA and CBS/DRA-W. Therefore, the remaining part of σk

can be treated as another aperiodic task that has the execution
cycles of C(σk). Then, Case 2 can be proven with the proof for
Case 1. �

3) POSD Scheme: The POSD scheme where aperiodic tasks
are always executed at full speed can be applied to both fixed-
priority and dynamic-priority systems. The POSD scheme
shows a better response time than the pure WSE scheme with a
slight degradation on energy performance in dynamic-priority
systems.

4) Summary for DVS Algorithms: Table III summarizes the
proposed DVS techniques for mixed task sets. The authors
proposed SNRT, BSS, and POSD schemes for the stretching-
to-NTA algorithm and proposed WSE and POSD for the
utilization-updating algorithm and the priority-based slack-
stealing algorithm.

Fig. 9 shows an evolution tree of DVS algorithms for CBS.
If the authors are to take the lppsEDF technique for CBS, three
kinds of DVS algorithms can be used. While CBS/lppsEDF-B
uses both SNRT and BSS techniques, CBS/lppsEDF-P uses all
of the SNRT, BSS, and POSD techniques.

V. STATIC SCHEDULING FOR MIXED TASK SETS

This section proposes a static scheduling algorithm that is
suitable for mixed task sets. Pillai and Shin [9] proposed static
voltage-scheduling algorithms for periodic tasks using RM
and EDF schedulability tests. Their static scheduling algorithm
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Fig. 9. Evolution tree of DVS algorithms for CBS.

finds a clock speed of periodic tasks for a hard real-time system.
The clock speed is set statically and is not changed unless the
task set is changed. For the mixed task set using a scheduling
server, Pillai’s static scheduling algorithms can also be used
with the utilization of the scheduling server. For example, in
EDF scheduling using CBS, if the worst-case utilization of
periodic tasks is 0.3 and the utilization of CBS is 0.4 at a
100-MHz clock speed, the static scheduling algorithm deter-
mines the clock speed as 70 MHz (= 100 MHz(0.3 + 0.4))
because the total utilization is 0.7.

However, the scheduling server for aperiodic tasks generally
occupies a large utilization compared with the real workload
of aperiodic tasks to provide a good responsiveness. If the real
utilization of aperiodic tasks is 0.2 rather than 0.4, it is better
to use a lower clock speed for periodic tasks and a higher clock
speed for aperiodic tasks than 70 MHz. This is because CBS has
many idle intervals. However, the DVS scheduler cannot use
the clock speed of 50 MHz (= 100 MHz(0.3 + 0.2)) because
it can produce deadline misses when the real utilization of an
aperiodic task is larger than 0.2.

Therefore, in static voltage scheduling, both the expected
workload and the schedulability condition should be consid-
ered. The static voltage-scheduling algorithm selects the static
operating speed s(τi) of a periodic task τi and the operating
speed ss of scheduling server for aperiodic tasks, respectively.
s(τi) and ss should allow a real-time scheduler to meet all
the deadlines for a given periodic task set minimizing the
total energy consumption. Consequently, the problem of static
scheduling can be formulated as

Static Speed Assignment Problem

Given τ1, . . . , τn, ω1, . . . , ωn, and ρ,
find s(τi), . . . , s(τn) and ss such that

E =
n∑
1
Ui × ωi × s(τi)2 + ρ× s2

s is minimized

subject to
n∑
1

Ui

s(τi)
+ Us

ss
≤ Ulub and 0 ≤ s(τi), ss ≤ 1

where Ui is the worst-case utilization of a periodic task τi

and Us is the utilization of a scheduling server. E is a metric
reflecting energy consumption.4 Ulub, which is the least upper

4Assuming the supply voltage and clock speed are proportional in DVS, the
energy consumption is represented to be proportional to the square of clock
speed.

