
An Operation Rearrangement Technique for

Low-Power VLIW Instruction Fetch�

Dongkun Shin and Jihong Kim

School of Computer Science and Engineering

Seoul National University

E-mail: fsdk, jihongg@davinci.snu.ac.kr

Abstract

As mobile applications are required to handle more
computing-intensive tasks, many mobile devices are de-
signed using VLIW processors for high performance. In
VLIW machines where a single instruction contains multi-
ple operations, the power consumption during instruction
fetches varies signi�cantly depending on how the opera-
tions are arranged within the instruction. In this paper,
we describe a post-pass optimal operation rearrangement
method for low-power VLIW instruction fetch. The pro-
posed method modi�es operation placement orders within
VLIW instructions so that the switching activity between
successive instruction fetches is minimized. Our experi-
ment shows that the switching activity can be reduced by
34% on average for benchmark programs.

I. Introduction

As mobile applications are required to handle more
computing-intensive tasks (such as video decoding), many
mobile devices are designed using VLIW processors for
high performance. For example, the Crusoe processors
[9] from Transmeta (which were developed for mobile In-
ternet computing market) are based on 64 bits or 128
bits VLIW CPU cores. Fujitsu Microelectronics' FR300
[5] (whose main application area is in wireless cellular
phones) also has a VLIW architecture. In addition, there
are many VLIW digital signal processors such as Texas
Instruments' TMS320C6x series that can be used for wire-
less devices [4, 6].

While VLIW CPU-based mobile devices generally pro-
vide enough computing power to handle many comput-
ing intensive applications, they usually consume a large
amount of power. For example, TMS320C620x processors
consume between 1.2W and 2.3W at 1.8V while high-end
embedded microprocessors such as StrongArm 110 con-
sume between 100mW and 1W at 3V [8, 13]. Therefore,
in designing VLIW CPU-based mobile devices, low power
consumption is a dominant design constraint.

�This work was supported in part by BK21 Information Tech-

nology program.

In digital CMOS circuits (that use well-designed logic
gates), switching activity accounts for over 90% of total
power consumption [1]. Therefore, many techniques have
been proposed and developed to reduce the amount of
switching activity in multiple levels of design abstraction
[3]. For example, bus-invert coding [14] reduces a signi�-
cant number of bit changes from bus lines by dynamically
inverting the bus lines when the number of switched bus
lines is more than half the number of bitlines. Register
relabeling [11] assigns register numbers of instructions so
that more frequently consecutive register numbers have a
smaller Hamming distance, thus reducing the switching
activity from the instruction fetch and decode logic.

In this paper, we propose a post-pass optimization
technique that can signi�cantly reduce switching activity
during the instruction fetch phase in VLIW processors.
The proposed method takes advantage of a VLIW ma-
chine's instruction encoding characteristic: VLIW CPUs
can place the same operation in multiple operation slots
within the VLIW instruction.1 Since a single instruc-
tion generally contains multiple operations in a VLIW
CPU, the power consumption during instruction fetches
varies signi�cantly depending on how the operations are
arranged within the instruction. We reduce switching
activity by modifying operation placement orders within
VLIW instructions so that the switching activity between
successive instruction fetches is minimized.

The organization of the rest of the paper is as follows.
Before presenting the proposed operation rearrangement
technique, we review prior works on low-power instruction
scheduling in Section II. In Section III, we describe a
target VLIW machine model and de�ne several terms. An
operation rearrangement technique applicable to a single
basic block is explained in Section IV while the complete
solution is discussed in Section V. Experimental results
are presented in Section VI followed by conclusions in
Section VII.

1We distinguish between an operation and an instruction in a

VLIW CPU. A VLIW instruction is assumed to consist of several

operations.



