
2818
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

PAPER

DAC: A Device-Aware Cache Management Algorithm for
Heterogeneous Mobile Storage Systems

Young-Jin KIM†, Member and Jihong KIM††a), Nonmember

SUMMARY In recent years, heterogeneous devices have been em-
ployed frequently in mobile storage systems because a combination of such
devices can supply a synergistically useful storage solution by taking ad-
vantage of each device. One important design constraint in heterogeneous
storage systems is to mitigate I/O performance degradation stemming from
the difference between access times of different devices. To this end, there
has not been much work to devise proper buffer cache management algo-
rithms. This paper presents a novel buffer cache management algorithm
which considers both I/O cost per device and workload patterns in mobile
computing systems with a heterogeneous storage pair of a hard disk and a
NAND flash memory. In order to minimize the total I/O cost under vary-
ing workload patterns, the proposed algorithm employs a dynamic cache
partitioning technique over different devices and manages each partition
according to request patterns and I/O types along with the temporal local-
ity. Trace-based simulations show that the proposed algorithm reduces the
total I/O cost and flash write count significantly over the existing buffer
cache algorithms on typical mobile traces.
key words: heterogeneous mobile storage, performance optimization,
device-aware cache management, dynamic cache partitioning, workload-
aware management

1. Introduction

Mobile and ubiquitous computing systems such as PDAs,
PMPs, and MP3 players have become extremely popular
among consumers. Under these computing environments,
it is required that a large volume of data should be stored
and processed fast and reliably because end-users want to
use high-performance and high I/O load applications such
as video on demand, games, and multimedia players. In
recent years, various non-volatile device technologies such
as FeRAM, PRAM, MRAM, and micro-electro mechan-
ical system (MEMS) besides NAND flash memory have
been developed in order to meet such demands with rea-
sonable trade-offs across performance, energy consumption,
and price, targeting hard disk drives, which are the most
widely-used secondary storage devices [1], [2]. Among
them, NAND flash memory is recognized to be most com-
mercially available and a competitive alternative to hard
disk drives as a secondary storage device [3]. The NAND
flash memory technology has been evolved into two types:

Manuscript received January 9, 2008.
Manuscript revised July 20, 2008.
†The author is now with the Department of Computer Science

and Engineering, Sun Moon University, Kalsan 100, Tangjeong,
Asan, 336–708, Korea.
††The author is with the School of Computer Science and Engi-

neering, Seoul National University, 599 Gwanangno, Gwanak-gu,
Seoul, 151–742, Korea.

a) E-mail: jihong@davinci.snu.ac.kr
DOI: 10.1093/ietisy/e91–d.12.2818

single-level cell (SLC) NAND and multi-level cell (MLC)
NAND [4].

1.1 Use of Heterogeneous Storage Devices

As is known well, hard disks have attractively low cost
per bit, but they are known as significant power consumers
and show poor performance for random I/O requests. The
in-coming storage devices including NAND flash memory
have relatively fast response times, very low power con-
sumptions, and strong shock resistance, but their costs per
bit are much higher than hard disks. For example, as shown
in Table 1, SLC NAND flash memory has at least about 6
times higher cost per GB than small form-factor disk drives
these days. However, SLC NAND flash memory shows at
least 42 times lower power consumption in the active mode
and 95 times faster write response time than hard disks.
Flash memory also should be erased before write and has a
limited write/erase cycles, though this is invisible in Table 1.
The fast response time of NAND flash memory and the low
cost per bit of hard disks can be attractive in implementing
mobile storage systems, but the high power consumption of
hard disks and high cost per bit of flash memory may be
problematic. Therefore, using such devices together is ex-
pected to supply a synergistically useful storage solution by
taking advantage of each device. This is the reason why var-
ious combinations of different storage devices have emerged
frequently in mobile storage systems.

There are many researches to combine heterogeneous
storage devices in academy as well as industry. A represen-
tative example is using a hard disk and a NAND flash mem-
ory (hereafter, a flash or a NAND flash mean a SLC NAND
flash unless described otherwise). Combinations of a hard
disk and a flash memory have been widely studied and they
can be categorized into two groups: one uses a flash memory
as a non-volatile cache [5]–[13] and the other uses a flash

Table 1 Characteristics of typical small form-factor hard disks and
NAND flash memories [4], [14], [20], [21].

Device
Hard disk NAND flash

2.5′′ 1.8′′ SLC MLC

Latency
(512B)

Read 19.1 (ms) 22.1 (ms) 25 (us) 60 (us)
Write 19.1 (ms) 22.1 (ms) 200 (us) 800 (us)
Erase N/A N/A 1.5 (ms) 1.5 (ms)

Power
(mW)

Active 2300 1400 33 > 33
Idle 950 400 0.13 > 0.13

Standby 250 200 N/A N/A
Cost per GB ($) 0.82 1.82 10.89 3.34

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

KIM and KIM: DEVICE-AWARE CACHE MANAGEMENT ALGORITHM
2819

memory as a secondary storage device [14], [15]. Both types
aim at the overall performance enhancement or energy sav-
ing. As an another example, combined uses of a hard disk
and MEMS were researched to achieve I/O performance im-
provement by using MEMS-based storage as a write buffer
or a secondary storage device [16], [17]. Most recently, hy-
brid flash memory solutions using MLC and SLC NAND
flash memory devices concurrently has appeared in order to
take advantage of high speed and long erase cycles of the
SLC NAND flash as well as large capacity and low produc-
tion cost of the MLC NAND flash [18], [19]. These plentiful
examples, we believe, reflect that the effectiveness and ben-
efit derived from heterogeneous storage solutions would be
significant if separate devices would be exploited together
harmoniously.

1.2 Design Constraints of Heterogeneous Storage Systems

As mentioned above, there are several design constraints to
be considered in combining heterogeneous storage devices
into an integrated mobile storage system. Energy consump-
tion, performance, and reliability may be counted as three
major constraints other than cost. In most mobile computing
systems, power consumptions of individual devices are im-
portant since they have significant effects on the lifetime of
the whole system. On the other hand, the overall I/O perfor-
mance fluctuates according to workloads and load distribu-
tion due to different access times of heterogeneous devices.
Therefore, performance is another critical constraint in im-
plementing heterogeneous storage devices. Finally, each de-
vice has different ruggedness and a mean time before failure
(MTBF). Operating only one device during a large amount
of the whole operation time is likely to give rise to low reli-
ability if the device would have weak ruggedness or a short
MTBF.

In mobile storage devices, finding an optimal solu-
tion under these three design constraints is an important
research problem. However, the overall design space be-
comes too big to be effectively addressed in this paper when
all these design requirements are simultaneously consid-
ered. In order to deal with this complex optimization is-
sue, in this paper, we concentrate on the performance opti-
mization in exploiting heterogeneous storage devices. In or-
der to take a step-by-step approach, we already researched
energy-efficient heterogeneous mobile storage management,
which analyzed mobile workloads and proposed file migra-
tion techniques based on them to spin down a hard disk for
high energy saving [14]. Exploring a larger design space for
optimal design parameters of both energy and performance
will be, we believe, a major future work item.

1.3 Performance Optimization Techniques for Heteroge-
neous Storage Systems

Let us assume that a heterogeneous storage system consists
of a device part and a host part: the former is composed of
heterogeneous devices and a device controller, which has a

device cache and a request queue, and controls these com-
ponents. The latter is composed of an operating system in-
cluding a task scheduler, a file system, a buffer cache algo-
rithm, and a device driver. There are abundant performance
optimization techniques for heterogeneous storage systems
similarly to homogeneous storage ones. As hardware-based
techniques, device cache management and/or request queue
scheduling techniques are available at the device controller
level. Software-based techniques consist of compiler-aware
and operating system aware approaches. Transforming
codes for device I/O scheduling belongs to the compiler-
aware approach. Task I/O scheduling in the task scheduler,
request queue scheduling in the device driver, device I/O
scheduling in the file system, and buffer caching algorithms
are classified into the operating system aware approach. In
this work, we bound our interest to a buffer caching algo-
rithm appropriate for heterogeneous storage systems.