bound of schedulable utilization, is 1 with EDF scheduling and
n(21/n − 1) for n tasks with RM scheduling,5 respectively. ωi

is the ratio between the average-case execution time and the
WCET of a periodic task τi. For example, when the WCET of
τi is 10 ms and the average execution time is 5 ms, ωi is 0.5.
ρ is the average workload of aperiodic tasks. The authors
assume that the interarrival times and service times of aperiodic
tasks follow the exponential distribution using the parameters
λ and µ, where 1/λ is the mean interarrival time and 1/µ is
the mean service time. Then, the average workload of ape-
riodic tasks can be represented by ρ = λ/µ. If there is no
interference between aperiodic tasks and periodic tasks, the
average response time of aperiodic tasks is given by (µ− λ)−1

from the M/M/1 queuing model. For example, when the mean
interarrival time is 5 ms and the mean service time is 2 ms, λ,
µ, and ρ are 0.2, 0.5, and 0.4, respectively.

Using the Lagrange transform, the optimal solution for s(τi)
and ss can be obtained as

s(τi) =
1

Ulub


 n∑

j=1

Uj
3

√
ωj

ωi
+ Us

3

√
ρ

Usωi




ss =
1

Ulub


 n∑

j=1

Uj
3

√
Usωj

ρ
+ Us


 . (1)

Under the assumption that the exact ωi and ρ values can
be known, the optimal static speeds for periodic and aperiodic
tasks can be obtained.

Doh et al.’s algorithm handled a different problem to that
proposed here [14]. It finds a schedule that minimizes the
average response time for a given energy budget. However,
the static schedule based on the energy budget can be useless
if the energy budget is changed during run time. Generally,
since the run time workload is smaller than the worst-case
workload, the energy budget decreases slowly than expected.
So, this paper takes the approach that minimizes the energy
consumption, limiting the response time delay. Moreover, Doh
et al.’s technique has a high complexity because it uses an
iterative search algorithm while that here requires only to solve
simple mathematics.

5When a deferrable server is used, the utilization bound is 0.6518 [1].
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TABLE IV
TASK SET DESCRIPTION

VI. EXPERIMENTAL RESULTS

A. Static Speed Assignment

The performances of the proposed DVS algorithms have
been evaluated for scheduling servers using simulations. For
static scheduling, the periodic task set T1 in Table IV is
used. The execution time of each periodic task instance was
randomly drawn from a Gaussian distribution in the range
of [BCET, WCET], where BCET is the best-case execu-
tion time.

The interarrival times and service times of aperiodic tasks
were generated from the exponential distribution using the
parameters λ and µ, where 1/λ is the mean interarrival time
and 1/µ is the mean service time (ρ = λ/µ).

Varying the server utilization Us and the workload of ape-
riodic tasks ρ under a fixed utilization Up of periodic tasks,
the authors observed the energy consumption of the total sys-
tem and the average response time of aperiodic tasks. The
authors present only the experimental results where Us is
controlled by changing the value of Ts with a fixed Qs value
and ρ is controlled by a varying λ with a fixed µ value.
ρ ranging from 0.05 to 0.25 (λ = 0.05 ∼ 0.25 and µ = 1.0)
was used.

Fig. 10 shows the experimental results of the static speed
assignment. The energy consumptions and response times are
normalized by the values of Pillai’s uniform speed assignment
method, which assigns the same speed to both periodic tasks
and aperiodic tasks, making the total utilization as Ulub. Aperi-
odic tasks are assumed to be serviced by the SS. It was assumed
that if the system is idle, it enters into the power-down mode
(PD). The power consumption in the PD mode is assumed
to be zero.

A fixed value of 0.05 was used for the workload of aperiodic
tasks (ρ) and the server utilization was varied from 0.1 to
0.35. For each Us, the authors experimented with two workload
ratios of periodic tasks (ω = 0.55 and ω = 0.9). The speed
assignment method reduced the energy consumption up to 12%
and 15% compared to the uniform speed assignment method
when ω is 0.55 and 0.9, respectively. Since aperiodic tasks get
higher speeds than the speeds for periodic tasks, the optimal
speed assignment reduces the average response time as well as
the energy consumption.