II. Related Works

The low-power instruction scheduling problem has been
recently investigated by several research groups.
Su et al. proposed an instruction scheduling technique,

called cold scheduling, to reduce the amount of switch-
ing activity in the control path [15]. Used in conjunction
with a traditional list scheduling algorithm, cold schedul-
ing schedules instructions in the ready list based on the
power cost of an instruction. The power cost of an instruc-
tion is determined by the number of bit changes when the
instruction in question is scheduled following the last in-
struction. Su et al. show that the combination of Gray
code addressing and cold scheduling results in a 20-30%
reduction in the switching activity from the control path.
Tiwari et al. show that conventional compiler optimiza-

tion techniques targeting high performance are also e�ec-
tive for low-power software [16, 17]. Their experiments
indicate that an optimal register allocation technique is
e�ective in reducing power consumption.
Lee et al. have investigated the low-power scheduling

problem for DSP-based systems [10]. They take into con-
sideration what they term circuit-state overhead which is
the switching activity between a pair of speci�c instruc-
tions. Through the code rescheduling based on circuit-
state overhead, energy savings up to 40% were achieved
on the benchmarks used.
Since o�-chip driving and bus consume a signi�cant

amount of power in microprocessor-based systems, low-
power instruction scheduling was studied to reduce the
switching activity on system bus. Tomiyama et al. pro-
posed an instruction scheduling technique which reduces
transitions on an instruction bus between an on-chip cache
and a main memory when instruction cache misses oc-
cur [19]. This scheduling technique schedules instructions
in each basic block in a way that binary representations
of consecutive two machine instructions are less di�erent
while maintaining the control/data dependencies of the
original program.
Most of existing low-power instruction scheduling tech-

niques (including the techniques described above), how-
ever, assume that processors can issue at most one in-
struction at each cycle. Therefore, these techniques can
not be directly applied to multiple-issue machines such
as a VLIW CPU. In a VLIW CPU, since multiple oper-
ations are packed into a single instruction, two levels of
scheduling decisions should be made to reduce power con-
sumption. In the �rst level, we have to decide that which
operations are packed into which instructions. Once the
�rst level scheduling decision is made, in the second level,
we have to decide which orders the selected operations are
placed in speci�c instructions. The technique proposed
in this paper solves the second-level low-power scheduling
problem for a VLIW CPU assuming that the decision for
the �rst-level scheduling problem was already made.
One recent study investigated a low-power instruction

scheduling technique for a VLIW CPU [18]. However,

the goal of [18] was to reduce the peak power dissipation.
The scheduling algorithm described in [18] schedules an
operation in the current instruction as long as the power
dissipation of the current instruction does not exceed the
given threshold value. Although e�ective in reducing the
peak power dissipation, this algorithm does not take ac-
count of the inter-instruction e�ect and inter-operation
e�ect during the scheduling process. Our scheduling al-
gorithm proposed in this paper considers both e�ects in
arranging the operations within the instruction, thus re-
sulting in a better solution.

III. VLIW Machine Model and Definitions

A. Target VLIW Machine Model

VLIW architectures use long instruction words to ex-
ecute multiple operations simultaneously. In specifying
multiple operations within a single VLIW instruction, two
encoding methods are typically used: uncompressed en-
coding and compressed encoding [2]. In a VLIW machine
with an uncompressed encoding, each operation slot of a
VLIW instruction corresponds to a particular functional
unit. The operation speci�ed in a particular operation
slot, therefore, is executed only in the corresponding func-
tional unit. If a functional unit is not scheduled to execute
an operation at the given cycle, NOP should be speci�ed
in the corresponding operation slot. Under this encod-
ing method, the number of candidate operation slots for
an operation is limited to the number of corresponding
functional units that can execute the operation.
On the other hand, in a VLIW machine with a com-