2. Buffer Caching Algorithms for Heterogeneity

In a lot of literature, various buffer caching algorithms at
the level of operating systems in various storage systems
have enabled significant performance enhancement by fil-
tering I/O requests directed to devices over a widely-used
buffer caching algorithm, LRU [22]. However, few buffer
caching algorithms for heterogeneous storage systems have
been reported. Therefore, in order to meet newly-emerging
hybrid storage technology trends as aforementioned, it is
highly required to investigate and develop well-devised
buffer caching algorithms appropriate for the combinations
of heterogeneous storage devices. Towards this end, we
need to concretize what properties are required to cope with
heterogeneity in buffer caching algorithms. In this section,
we look into requirements in buffer cache algorithms for het-
erogeneity and digest such requirements by explicit descrip-
tions.

2.1 Buffer Caching Algorithms and Work Balance

In multi-device based storage systems regardless of their be-
ing homogeneous or heterogeneous, work balance is a cru-
cial problem. Work (or load) balance means that work is
evenly spread over the available storage devices and thus
each work done by each device becomes equal [23], [24].
Work balance depends on I/O request distribution over de-
vices. And the I/O request distribution depends on buffer
cache management directly. This is because a buffer cache
manages blocks based on its management policy and thus
has a filtering effect on which device the requested blocks
should be forwarded to and how many they should be.
Hence, different buffer cache management algorithms will
produce different I/O request distributions. In homogeneous
storage systems, uniform I/O accesses are likely to cause
work balance and good work balance will enable the overall
I/O performance to approach a minimum.

However, in heterogeneous storage systems, the situ-
ation is different. In heterogeneous storage systems, work

2820
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

balance is fragile due to a large gap between access times of
different devices. Therefore, buffer caching algorithms for
heterogeneous storage devices should make more elaborate
efforts in order to achieve work balance effectively in that
they should take into accounts different access times of dif-
ferent devices as well as workload patterns. That is, device
awareness in buffer cache algorithms should be provided in
heterogeneous storage systems. In detail, device-aware (or
cost-aware) buffer caching algorithms need to manage each
cache block by taking accounts of the access time of the
device, which the block would be serviced from if a cache
miss would occur, together with its temporal locality. How-
ever, existing buffer caching algorithms like LRU and LRU-
variants in traditional operating systems are not aware of dif-
ferent access times of heterogeneous devices and thus treat
all cache blocks as if they had the same miss penalties from
different devices. Therefore, using LRU-like algorithms will
make it more difficult to achieve work balance over hetero-
geneous storage systems.

There are a few prior device-aware buffer caching algo-
rithms seeking to achieve work balance over heterogeneous
devices. [23] and [25] investigated device-aware buffer
cache management algorithms using different costs on het-
erogeneous disks and a storage pair of a disk and a NAND
flash memory, respectively. Work balance, however, is not
achievable always in heterogeneous systems. For example,
highly skewed sequential I/O accesses over a slower device
(e.g., a hard disk) can derive workload imbalance despite
the buffering effect of a buffer cache (such phenomenon was
observed to occur often in heterogeneous storage systems,
especially with a large gap in access times between different
devices like a pair of a disk and a NAND flash memory).
This suggests that we should try to minimize the total I/O
cost rather than to accomplish work balance. Thus, the pro-
posed device-aware caching algorithm is designed to aim at
optimizing the overall I/O performance rather than achiev-
ing work balance.

2.2 Device Awareness in Buffer Caching Algorithms

Device awareness in the buffer cache management can be
supported in two ways. One is to deal with blocks with
heterogeneous access times within a single partition cache.
This approach assigns different values, which correspond to
different access times of heterogeneous devices, to all the
blocks within the buffer cache and evicts the block with
the least value among all the blocks when a cache miss
occurs. The GreedyDual algorithm [26], which has been
widely used in the Web cache communities, operates sim-
ilarly to this approach. GreedyDual combines locality and
miss penalty concerns to achieve a good overall perfor-
mance, but it cannot be used for a buffer cache without mod-
ifications because it usually deals with a file as a unit of
caching. Furthermore, GreedyDual itself was not designed
to be device-aware across different storage devices. Com-
pared with GreedyDual, our work targets the buffer cache
management on heterogeneous storage devices and deals

with a block as a unit of caching.
The other approach is to partition a buffer cache into

separate partitions (one per device) and managing them ac-
cording to the assigned value to each block. This approach
should take into accounts appropriately the determination
of partitioning sizes as well as the management of cache
blocks within each partition. There are two partitioning ap-
proaches: static partitioning and dynamic partitioning. The
static partitioning approach is simple but cannot adapt work-
load variations, compared with the dynamic partitioning ap-
proach. Our work belongs to the dynamic partitioning ap-
proach, taking accounts of heterogeneity in access times of
different devices and varying workload patterns.

Our partitioning technique is not the first dynamic
cache partitioning approach. [23] and [25] employed dy-
namic cache adjusting techniques, but they just tried to mit-
igate work imbalance. In comparison with these works, our
contributions are described as follows.

1) Aiming at optimizing the total I/O cost rather than
balancing work over devices, we propose a novel buffer
cache management algorithm for heterogeneous systems
based on a dynamic cache partitioning technique. This tech-
nique divides the buffer cache into partitions of the corre-
sponding devices, depending on different miss penalties and
varying workload patterns.

2) For the management of blocks within each parti-
tion, we introduce a cache management algorithm which
combines the temporal locality, sequentiality, and I/O types.
This technique augments the GreedyDual algorithm, but is
re-designed to utilize the individual characteristic of each
device (e.g., sequential and read blocks may be favorable
for a disk and a flash memory in terms of performance and
wear-leveling) and operate in harmony with the dynamic
cache partitioning technique.

3) Through extensive trace-driven simulations, we
show the effectiveness of the proposed buffer caching algo-
rithm for a heterogeneous storage pair of a hard disk and a
NAND flash memory. However, the proposed technique can
be extended to other heterogeneous storage systems. For in-
stance, our approach can be applied to a pair of MLC and
SLC NAND flash memories. This is because an MLC flash
consumes more power and longer access time than an SLC
flash as a hard disk does than an SLC flash. In this paper,
we mainly focus on a heterogeneous storage pair of a hard
disk and a NAND flash memory due to the space limit of the
paper.

The rest of the paper is organized as follows. We
present a motivational example in Sect. 3. The proposed
device-aware cache management algorithm is described in
Sect. 4. The experimental results are discussed in Sect. 5.
Section 6 explains related work and Sect. 7 concludes with
a summary.

3. Motivational Example

As mentioned in the previous section, if a storage system
consists of heterogeneous storage devices, a buffer cache

KIM and KIM: DEVICE-AWARE CACHE MANAGEMENT ALGORITHM
2821

Fig. 1 Total I/O cost in a heterogeneous storage system with a 30 MB
cache for a real mobile workload from [25]. As the cache partition size
for a disk grows, the total I/O cost decreases largely but has the smallest
at a cache partition configuration of 27 MB for a disk and 3 MB for a flash
memory, outperforming LRU with a single cache partition by about 63%.

management algorithm needs to be device-aware. In this
section, we emphasize this motivation using a small set of
experimental results. In particular, we demonstrate two ob-
servations. First, we show that a simple static cache par-
titioning technique can outperform a single partition cache
algorithm. Second, we compare the I/O performances of
the static partitioning techniques for different workloads,
and illustrate why dynamic cache partitioning, which is the
main idea of the proposed algorithm, is required for different
workload patterns.

For a heterogeneous mobile storage pairs with a 1.8′′
disk and a NAND flash memory, we have evaluated static
cache partitioning policies using a cache simulator com-
bined with a multi-device I/O simulator (refer to Sect. 5. In
Table 1, the major parameters for the used devices are shown
and we set an access time ratio to 35 for the above storage
pair for the measurement of the total I/O cost (refer to Sect. 4
for more details) over devices. In experiments, we used both
real and synthetic mobile traces for experiments: the PDA
trace and trace1 [14]. In the first experiment, we exploited
the PDA trace whose working set size is 44 MB while the
size of a buffer cache is set as 30 MB. In the second ex-
periment, we used the trace1, whose working set is 23 MB
with the buffer cache size fixed at 10 MB. We assume that
files are distributed uniformly over different devices of the
heterogeneous storage pair.