From the result, it can be seen that as Us and ω are large,
the energy consumption decreases. This is because the static
scheduling algorithm is advantageous when the workload of

aperiodic tasks (ρ) is small compared to the server utilization
(Us) and the workload of periodic tasks (ω).

B. Dynamic Speed Assignment

For the dynamic speed assignment algorithms, the periodic
task sets T1 and T2 in Table IV were used for the exper-
iments of fixed-priority systems and dynamic-priority sys-
tems, respectively. In the experiments, BCET is assumed to
be 10% of WCET. For all experiments, both periodic tasks
and aperiodic tasks were given an initial clock speed s0 =
(Up + Us)sm/Ulub, where sm is the maximum clock speed.
During run time, the speed is further reduced by on-line DVS
algorithms exploiting the slack times. In the experiments, the
voltage scaling overhead is assumed negligible both in the time
delay and power consumption.

Fig. 11(a) shows the energy consumptions of the
SS/lppsRM-S algorithm, the SS/lppsRM-B algorithm, and
the SS/lppsRM-P algorithm normalized by that of the PD
method.

As Us increases, the energy consumption increases because
the initial clock speed s0 increases and the response time de-
creases, converging on the average response time of M/M/1 be-
cause the number of interferences by periodic tasks is reduced.

The difference between the energy savings of SS/
lppsRM-S and SS/lppsRM-B increases as ρ decreases. This
is because there are more chances for SS to have the zero
budget when ρ is large. As Us increases, SS/lppsRM-B shows
a larger energy saving compared with SS/lppsRM-S because
SS/lppsRM-B performs well in the low aperiodic workload
(over Us). SS/lppsRM-S and SS/lppsRM-B reduced the energy
consumption on average by 38% and 48% over the PD method,
respectively. SS/lppsRM-B reduced the energy consumption on
average by 16% over SS/lppsRM-S.

As shown in Fig. 11(b), SS/lppsRM-S and SS/lppsRM-B
increase the response time on average by 10% and 8%
over the PD method, respectively. Due to the side effect
on aperiodic tasks explained at Section IV-A, SS/lppsRM-B
shows better average response times. SS/lppsRM-P shows al-
most the same response time to that of the PD method because
the execution speed of the aperiodic task is always s0 and the
preemption delay is not increased except in the case when Ts

is larger than the periods of periodic tasks. However, it shows
better energy performances than SS/lppsRM-S. Consequently,
it can be said that SS/lppsRM-B and SS/lppsRM-P show bet-
ter results in both the energy consumption and the response
time than SS/lppsRM-S by assigning the most slack times to
periodic tasks.

There are similar results for the ccRM [9] algorithm as
shown in Fig. 11(c) and (d). The experimental results of
DS showed similar results with that of SS. DS/lppsRM-B
reduced the energy consumption on average by 24% over
DS/lppsRM-S.

For CBS, the authors observed the performances of ccEDF
and DRA. Fig. 12(a) and (c) shows the energy consumptions
by CBS/ccEDF and CBS/DRA normalized by that of the PD
method. The average energy reductions by CBS/ccEDF-W and
CBS/ccEDF-P are 44% and 39%, respectively. Since most of
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Fig. 10. Experimental results using static optimal algorithm. (a) Energy consumption. (b) Response time.

Fig. 11. Experimental results using SS. (a) Energy consumption. (b) Response time. (c) Energy consumption. (d) Response time.

the slack times are generated by CBS and used by periodic tasks
in the DRA algorithm, CBS/DRA-W and CBS/DRA-P show
similar energy performances. The average energy reductions by
CBS/DRA-W and CBS/DRA-P are 35%.