pressed encoding, the position of operation slots within a
VLIW instruction does not directly correspond to a par-
ticular functional unit. The assignment of a particular
functional unit to an operation is generally decided by
the functional unit sub�eld of the operation encoding.
The functional unit sub�eld speci�es which functional
unit should be assigned to the operation. In addition,
in order to increase memory utilization, NOP operations
are not explicitly encoded in the VLIW instruction. In
this type of VLIW machines, an operation can be placed
in any operation slot within the same VLIW instruction.
Figures 1 and 2 compare two types of encoding meth-

ods using a sample VLIW program sequence S. In the
program sequence S, three VLIW instructions are shown
where \k" speci�es parallel operations that are executed
simultaneously. As shown in Figures 1.(b) and 1.(c), in
an uncompressed VLIW instruction encoding, the oper-
ation rearrangement is rather limited. For example, in
the �rst VLIW instruction, IADD and NOP, FADD and
NOP, and LOAD and STORE can be exchanged. For a
compressed VLIW instruction encoding shown in Figures
2.(b) and 2.(c), there are more chances for operation re-
arrangements because there is no direct correspondence
between the position of an operation slot and a corre-
sponding functional unit. For example, for the �rst VLIW



FADD LOAD STORENOP NOP NOP NOP

ISUB

IADD

IMUL

NOP NOP NOP

NOP NOP

NOP

NOP NOP

NOP

NOP

BEGNOP

NOP

IADD

Functional Units

IntU FpU FpU MemU MemU CmpU BrUIntU

NOP NOP NOP

NOP NOP

NOP NOP

NOP

NOP NOP

NOP

NOP

BEGNOP

NOP

IADD NOPFADD

ISUBIMUL

IADDNOP

STORE LOAD

(b)

(c)

|| BEG
IADD

/*BrU*/
/*IntU*/

|| FADD

|| STORE
|| LOAD

IADD /*IntU*/

/*MemU*/
/*MemU*/

/*FpU*/

(a)

|| IMUL
ISUB

/*IntU*/
/*IntU*/

Fig. 1. Uncompressed VLIW instruction encoding; (a) a sample

instruction sequence S, (b) one uncompressed encoding of S and

(c) an alternative encoding of S.

|| FADD

|| STORE
|| LOAD

IADD /*IntU*/

/*MemU*/
/*MemU*/

/*FpU*/

|| IMUL
ISUB

/*IntU*/
/*IntU*/

(a)

|| BEG
IADD

/*BrU*/
/*IntU*/

ISUB IMUL IADD BEG

MemU

Instruction 1 Instruction 3

FADD

FpU

LOAD STORE

MemU IntU IntU IntU BrU

IADD

IntU
1 1 1 0 1 0 1 0

Instruction 2

Instruction 1 Instruction 3

MemU IntU IntU
1 1 1 0 1 0 1 0

Instruction 2

FpU

FADD LOAD IMUL ISUBSTORE IADD

IntUMemU

BEG

BrU IntU

IADD

(b)

(c)

Fig. 2. Compressed VLIW instruction encoding; (a) a sample

instruction sequence S, (b) one compressed encoding of S and (c)

an alternative encoding of S.

instruction of S, 4! di�erent operation rearrangements are
all possible.2 Although the proposed operation rearrange-
ment technique is equally e�ective for a VLIW machine
with an uncompressed encoding, we assume that a target
VLIW CPU was encoded using a compressed encoding
method.
Throughout this paper, we consider a target system

with an architectural organization shown in Figure 3.
The VLIW processor with a compressed encoding has an
on-chip instruction cache. The VLIW instructions are
fetched through the bcache-bit width instruction bus. If
the instruction is not found in the on-chip instruction
cache, the corresponding memory block is fetched from
the main memory through the bmem-bit width instruc-
tion bus. Because of the compressed encoding format,
several VLIW instructions can be fetched together in a
single fetch from the instruction cache. We call these in-
structions a fetch packet as a group. For a description
purpose, we make the following assumptions on the tar-

2In Figures 2.(b) and 2.(c), parallel operations within the same

VLIW instruction is speci�ed using tail bits (shown in the shaded

boxes). If a tail bit of an operation O is 1, the operation O is

executed in parallel with the next operation. Otherwise, the next

operation is executed after the current instruction is executed.

core

Cache
Instruction

Address Bus

Instruction
Bus

CPU

Unit

Memory
Main

Bus
InstructionDecoding

Address Bus

VLIW Processor

VLIW

Bus width
= bcache

Bus width
= bmem

Fig. 3. Target system architecture.

get system:

� In a single bcache-bit fetch packet, exactly N opera-
tions are included. (That is, the width of a single
operation slot is exactly bcache=N .)