3.1 Effects of Static Cache Partitioning

Figure 1 shows the total I/O costs of several static cache
partitioning policies as well as LRU with a single cache par-
tition (Hereafter, LRU indicates the LRU algorithm with a
single cache partition unless described otherwise).

In Fig. 1, a different configuration of the cache partition
is indicated by a pair (ss, sf) of two values where ss is the
cache partition size for a slower device (i.e., a disk) and sf
is the cache partition size for a faster device (i.e., a NAND

Fig. 2 Comparisons of the optimal static cache partition sizes in terms of
the total I/O cost for three different synthetic mobile workloads in a storage
system with a disk and a NAND flash memory. We notice that different
workload patterns derive different best static cache partition configurations,
that is, static cache partitioning policies.

flash). For each cache partition, an LRU policy was used as
a cache replacement policy. We notice that as the cache par-
tition size for a disk grows the total I/O cost decreases but
has the smallest at a cache partition configuration when ss =
27 MB and sf = 3 MB. When ss is small, LRU outperforms
the corresponding static cache partitioning policy, but as it
grows (especially after ss goes beyond 18 MB) static parti-
tioning comes to surpass LRU in the aspect of the total I/O
cost.

The main reason for LRU’s poor performance is that
it is based on a single cache partition, so only the temporal
locality of each cache block is exploited, making it device-
oblivious. That is, LRU is not aware of and has no mech-
anism of controlling heterogeneity. On the other hand, the
static cache partitioning policy has two partitions for a disk
and a flash memory and can allocate more blocks to either
of the two devices with a selected cache partition configura-
tion although it uses a fixed partition configuration through-
out the entire workload. In other words, it is device-aware
and can improve the total I/O cost by 63% over LRU with
the best cache partition configuration.

The above example shows that using a properly par-
titioned cache configuration can achieve better I/O perfor-
mance if we select an appropriate cache partition configura-
tion for a given workload. We notice that device awareness
related with workloads has much impact on the performance
of a cache partitioning policy and thus should be considered
important.

3.2 Limits of Static Cache Partitioning

Figure 2 compares best static cache partitioning polices in
terms of the total I/O cost in a heterogeneous storage pair
of a disk and a flash memory using three different synthetic
mobile workloads, SEQ, TEMP, and COMPOUND. SEQ,
TEMP, and COMPOUND represent sequential access pat-
terns, access patterns with high temporal locality, and mixed

2822
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

access patterns, respectively. The best static cache partition-
ing policy means the one which exhibits the smallest total
I/O cost for the corresponding workload as the cache parti-
tion size varies by a step of 1 MB. In Fig. 2, we notice that
there can be a different best cache partitioning configuration
for each different workload.

This observation suggests that best static cache parti-
tion policies should be varied dynamically according to dif-
ferent workloads. However, I/O access patterns tend to vary
even in a given workload, thus making static partitioning
less efficient. Therefore, a polished technique rather than
just finding a best static cache partition configuration is nec-
essary. Our main goal in this work is, thus, to develop a
dynamic partitioning technique which works effectively re-
gardless of given workloads.

4. Device-Aware Cache Management Algorithm

4.1 Problem Formulation

We assume that a heterogeneous storage system with n dif-
ferent devices Di’s, i = 1, 2, . . . , n. A buffer cache B is di-

vided into n partitions Pi’s where B =
n⋃

i=1
Pi and Pi

⋂
P j = φ

for i � j. We denote Pi to be a partition corresponding to the
device Di. Di’s are initially arranged in a descending order
of the length of access time. s(Pi) and m(Pi)denote the size
and cache miss count of the partition Pi, respectively. Our
assumptions for problem formulation can be summarized as
follows.

• We assign a unique cache partition Pi to each device Di.
Therefore, we denote the cache partition configuration

as P = {P1, P2, . . . , Pn}. Here, B =
n⋃

i=1
Pi and Pi

⋂
P j

= φ for i � j.
• The total I/O cost c(Pi) with Pi for a given workload is

given by c(Pi) = Ri · m(Pi) where Ri is defined by Ri =

(access time of Di)/(access time of Dn), i = 1, 2, . . . , n.
Since Di’s are arranged in a descending order, Ri’s are
arranged such that R1 ≥ R2 ≥ . . .≥ Rn.

Then, a generic problem to solve is defined by
Find P that minimizes the sum of the I/O cost per Di

ctot(P) =
n∑

i=1

c(Pi) =
n∑

i=1

Ri · m(Pi)

subject to B =
n⋃

i=1

Pi and Pi

⋂
P j = φ for i � j.

Since we focus on a heterogeneous storage pair of a
disk and a flash memory in this paper, we limit the problem
to solve as follows.

Find P that minimizes the sum of the I/O costs

ctot(P) = R1 · m(P1) + R2 · m(P2)

subject to B=P1

⋃
P2 and P1

⋂
P2 = φ

, where D1 = a disk and D2 = a NAND flash memory.

As we described in Sect. 2, there are two partitioning solu-
tions for this problem: static and dynamic.

Fig. 3 Relation between the weighted cache miss counts and cache par-
tition sizes for typical mobile workloads. Since they have mixed I/O access
patterns of loop and random accesses, the cache miss counts are likely to
be a mix of convex and non-convex functions of the cache partition sizes.

4.1.1 Static Partitioning Solution

Since typical mobile workloads are observed to have mixed
I/O access patterns of loop and random accesses [25], the
cache miss counts of two devices (i.e., m(P1) and m(P2))
are likely to be a mix of convex and non-convex functions
of the cache partition sizes (i.e., s(P1) and s(P2)) from the
definition of convexity [27]. When only the convexity be-
tween individual cache miss counts and cache partition sizes
exists, we can achieve an optimal static cache partitioning
solution identical to the optimal solution (i.e., the cache par-
tition configuration which causes the optimal total I/O cost).

However, as shown in Fig. 3, since a weighted cache
miss count instead of a cache miss count should be used
for the total I/O cost across two devices, the overall non-
convexity is likely to appear due to more complicated as-
pects of convex and non-convex functions as the cache par-
tition sizes vary. Therefore, finding a cache partition config-
uration with the smallest total I/O cost is possible, but this
configuration may not be assured to be the optimal solution.

Furthermore, since the static cache partitioning solu-
tion uses a fixed cache partition configuration throughout
the whole workload, it ignores the necessity of controlling
cache partition sizes according to varying workload patterns
with time. Thus, the static cache partitioning solution loses
many chances of obtaining more optimal cache partition
configurations in terms of the total I/O cost.

4.1.2 Dynamic Partitioning Solution

To overcome shortcomings of the static partitioning solu-
tion, that is, in order to achieve the optimal total I/O cost
flexibly and adaptively for the varying access patterns in a
workload as well as for different workloads, we require a dy-
namic cache partitioning technique. However, it is very hard
to obtain the optimal cache partitioning solution during run
time. This is because variable access patterns of requests
across heterogeneous devices produce dynamically varying
functions of cache miss counts to partition sizes and thus
exploration of the optimal solution space during run time is
almost impossible.

KIM and KIM: DEVICE-AWARE CACHE MANAGEMENT ALGORITHM
2823

Fig. 4 Pseudo codes of the proposed dynamic partitioning heuristic.

To deal with finding a reasonable solution dynamically
in such a huge search space, several heuristic algorithms
have been researched. A well-known method is the sim-
ulated annealing algorithm [28]. This algorithm is a prob-
abilistic dynamic approach to find a close-global optimum
for a global optimization problem with a large search space.
The simulated annealing algorithm may be useful in finding
a close-optimal solution, but the process towards the optimal
solution depends on probability. Thus, if we would apply it
to our dynamic cache partitioning problem, we may obtain
a cache partition solution in proportion to the probability in
the worst case. Such randomness is not desirable because
the blocks stored in the cache partitions will have influence
on the total I/O cost as well as next partition control con-
tinually. In addition, the simulated anneal approach takes a
finer control of parameters near zero temperature, while we
cannot know how much the current total I/O cost is close to
the smallest value.