Generally, the utilization-updating algorithm and the
priority-based slack-stealing algorithm used in ccEDF and
DRA find more slack times than the stretching-to-NTA
algorithm. So, CBS/ccEDF-W and CBS/DRA-W increase the
average response time significantly. CBS/DRA-W increased the

average response time on average by 50%. As Us decreases
(Ts increases),6 the response time increases because the max-
imum response time delay is Ts −Qs. However, the response
time delay of an aperiodic task is still smaller than Ts −Qs.
Fortunately, CBS/ccEDF-P and CBS/DRA-P increased the re-
sponse time on average by 37%. Since CBS/DRA-P is similar

6Note that the authors varied Ts to change Us.
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Fig. 12. Experimental results using CBS. (a) Energy consumption. (b) Response time. (c) Energy consumption. (d) Response time.

TABLE V
POWERPC 405LP SPEEDS, VOLTAGES, AND POWER RANGES

to CBS/DRA-W in energy performances despite of its good
response times, it can be known that it is better to give slack
times only to periodic tasks when the short response times
are required.

C. Practical Processor Model and Task Set

The performance of proposed DVS algorithms was also ex-
perimented using a real processor model and a practical task set.
Although it was assumed that any speed (and voltage) between
the minimum speed and the maximum speed can be used,
real variable-voltage processors provide only finite numbers of
speed levels. For example, Table V shows the speeds, voltages,
and power ranges of PowerPC 405LP [25]. So, for various
processor models, the proposed DVS algorithms are evaluated.
Fig. 13 shows the experimental results. The experiment used

four kinds of processor models, which provide 100, 50, 10, and
4 voltage levels, respectively. The processor with four levels of
voltage is the PowerPC 405LP.

As shown in Fig. 13, as the number of available voltage levels
decreases, the energy consumption increases but the response
time decreases. However, even in the PowerPC 405LP model,
the energy consumption is reduced by 23%.

The authors also experimented with a practical application.
For a mixed task set, a videophone application implemented
with a Java language was selected. The videophone application
has four periodic tasks for video/audio encoding/decoding as
shown in Table VI. Since it is implemented with Java, the GC is
invoked aperiodically when the available memory size is below
a given threshold. The mean interarrival time and the mean
execution time of GC are 600 and 3.732 ms, respectively. To
service the GC, the authors used a CBS whose period (Ts) and
budget (Qs) are 300 and 4 ms, respectively.

Table VII shows the experimental results. The authors ex-
perimented using CBS/DRA-W and CBS/DRA-P. Under the
processor model with 100 levels of voltages, the energy con-
sumption was reduced by 14% and the response time in-
creased by 35% to 57%. Under the PowerPC 405LP processor
model, the energy consumption was reduced by 7% and the
response time was increased by 18% to 40%. From these
results, it can be known that the proposed DVS algorithm
shows good results for practical application and the real pro-
cessor model.
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Fig. 13. Experimental results varying the voltage levels. (a) Energy consumption. (b) Response time.

TABLE VI
JAVA-BASED VIDEOPHONE APPLICATION MODEL

TABLE VII
NORMALIZED ENERGY CONSUMPTION AND AVERAGE RESPONSE TIME

OF VIDEOPHONE APPLICATION

VII. CONCLUSION

This paper proposed on-line dynamic voltage scaling (DVS)
algorithms for mixed task systems. Considering the trade-
off between the energy consumption and the response time,
the authors modified the existing on-line DVS algorithms
for periodic task sets to utilize the execution behaviors of
various bandwidth-preserving servers. It was proved that the
proposed algorithms guarantee that the response time delay is
no greater than Ts −Qs. By using a more aggressive slack
estimation method than the existing algorithms for the mixed
task sets, the proposed algorithms reduced the energy con-
sumption by 35% to 48% over the non-DVS scheme. The
authors also proposed a new slack distribution method that
provides better response times with slight energy overheads.
For the experiments using a practical application and a real

processor model, the proposed DVS algorithms showed a good
energy performance.

This work can be extended in several directions. Although
the proposed algorithms only guarantee that the maximum
response time delay is Ts −Qs, it will be more useful if the
authors can control the maximum response time delay with
an arbitrary δ value. Furthermore, it will be interesting to use
the DVS algorithm to utilize the temporal locality of aperiodic
requests. When aperiodic requests are sparse, the authors could
use a larger δ value for a more energy-efficient schedule.
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