� No instruction crosses the fetch packet boundary.

� bmem is equal to the operation width. (That is, bmem

= bcache/N.)

� When the external instruction bus is not used, each
line in the external bus is assumed to hold a logic 1
value to prevent from the high impedance condition.

B. De�nitions

In explaining the operation rearrangement technique,
we use the following de�nitions:
De�nition 1 A permutation � : f1; � � � ; ng !

f1; � � � ; ng is said to be an operation rearrangement func-
tion.
De�nition 2 Two VLIW instructions I1 =

(OP 1
1 ; OP

1
2 ; � � � ; OP

1
n
) and I2 = (OP 2

1 ; OP
2
2 ; � � � ; OP

2
n
) are

said to be equivalent under operation rearrangement if
there exists an operation rearrangement function � such
that OP 1

�(i)
= OP 2

i
for all 1 � i � n.

De�nition 3 Two fetch packets FP1 = (I11 ; I
1
2 ; � � � ; I

1
n
)

and FP2 = (I21 ; I
2
2 ; � � � ; I

2
n
) are said to be equivalent un-

der operation rearrangement if there exist operation rear-
rangement functions (�1; �2; � � � ; �n) such that I

1
i
is equiv-

alent to I2
i
under �i for all 1 � i � n. EQ(FPi) is used

to represent the set of equivalent fetch packets for a given
FPi.
De�nition 4 Two basic blocks bb1 = ( FP 1

1 , FP
1
2 ,

� � �, FP 1
n
) and bb2 = (FP 2

1 ; FP
2
2 ; � � � ; FP

2
n
) are said to

be equivalent under operation rearrangement if FP 1
i
is

equivalent to FP 2
i
under operation rearrangement for all

1 � i � n. EQ(bb) is used to represent the set of equiva-
lent basic blocks for a given basic block bb.
De�nition 5 Two programs S1 = (bb11; bb

1
2; � � � ; bb

1
n
)

and S2 = (bb21; bb
2
2; � � � ; bb

2
n
) are said to be equivalent un-

der operation rearrangement if bb1
i
is equivalent to bb2

i



under operation rearrangement for all 1 � i � n. EQ(S)
is used to represent the set of equivalent programs for a
given program S.

In the rest of paper, we use \equivalent" to mean
\equivalent under operation rearrangement" where no
confusion arises.

IV. Local Operation Rearrangement Problem

In this section, we consider a simpler operation rear-
rangement problem that we call local operation rearrange-

ment problem (LOR). In the LOR problem, each basic
block is independently considered and assumed that the
basic block is fetched from the main memory and exe-
cuted only once. Since the basic block is fetched from the
main memory, there are cache misses associated during
the instruction fetch. A complete operation rearrange-
ment problem that we call global operation rearrangement

problem (GOR) is discussed in the next section. In the
GOR problem, all the basic blocks are simultaneously con-
sidered.