Therefore, under the inspiration of the simulated an-
nealing method, we take a simple but effective heuristic dy-
namic partitioning approach in order to achieve a close-to-
optimal total I/O cost rather than the optimal total I/O cost
during run time, which depends on the variation of m(P1)
and m(P2) including workload pattern information. Figure 4
shows pseudo codes of the proposed dynamic partitioning
heuristic. This approach tries to keep the descent of m(P1)
(or m(P2)) by adjusting s(P1)(or s(P2)) so that ctot(P) = R1

· m(P1) + R2 · m(P2) may be minimized. Here, s(P1) and
s(P2) are the required sizes of P1 and P2 for a close-to-
optimal I/O cost. Therefore, actual sizes of P1 and P2 are
controlled towards these values when a cache miss occurs
across the devices.

In our dynamic partitioning approach, we take two
granularities of controlling partition sizes: a coarse-grained
adjustment when the total I/O cost increases (i.e., Δctot ≥ 0)
and a fine-grained adjustment when it decreases (i.e., Δctot

< 0). In the first case our heuristic adjusts the cache partition

size based on the random cache miss counts and in the other
case it does based on both random cache miss counts and
variations of the whole cache miss counts from each cache
partition. Similarly to the simulated annealing algorithm,
the intuition of our algorithm is to 1) adjust the partition
size by a coarse control on the increment in order to have
the total I/O cost decrease since it has increased in the first
case; 2) control the partition size by a fine control on the in-
crement along with more cases based on more information
in order to have the total I/O still decrease or not increase in
the other case.

4.2 Device-Aware Cache Management Algorithm (DAC)

4.2.1 Algorithm Overview

DAC is designed for heterogeneous mobile systems with
different storage devices based on the proposed dynamic
cache partitioning heuristic. (The current version of DAC
targets a pair of a disk and a flash memory. We believe that
other different set of devices could be employed if appro-
priate multi-device I/O simulation would be given) The aim
of DAC is to minimize the total I/O cost by 1) adjusting
the cache partition using the dynamic partitioning heuristic
(we call device-aware cache management) and 2) obtaining
performance enhancement by having sequential blocks for a
disk and read blocks for a flash memory to be evicted ear-
lier within each partition (we call workload-aware manage-
ment).

DAC is mainly composed of two levels: 1) adjusting
the sizes of partitions for a hard disk and a flash memory; 2)
managing each partition according to workload patterns and
I/O types together with localities of blocks. The higher level
of DAC tracks how the cumulated cache miss count multi-
plied by the access time during a fixed period of I/O requests
has changed for each device and identifies which phase the
system is placed in terms of successive total I/O costs. We
assume that there are two phases largely: increasing and de-
creasing phases of the total I/O cost. In the increasing phase
of the total I/O cost, DAC controls the cache partition size
based on random cache miss counts from each cache par-
tition. This is because the increment of the total I/O cost
between successive phases means that the access pattern is
likely to have changed and thus random accesses (including
both random and loop patterns) are more beneficial than se-
quential ones. In the decreasing phase of the total I/O cost,
DAC mainly controls the cache partition size based on vari-
ations of the whole cache miss counts because we infer that
the same access pattern of the previous period is likely to
continue during this period.

In designing the lower level of DAC, we have two
cache management policies: 1) The size of each partition
should be adjusted so that sequential accesses may be for-
warded to either of the two devices earlier than random ones.
2) Write I/O requests on cache blocks in a flash memory’s
partition are dispatched to the flash memory later than read
ones. Based on these policies, we built an intra-partition

2824
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

Fig. 5 Proposed device-aware cache management algorithm (DAC).

management algorithm, which combines the temporal lo-
cality, sequentiality, and I/O types similarly to the Greedy-
Dual algorithm within each partition. By controlling each
cache partition in a way that the blocks with randomness
and high temporal locality stay longer for a disk and the
blocks with randomness, high temporal locality, and write
I/O types does for a flash, we expect that a large number
of sequential requests frequently found in mobile workloads
may be managed properly. We also expect that for a flash
memory delayed write blocks may cause an effect of re-
ducing write/erase cycles, and thus extend its lifetime and
consequently improve the reliability of the overall storage
system.

4.2.2 Algorithm Details

Detailed DAC’s algorithm is shown in Fig. 5. DAC main-

tains two LRU lists T1 and T2, each of which represents
a partition and is assigned to cache blocks for either of het-
erogeneous devices (presently, T1 is used for a hard disk and
T2 for a flash memory). T1 req (T2 req) is the target size of
the T1 (T2) partition and |B| is the total cache size. T1 req
and T2 req correspond to s(P1) and s(P2), respectively. W
represents a partition-adjusting period, which is compared
with a cumulated reference count (cumulated ref count) for
re-partitioning.

In the viewpoint of implementation, DAC largely con-
sists of 1) a dynamic cache partitioning algorithm executed
at W block references; 2) an intra-partition management al-
gorithm executed at every block reference. At every pe-
riod of W block references, DAC adjusts the size of each
partition dynamically by invoking the dynamic partitioning
heuristic algorithm.

At each block access, DAC determines its access pat-
tern. To determine this, we utilized a sequentiality threshold.
We set the sequentiality threshold as 4 blocks. This means
that if a logical block address (LBA) of a currently accessed
block is continued to LBAs of prior accessed blocks by
the number of 4 without intermission and formation of any
loops, the block is labeled as sequential. Otherwise, it is la-
beled random. This method is simple but effective and thus
many researchers are found to employ it in the literature in-
cluding [32].

Then, DAC determines whether the access is missed or
hit. If a hit occurs in T1 (or T2), the block is moved to the
MRU position of T1 (or T2). If there occurs a miss, a sub-
routine List update is invoked with a flag which indicates in
which device the missed block resides. Shortly, the role of
List update is to control T1 and T2 so that their sizes follow
T1 req and T2 req well, respectively. During such opera-
tions, we invoke a subroutine H update to set appropriate
values to the cache blocks within each partition according
to their attributes.

We subdivided the attribute, which each block can have
within the cache, into four: read and sequential, read and
random, write and sequential, and write and random. In
the algorithm, the attribute is obtained by coupling C SEQ,
C RAND, C WRITE, and C READ. Since if a block is iden-
tified to be sequential its early eviction is more beneficial
in terms of cache hits, C SEQ is set to a smaller value than
C RAND. Furthermore, for accesses to blocks residing in a
flash memory, we want to delay write I/Os by keeping write
blocks longer than read ones and thus C WRITE is set to a
larger value than C READ. Therefore, the H values of cache
blocks for a disk will be maintained relatively large if they
are accessed recently or randomly and they will have more
chances to remain in the cache rather than blocks with little
locality or sequentiality. In addition to such prioritization on
temporal locality and sequentiality, cache blocks for a flash
memory will have large H values if each access type is write
than when it is read, as shown in H update.

In practice, the intra-partition management algorithm
at the lower level of DAC can be designed independently
of the dynamic cache partitioning algorithm (i.e., the higher

KIM and KIM: DEVICE-AWARE CACHE MANAGEMENT ALGORITHM
2825

level of DAC). Our workload-aware management algorithm
for the intra-partition management algorithm is devised for
the purpose of obtaining better performance. To show this,
through simulations we compared the results of the orig-
inal DAC algorithm with those of when LRU is used as
the intra-partition management algorithm along with the dy-
namic partitioning heuristic algorithm.

5. Simulation and Results

5.1 Simulation Environment

We built a trace-based cache simulator, which simulates
LRU, GreedyDual, and DAC, and concatenated it with a
multi-device I/O simulator in [14], which can simulate file
allocation and I/O accesses over a pair of a hard disk and a
NAND flash memory, in order to evaluate the aggregate sys-
tem I/O performance as well as the total energy consump-
tion. The hard disk model we used is MK4004GAH with a
1.8′′ form factor and 4,200 RPM [14] and the flash model is
K9K1208U [29].

Our simulator is a trace-driven simulator and processes
real file I/O traces from an evaluation board similar to a
PDA. This board embeds a 400 Mhz PXA 255 processor, an
10 Mbps ethernet card, a 64 MB SDRAM, and so on. Since
we executed real applications, which generate I/O requests,
on the board with the features of these devices fixed, all ob-
tained traces can be said to reflect features such as a proces-
sor speed, a network bandwidth, and a main memory size
in the mobile computing system. Our simulator processes
such traces using a buffer cache simulator combined with a
multi-device storage system simulator, which includes the
performance and energy models for a hard disk and a flash
memory (refer to Ref. [14] for more details).

We used two real traces from the evaluation board for
evaluation (we call PDA and PMP traces) and two synthetic
traces (we call trace1 and trace2). For generating PDA
and PMP traces, we assume that applications running on
mobile platforms repeat predefined execution scenarios [7],
[14] and the types of applications are limited to file transfer,
email, file search, media play, and idling. The PDA trace
simplifies a typical execution pattern of target applications
on a PDA and is obtained by repeating file transfer, email,
file search, and idling. The PMP trace is obtained by re-
peating file transfer, media play, and idling to mimic a PMP.
These scenarios were performed for 81 and 71 minutes for
the PDA and PMP traces, respectively.

To create trace1 and trace2, we built a synthetic trace
generator, which can generate three types of traces by con-
trolling sequentiality and temporal locality: SEQ, TEMP,
and COMPOUND (In Sect. 3, we have already described
these types). Our synthetic trace generator can also control
various parameters such as control request rate, read/write
ratio, file size, and request size. We ran our trace generator,
varying default parameters. The default parameters are set
as follows: an average interval time between I/O requests
= 70 (ms), a trace time = 80 (min), maximum file size = 5

(MB), a total file size = 350 (MB), and a write ratio = 0.5.
The default I/O access pattern is set to COMPOUND (i.e.
mixed of sequentiality and temporal locality).

In simulations, trace1 uses the default parameters and
trace2 also does except that the average interval time and the
maximum file size are set to 20 ms and 1 MB, respectively.
The PDA trace, PMP trace, trace1, and trace2 have work-
ing set sizes of about 44, 51, 23, and 57 MB and trace file
sizes of about 31, 38, 3, and 10 MB, respectively. With these
traces, we first evaluated the total I/O costs and flash write
counts of DAC, LRU, and GreedyDual. We also compared
the total I/O costs of DAC and a static partitioning policy
as well as four techniques combining the proposed dynamic
partitioning heuristic and different intra-partition manage-
ment policies. In this paper, since we deal with a perfor-
mance optimization problem in heterogeneous storage sys-
tems, it is very important to determine which performance
metric we should use. Using a total I/O cost is one of the
most widely-used methods and is an approach which calcu-
lates the response time for I/O requests from applications or
a kernel onto a storage device to be processed by taking into
accounts cache hits or misses at a cache. Many studies in
the storage research area have adopted this method as found
in [30], [31].

We assumed that the overheads of re-partitioning and
handling blocks per partition in DAC are acceptable over
LRU. Let the block number of the cache n. LRU needs
O(n) steps to check whether a block is hit or not in the LRU
list and the block accessed should be moved to the MRU
regardless of hit or miss (In our implementation, we used a
hash-based look-up for checking hit/miss with O(1) steps).
In comparison with LRU, since DAC needs more O(log(n))
steps when it searches a minimum H value among cache
blocks in the case of eviction we expect that the overhead is
sufficiently tolerable due to the limited cache size of n.

Finally, we set W to 200 and R1 to 35 and R2 to 1
for DAC, and used the same value of R1 for weighting in
GreedyDual. To employ GreedyDual in simulations, we
combined different fetch cost per each device and the tem-
poral locality based on LRU, and used a block instead of
file data as a caching unit. The method to be used in set-
ting R1 and R2 is similar to those of [30], [31] and employs
the fixed ratio between cache and disk access times due to
hits and misses at the cache in order to obtain the total re-
sponse time. Through experiments, we found that the total
response time was close-to-optimal when R1 is set to 35. In
comparison with our values, Ref. [30] utilized 20 and refer-
ence Ref. [31] adopted about 50. W is a period during which
the partition sizes should be changed. The W value of 200
was set experimentally so that when there occur 200 block
references partition sizes should not be adjusted even if 5 or
6 misses happen in the flash partition for the above R1 and
R2 values.

2826
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

Fig. 6 For the PDA trace, (a) total I/O costs of LRU, GD, and DAC (b)
total I/O costs of GD and DAC normalized over LRU.

5.2 Simulation Results

5.2.1 DAC vs. Existing Caching Algorithms

Figure 6 shows the total I/O costs of LRU, GreedyDual
(hereafter, we use GD), and DAC, respectively, for the PDA
trace as the cache size varies. In the plot (a), DAC shows
the smallest total I/O cost among three algorithms with all
the cache sizes. DAC improves the overall system I/O per-
formance by up to 64% and 14% over LRU and GD, re-
spectively. This indicates that the proposed device-aware
cache management algorithm is more effective in achieving
the global optimum of the total I/O cost than other algo-
rithms over the given heterogeneous storage system.

Fig. 6 (b) compares the total I/O costs of GD and DAC
through normalization over LRU in order to show how much
DAC outperforms GD. Actually, DAC shows the overall
performance a little better than GD. With a 20 MB cache
size, DAC has the most performance enhancement of about
14% over GD. This is because since the PDA trace has a
large number of loop accesses and a considerable number of
random ones, and they are accessed uniformly across a disk
and a flash, the policy of GD tries to keep more loop blocks
accessed onto a disk within the cache longer and evict less
loop blocks accessed onto a flash memory earlier and con-
sequently led to a good performance. To determine a best
weighting value to a disk blocks (i.e., R1), we tried several
values of R1 in evaluating DAC and GD for this trace, but we
found that they have little possibilities to obtain improved

Fig. 7 For the PMP trace, (a) total I/O costs of LRU, GD, and DAC (b)
total I/O costs of GD and DAC normalized over LRU.

total I/O costs than when they uses the default R1 value.
Such phenomenon goes further on the PMP trace, as is

shown in Fig. 7. Figure 7 shows (a) the total I/O costs of
LRU, GD, and DAC and (b) the normalized total I/O costs
of GD and DAC for the PMP trace. We notice that DAC
still has the best performance among three, achieving I/O
cost improvement by up to 77.8% over LRU, but GD shows
almost the overall performance enhancement similar to that
of DAC. This comes from the fact that the PMP trace also
has a lager number of and longer loop accesses than the PDA
trace and GD largely tries to cache the blocks from a disk
longer.

Figures 8 and 9 show (a) the total I/O costs of LRU,
GD, and DAC and (b) the normalized total I/O costs of GD
and DAC for the trace1 and trace2, respectively. In Fig. 8,
DAC is shown to outperform LRU and GD by narrow mar-
gins. This is because the trace1 has been obtained using a
synthetic trace generator in a way of randomly being gener-
ated, and thus has a lot of random I/O requests and doesn’t
include loop patterns. Since there are less effects from se-
quential accesses and more influence from random ones,
LRU shows comparable total I/O costs with GD and DAC.

The trace2 has more block accesses with temporal lo-
calities than the trace1 although the degree of randomness
may be similar between two traces. Therefore, caching disk
blocks with localities appropriately along with adjusting the
partition size can be beneficial in the aspect of the total I/O
cost. From this reason, DAC show the best performance
among all the algorithms, as is shown in Fig. 9. DAC im-

KIM and KIM: DEVICE-AWARE CACHE MANAGEMENT ALGORITHM
2827

Fig. 8 For the trace1, (a) total I/O costs of LRU, GD, and DAC (b) total
I/O costs of GD and DAC normalized over LRU.

Fig. 9 For the trace2, (a) total I/O costs of LRU, GD, and DAC (b) total
I/O costs of GD and DAC normalized over LRU.

Fig. 10 (a) For the PDA trace, flash write counts of GD and DAC nor-
malized over LRU (b) For the PMP trace, flash write counts of GD and
DAC normalized over LRU.

proves the total I/O cost by up to 21% and 11% over LRU
and GD, respectively.

5.2.2 Flash Write Counts and Energy Consumption

Other metrics we evaluated are the number of write ac-
cesses onto flash memory and the total energy consump-
tion. The first is important because the maximum number
of write/erase cycles is limited in a flash memory and thus
reducing the write I/O operations towards a flash memory
is likely to have an effect of extending the lifetime of a
flash memory. Since we depend on a cache management
technique for the purpose of controlling the number of flash
writes, the used method may be less aggressive, compared
with data migration techniques [14]. The second is also im-
portant because a hard disk is a significant energy consumer
and thus to increase energy saving by putting the disk into
a lower power mode for a long time is a crucial task under
a battery-limited environment, although our work does not
aim directly at lowering the aggregate energy consumption
of both a hard disk and a flash memory. In the viewpoint
of price, since we employ a fixed heterogeneous pair of a
hard disk and a flash memory device, the total price remains
static regardless of the buffer cache algorithm.

Figure 10 shows the number of writes onto the flash
memory for the PDA and PMP traces as the cache size
varies. In the plot (a), the flash write count of DAC is shown
to be smaller than those of LRU and DAC. DAC lowers the
number of flash writes by up to 30% and 23% over LRU and

2828
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

Fig. 11 (a) For the trace1, flash write counts of GD and DAC normalized
over LRU (b) For the trace2, flash write counts of GD and DAC normalized
over LRU.

GD, respectively, for the PDA trace. In the plot (b), DAC is
shown to reduce the flash write count by up to 57% and 28%
over LRU and GD, respectively, for the PMP trace.

To show an effect of reduction of flash writes on ex-
tending the flash lifetime, we consider a simple example.
We assume that a write ratio is 0.5 (the same value was used
in simulations) and an average access arrival rate is 100 ac-
cesses/sec. We also assume conservatively that when the
amount of data equal to the total capacity is written to the
flash memory an erase occurs. If we use LRU as a buffer
cache algorithm in a heterogeneous storage system which
has a 1 GB flash memory with a 2 KB page and the limited
erasure cycles of 10,000 (in case that a flash memory is a
multi-level cell (MLC) type), the expected lifetime of a flash
memory would take about 6.6 years (10,000*2 GB/100 KB).
Since DAC may reduce the flash write accesses by 30%
over LRU, the average flash write count will be 35 (=
0.7*0.5*100) and the expected lifetime of a flash memory
will be extended to about 9.5 years. If we apply the same
calculation in case of using GD, the expected lifetime may
amount to about 8.6 years. These values indicate that DAC
may cause efficient consumption of write/erasure cycles, a
lengthened lifetime of a flash memory, and consequently
more reliability into the overall storage system.

Figure 11 shows the number of writes onto the flash
memory for the trace1 and trace2 as the cache size varies.
Unlike the results of Fig. 10, mitigation of writing onto the
flash memory is shown less effective. We guess that random
accesses of these two traces and another randomness used

Fig. 12 (a) For the PDA trace, total energy consumptions of GD and
DAC normalized over LRU (b) For the PMP trace, total energy consump-
tions of GD and DAC normalized over LRU.

to assign write I/O type to each access may disturb DAC’s
attempt to evict write blocks later. Actually, we noticed that
the plot (a) shows DAC still outperforms LRU slightly, but
the flash write counts of DAC in the plot (b) were shown
to be rather larger than those of LRU. For the trace2, this
seems that a larger number of read or write blocks within
the flash partition with high temporal localities evict write
blocks often and thus the flash write count cannot be made
small.

Figure 12 shows the total energy consumed by both the
hard disk and the flash memory for the PDA and PMP traces
as the cache size varies. In Fig. 12, we can notice that GD
and DAC consume much less energy that LRU, saving en-
ergy by up to 44% and 58% for the PDA and PMP traces,
respectively. In the plot (a), DAC is shown to lower the to-
tal energy consumption by about 11% over GD at the cache
size of 20 MB for the PDA trace. In the plot (b), DAC is
also shown to reduce the total energy consumption by up to
11% over GD for the PMP trace. Good energy savings of
DAC can be attributed to considerably reduced I/O accesses
onto the hard disk. Due to the reduced I/O accesses, the total
spin-down times of DAC, during which the hard disk stays
in the standby mode mode (refer to Table 1.) are revealed to
be more than 3 times longer than those of LRU for the PDA
and PMP traces. Therefore, DAC has more chances to save
much energy than LRU.

Figure 13 shows the total energy consumption for the
trace1 and trace2 as the cache size varies. Unlike the results
of Fig. 12, energy saving is shown less effective. Especially,

KIM and KIM: DEVICE-AWARE CACHE MANAGEMENT ALGORITHM
2829

Fig. 13 (a) For the trace1, total energy consumptions of GD and DAC
normalized over LRU (b) For the trace2, total energy consumptions of GD
and DAC normalized over LRU.

the plot (a) shows that DAC has almost the same energy con-
sumption as GD or LRU. This is because, since the trace1
have a small working set and its I/O accesses have temporal
localities, the total standby time was shown similar regard-
less of the buffer cache algorithm. The total energy con-
sumption of DAC in the plot (b) was shown to be smaller
than LRU by up to 17%.

5.2.3 DAC vs. Static Cache Partitioning

We compared the total I/O costs of DAC and static cache
partitioning techniques as the cache partition size varies for
the PDA, PMP, trace1, and trace2, as shown in Figs. 14 and
15, respectively. Static cache partitioning employed in this
experiment uses a fixed static partitioning policy and the
intra-partition management of DAC. That is, we just re-
placed the dynamic cache partitioning heuristic of DAC with
a fixed static partitioning policy in this experiment.

We observed that DAC has smaller total I/O costs than
static partitioning techniques for all the traces except trace1.
In Fig. 14 (a), we can notice that there occurred the small-
est total I/O cost at the partition configuration at (27 MB,
3 MB) for a disk and a flash memory with a 30 MB total
cache among the graphs of static partitioning techniques.
A similar result could be found in Fig. 14 (b) for the PMP
trace though deviation at partition configurations with the
smallest static total I/O cost occurred, where a partition for
a disk rather than a flash memory is large. But, in (a) and
(b), the total I/O costs with these best static partition con-

Fig. 14 Total I/O costs of DAC and static partitioning, which uses a fixed
static partitioning policy and the intra-partition management of DAC (a) for
the PDA trace, (b) for the PMP trace.

Fig. 15 Total I/O costs of DAC and static partitioning, which uses a fixed
static partitioning policy and the intra-partition management of DAC (a) for
the trace1, (b) for the trace2.

2830
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

Fig. 16 Total I/O costs of four techniques: the static partitioning policy +
the intra-partition management algorithm of DAC, DAC, and the dynamic
cache partitioning of DAC + LRU (a) for the PDA trace, (b) for the trace1.

figurations were found to be larger than those of DAC for
each trace. Therefore, we believe that DAC can adapt dif-
ferent workload patterns dynamically and achieves a more
close-to-optimal performance than static cache partitioning
techniques.

In Fig. 15, we also found that static cache partitioning
techniques with the smallest total I/O costs for each trace:
in (a) at the partition configuration of (7 MB, 3 MB) with
a 10 MB total cache for the trace1; in (b) at the partition
configuration of (27 MB, 3 MB) with a 30 MB total cache
for the trace2. Although DAC has a little larger (less than
1%) total I/O cost than the static partitioning technique with
the minimal total I/O cost (i.e., partitioning the cache as
7 MB for a disk and 3 MB for a flash) in (a) for the trace1,
DAC still can be said to find close-to-optimal performance
by dynamically adjusting the required partition size per each
device for better performance based on varying access pat-
terns. For the trace2, DAC shows better system I/O perfor-
mance than static partitioning with the minimal total I/O at
(27 MB, 3 MB) of a partition configuration for a disk and a
flash memory.

5.2.4 Comparisons of Four Techniques

Figure 16 compares the total I/O costs of four techniques:
the static partitioning policy + the intra-partition manage-
ment algorithm of DAC, the static partitioning policy +
LRU, DAC, and the dynamic cache partitioning heuristic
of DAC + LRU for (a) the PDA trace and (b) trace1, re-

spectively. We can notice that DAC, which uses dynamic
cache partitioning and workload-aware intra-partition man-
agement, shows better total I/O cost than static cache parti-
tioning + LRU or the dynamic cache partitioning heuristic
of DAC + LRU. (We already mentioned the comparison be-
tween the results of DAC and the static partitioning policy
+ the intra-partition management algorithm of DAC previ-
ously.) In Fig. 16 (a), since the PDA trace has a large num-
ber of loop accesses and a smaller number of random ones
and access patterns are varying continuously, the dynamic
cache partitioning algorithm seems to have a great contribu-
tion rather than the intra-partition management algorithm.
Compared with this, since accesses consist of mostly ran-
dom ones and there are less workload pattern fluctuations in
Fig. 16 (b), the intra-partition management algorithm seems
to have a high impact on the total I/O cost relatively though
the dynamic cache partitioning algorithm still have signifi-
cant influence.

5.2.5 Implementation Issue

An implementation of DAC remains one of our major fu-
ture researches and we thus consider an implementation is-
sue shortly in this subsection. The following requirements
should be met for the purpose of the implementation of the
propose buffer cache algorithm. First, a hard disk and a flash
memory device which utilize the same file system and host
interface should be used. For example, a heterogeneous stor-
age pair of a small form-factor hard disk and a solid-state
disk (SSD) using IDE interfaces is eligible. Second, since
the proposed buffer cache algorithm should be implemented
at the level of the operating system, we need the accessibil-
ity of source codes of the target operating system. Unlike
Linux, source codes of MS Windows are not open and thus
actual implementation is almost impossible for Windows.
Third, we need to analyze the buffer cache management
mechanism and file system of the target operating system.
Since processing data on file accesses is required we need
to implement the proposed algorithm at the level of the file
system. Then, using proper data structures like linked lists
replacing the existing buffer cache algorithm with the pro-
posed one will be possible. For example, files are managed
in pages at the buffer cache and thus we should determine
whether the page size is 4 KB or 8 KB and how the corre-
sponding page will be managed within the buffer cache at
cache hit/miss.

Let us take an example for Linux 2.6. In Linux 2.6,
a buffer cache uses two LRU lists (active and inactive) and
checked whether a hit or a miss occurs at the buffer cache
in the function called generic file read. When read requests
are invoked from applications a system call in the kernel is
invoked and then generic file read is called. Linux 2.6 de-
fines and utilizes a data structure named address space to
manage paged within the buffer cache. This structure con-
tains lists called clean page, dirty page, and locked page
as members. Linux provides read, write, and setdirty func-
tions for these members and uses a radix tree as the kernel

KIM and KIM: DEVICE-AWARE CACHE MANAGEMENT ALGORITHM
2831

should search all pages within the buffer cache fast when it
checks whether a page is a hit or a miss at the buffer cache.
In order to implement the proposed algorithm in Linux 2.6,
we need to change the address space data structure. In de-
tail, we should add an L value to the inode data structure and
List update and H update functions should be implemented.
We need to insert a routine which determines each block’s
access pattern. Finally, a routine adjusting the size of each
partition with a period of W is required.

6. Related Work

There has been a lot of research in mobile storage systems
by combining hard disks with flash memory in terms of per-
formance enhancement and/or energy saving. [5]–[7], [11],
[13] have all proposed using flash memory as a non-volatile
cache, keeping blocks which are likely to be accessed in the
near future, and thus allowing a hard disk to spin down for
longer time. [6], [13] focused on usage of a flash memory as
a write buffer cache along with enhanced spin-down tech-
niques, while [7] has recently studied a technique of parti-
tioning the flash memory into a cache, a prefetch buffer, and
a write buffer to save energy. [11] mainly considered reduc-
ing power consumption of the main memory using a flash
memory as a second-level buffer cache.

The Hybrid Hard Disk Drive technology co-developed
by Samsung and Microsoft uses a flash memory as an on-
board non-volatile cache in addition to a hard disk, which
aims at performance boosting, low power, and high relia-
bility on mobile computers [8]–[10]. In the meantime, Intel
has developed the Robson technology [12], which uses also
a flash memory as a non-volatile cache to increase system
responsiveness, make multi-tasking faster, and extend bat-
tery life time in combination with the new features of Win-
dows Vista like ReadyDrive and ReadyBoost. The Hybrid
Hard Disk Drive technology focuses on the benefits of prox-
imity between a HDD and a flash memory and uses an SATA
interface, while the Robson technology uses a PCI-like in-
terface.

Unlike the above researches, the proposed cache man-
agement technique targets mobile systems with a heteroge-
neous secondary storage pair consisting of a hard disk and
a flash memory instead of using a flash memory as a non-
volatile cache. It tries to enhance the overall system I/O
performance by applying an effective buffer cache manage-
ment algorithm on the mobile workloads, which is able to
consider both device-awareness and workload-awareness.

In disk-based storage systems, [23] studied storage-
aware cache management algorithms using different cost
on heterogeneous disks. This work maintained one parti-
tion per each disk and adjusted partition sizes based on the
time spent per each disk over a fixed period of time (they
call this wait time). But, their algorithms cannot detect the
case of there being a number of sequential accesses because
they control the blocks within each partition using LRU or
CLOCK algorithms, which may be problematic. This is be-
cause if a considerable number of sequential accesses are

requested to a disk its wait time can be lengthened by filling
the corresponding partition with less valuable blocks.

Recently, [25] have proposed a cost-aware cache re-
placement algorithm, which targets mobile systems with a
pair of a hard disk and a flash memory as secondary stor-
age. This work partitions the cache per device by exploiting
a performance index combined with cache miss counts and
access time per device and further manages each partition in
order to achieve the fast sequential performance feature of a
hard disk.

While [23] and [25] focused on the work imbalance
problem, which may occur different I/O costs of heteroge-
neous storage devices, by enlarging the partition for a slower
device, our work concentrates on optimizing the overall I/O
cost itself. This is necessary because some mobile work-
loads can still exhibit critical work imbalance due to skewed
device access counts. In comparison with [25], we not only
have our algorithm manage cache partitions based on the
sequentiality of I/O requests but also mitigate write/erase
cycles of a flash memory in consideration of I/O types

7. Conclusions

We have proposed a novel buffer cache management algo-
rithm which considers both I/O cost per device and work-
load patterns in mobile computing systems with a heteroge-
neous storage pair of a hard disk and a NAND flash memory.
In order to minimize the total I/O cost under varying work-
load patterns, the proposed algorithm employs a dynamic
cache partitioning technique over different devices and man-
ages each partition according to request patterns and I/O
types along with the temporal locality.

Trace-based simulations show that the proposed algo-
rithm improves the total I/O cost by up to 77.8% and 14%
and flash write count by up to 57% and 28% over LRU and
GreedyDual, respectively, on typical mobile traces, when a
1.8′′ hard disk and a NAND flash memory are employed. It
also achieves as good performance as the best static cache
partitioning policy almost always.

We have several future work plans. First, we plan to
study device-aware cache management on various heteroge-
neous storage devices including MEMS-based storage and
a hard disk. Second, we plan to data migration techniques
along with our cache algorithm to obtain high performance
as well as low energy consumption. Third, we consider
studying a dynamic cache partitioning algorithm in consid-
eration of prefetching. Finally, implementation and verifica-
tion in the real file systems are other important challenges.

Acknowledgments

This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) grant funded by the Ko-
rea government (MOST) (No.R0A-2007-000-20116-0), the
Brain Korea 21 Project in 2008, and the MKE (Ministry
of Knowledge Economy), Korea, under the ITRC (Infor-
mation Technology Research Center) Support program su-

2832
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

pervised by the IITA (Institute of Information Technology
Advancement)(IITA-2008-C1090-0801-0020). The ICT at
Seoul National University provides research facilities for
this study. Young-Jin Kim was also supported by the Sun
Moon University Research Grant of 2008.

References

[1] Y. Shin, “Non-volatile memory technologies for beyond 2010,”
Proc. 2005 Symposium on VLSI Circuits Digest of Technical Pa-
pers, 2005.

[2] L.R. Carley, G.R. Ganger, and D.F. Nagle, “MEMS-based
integrated-circuit mass-storage systems,” Commun. ACM, vol.43,
no.11, pp.72–80, Nov. 2000.

[3] G. Lawton, “Improved flash memory grows in popularity,” Com-
puter, vol.39, no.1, pp.16–18, Jan. 2006.

[4] Samsung Electronics, MLC NAND Flash memory (K9HBG08-
U1M) and SLC NAND Flash memory (K9WBG08U1M), Data
Sheets, 2006.

[5] B. Marsh, F. Douglis, and P. Krishnan, “Flash memory file caching
for mobile computers,” Proc. 27th Hawaii International Conference
on System Sciences, pp.451–460, Hawaii, USA, Jan. 1994.

[6] T. Bisson and S. Brandt, “Reducing energy consumption with a non-
volatile storage cache,” Proc. International Workshop on Software
Support for Portable Storage (IWSSPS), held in conjunction with
the IEEE Real-Time and Embedded Systems and Applications Sym-
posium (RTAS 2005), San Francisco, California, March, 2005.

[7] F. Chen, S. Jiang, and X. Zhang, “SmartSaver: Turning flash
drive into a disk energy saver for mobile computers,” Proc. 11th
ACM/IEEE International Symposium on Low Power Electronics
and Design (ISLPED’06), Tegernsee, Germany, Oct. 2006.

[8] Microsoft, ReadyDrive and Hybrid Disk. http://www.microsoft.com/
whdc/device/storage/hybrid.mspx

[9] Samsung, Hybrid Hard Disk Drive. http://www.samsung.com/
Products/HardDiskDrive/news/HardDiskDrive 20050
425 0000117556.htm

[10] R. Panabaker, “Hybrid hard disk & ReadyDriveTM Technology: Im-
proving performance and power for Windows Vista mobile PCs,”
Proc. Microsoft WinHEC 2006. http://www.microsoft.com/whdc/
winhec/pres06.mspx

[11] T. Kgil and T. Mudge, “FlashCache: A NAND flash memory file
cache for low power web servers,” Proc. 2006 International Confer-
ence on Compilers, Architecture and Synthesis for Embedded Sys-
tems (CASES’06), Seoul, Korea, Oct. 2006.

[12] M. Trainor, “Overcoming disk drive access bottlenecks with In-
tel Robson Technology,” Technology Intel Magazine, Dec. 2006.
http://www.intel.com/technology/magazine/computing/
robson-1206.htm

[13] T. Bisson, S. Brandt, and D. Long, “A hybrid disk-aware spin-
down algorithm with I/O subsystem support,” Proc. 26th IEEE Inter-
national Performance Computing and Communications Conference
(IPCCC), New Orleans, Louisiana, USA, April 2007.

[14] Y.-J. Kim, K.-T. Kwon, and J. Kim, “Energy-efficient file place-
ment techniques for heterogeneous mobile storage systems,” Proc.
6th ACM & IEEE Conference on Embedded Software (EMSOFT),
Seoul, Korea, Oct. 2006.

[15] J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, “A multi-channel
architecture for high-performance NAND flash-based storage sys-
tem,” J. Syst. Archit., vol.53, no.9, pp.644–658, Sept. 2007.

[16] M. Uysal, A. Merchant, and G.A. Alvarez, “Using MEMS-based
storage in disk arrays,” Proc. 2nd. USENIX Conference on File and
Storage Technologies (FAST), March-April 2003.

[17] F. Wang, B. Hong, S.A. Brandt, and D.D.E. Long, “Using MEMS-
based storage to boost disk performance,” Proc. 22nd IEEE/13th
NASA Goddard Conference on Mass Storage Systems and Tech-
nologies (MSST 2005), Monterey, CA, USA, April 2005.

[18] Samsung Unveils its Third Fusion Semiconductor - Flex-
OneNANDTM. http://www.samsung.com/us/business/
semiconductor/newsView.do?news id=810

[19] New Toshiba mobileLBA-NAND memory chips for mobile phones
support both SLC and MLC memory areas. http://www.toshiba.com/
taec/news/press releases/2007/memy 07 482.jsp

[20] ActiveShopper. http://www.activeshopper.com
[21] inSpectrum Tech. Inc. NAND Flash price.

http://www.inspectrumtech.com/DP/NANDFlashContractPrice.aspx
[22] N. Megiddo and D.S. Modha, “ARC: A self-tuning, low overhead

replacement cache,” Proc. 2nd. USENIX Conference on File and
Storage Technologies (FAST), March-April 2003.

[23] B. Forney, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau,
“Storage-aware caching: Revisiting caching for heterogeneous stor-
age systems,” Proc. 1st. USENIX Conference on File and Storage
Technologies (FAST), Jan. 2002.

[24] E. Pinheiro, R. Bianchini, E.V. Carrera, and T. Heath, “Load bal-
ancing and unbalancing for power and performance in cluster-based
systems,” Proc. International Workshop on Compilers and Operating
Systems for Low Power, Sept. 2001.

[25] Y.-J. Kim and J. Kim, “Device-aware cache replacement algorithm
for heterogeneous mobile storage devices,” Proc. 3rd International
Conference on Embedded Software and Systems (ICESS), Daegu,
Korea, May 2007.

[26] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,”
Proc. USENIX Symposium on Internet Technology and Systems,
Dec. 1997.

[27] R.G. Bartle, The Elements of Real Analysis, John Wiley & Sons,
1976.

[28] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by sim-
ulated annealing,” Science, vol.220, no.4598, pp.671–680, 1983.

[29] H.G. Lee and N. Chang, “Low-energy heterogeneous non-volatile
memory systems for mobile systems,” Journal of Low Power Elec-
tronics, vol.1, no.1, pp.52–62, April, 2005.

[30] G. Yadgar, M. Factor, and A. Schuster, “Karma: Know-it-all replace-
ment for a multilevel cache,” Proc. 5th USENIX Conference on File
and Storage Technologies (FAST), pp.169–184, 2007.

[31] T.M. Wong and J. Wilkes, “My cache or yours? Making stor-
age more exclusive,” Proc. USENIX Annual Technical Conference
(ATC), 2002.

[32] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “A low-
overhead, high-performance unified buffer management scheme that
exploits sequential and looping references,” Proc. 4th Symp. Oper-
ating System Design and Implementation, pp.119–134, Oct. 2000.

Young-Jin Kim received the B.E. de-
gree and the M.E. degree in electrical engineer-
ing and the Ph.D. degree in computer science
& engineering from Seoul National University,
Seoul, Korea, in 1997, 1999, and 2008, respec-
tively. From 1999 to 2003, he was with Elec-
tronics and Telecommunications Research Insti-
tute (ETRI), Daejoen, Korea. He is currently a
faculty member in the Department of Computer
Science and Engineering, Sun Moon University,
Asan, Korea. His research interests include low-

power embedded systems, low-power storage systems, and power measure-
ment and analysis.

KIM and KIM: DEVICE-AWARE CACHE MANAGEMENT ALGORITHM
2833

Jihong Kim received the B.S. degree in
computer science and statistics from Seoul Na-
tional University, Seoul, Korea, in 1986, and the
M.S. and Ph.D. degrees in computer science and
engineering from the University of Washington,
Seattle, WA, in 1988 and 1995, respectively. Be-
fore joining SNU in 1997, he was a Member
of Technical Staff in the DSPS R&D Center of
Texas Instruments in Dallas, Texas. He is cur-
rently a Professor in the School of Computer
Science and Engineering, Seoul National Uni-

versity, Seoul, Korea. His research interests include embedded software,
low-power systems, computer architecture, and multimedia and real-time
systems.