A. Basic Idea

In order to reduce the switching activity during the in-
struction fetch phase in a target system, we reduce the
number of bit transitions between successive instruction
fetches, because switching activity is directly proportional
to the number of bit changes. Since, in a VLIW machine
with a compressed encoding, an operation can be placed
in any operation slot within the instruction boundary, the
number of bit transitions between successive instruction
fetches can be reduced by reordering given VLIW instruc-
tions to equivalent instructions that have less switching
activity. Consider an example shown in Figure 4. There
are four fetch packets each of which is 32-bit wide (that is,
bcache = 32). In the example, each fetch packet consists of
a single VLIW instruction which in turn consists of four
operations. Figure 4.(b) shows the instruction sequence
after an operation placement order was modi�ed to re-
duce the bit transitions in the instruction bus. When the
four instructions are executed sequentially only once, the
rearranged instruction sequence shown in Figure 4.(b) re-
duces the total number of bit changes by about 25% from
39 to 29, while maintaining the same semantics of the
original sequence.

B. LOR Problem Formulation

If a given basic block B is executed only once, in our
target architecture shown in Figure 3, the number of bit
changes SWB during the instruction fetch phase is given
by the sum of two terms, SWB

cache
and SWB

mem
. SWB

cache

represents the number of bit changes at the internal in-
struction bus and SWmem indicates the number of bit

00010101 10010101 10011001 00000000

00011101 10001111 01011101 00000010
10 bit transitions

11 bit transitions

10011101 10011001 11111111 10010000

10001111 00011101 10100101 00011100

Instruction Cache Instruction Cache

1 1 01

1 1 01

1 1 01

1111111

1000111

0001110

1001110

1010010 0001110

1001000

1 0

1 1 01

1 1 01

1 1 01

1

Fetched values on Instruction Bus Fetched values on Instruction Bus

00010101 10010101 10011001 00000000

14 bit transitions

12 bit transitions

10001111 00000011 00011101 01011100

10011101 10011001 10010001 11111110

10100101 10001111 00011101 00011100

1000111

1

1001110

1010010

1001010

0000001

1001100

1000111

1001100

0001110

1001000

0000000

0101110

1111111

0001110

1 0100010101 000000010011001001010

1000111 0101110 0000001

1001100

00011100001110

0001010

13 bit transitions

8 bit transitions

(a) Before operation rearrangement (b) After operation rearrangement

the total number of bit changes = 39 the total number of bit changes = 29

Fig. 4. An operation rearrangement example.

changes at the external instruction bus. Using the no-
tations explained in Table 1, SWB

cache
and SWB

mem
are

computed as follows.
SWB

cache
is the sum of all the bit changes incurred dur-

ing successive fetches of fetch packets from the instruction
cache and calculated as follows:

SW
B
cache =

Nfp(B)�1X
i=1

dfp(FP
B
i ; FP

B
i+1) (1)

SWB

mem
is the sum of all the bit changes between adja-

cent operation fetches from the main memory. Since we
assumed that bmem is equal to bcache=Nop in Section III,
if we assume that there is only one cache miss for each
memory block and basic blocks are aligned by the cache
memory block size, SWB

mem
is calculated as follows:

SW
B
mem =

Nfp(B)X
i=1

Nop�1X
n=1

dop(OP
FPB

i
n ; OP

FPB
i

n+1 )

+

Nfp(B)�1X
i=1

dop(OP
FPB

i

Nop
; OP

FPB
i+1

1 )

+ dop(1; OP
FPB1
1 ) + dop(OP

FPB
Nfp(B)

Nop
;1) (2)

Assuming the load capacitance ratio of the internal in-
struction bus to the external instruction bus is 1

�
, SWB

is computed as follows using the Equations (1) and (2):

SW
B

= SW
B
cache + � � SW

B
mem

=

Nfp(B)�1X
i=1

SW
inter
FP (FP

B
i ; FP

B
i+1)

+

Nfp(B)X
i=1

SW
intra
FP (FP

B
i ) (3)



Symbol Meaning

Nfp(B) The number of fetch packets in a basic block B.

Nop The number of operations in a fetch packet. (This is a �xed value regardless of B.)

1 The bit vector where every bit is 1 and whose length is bmem.

FPB
i

The i-th fetch packet of a basic block B.

OP
FPB

i
n The n-th operation of FPB

i
.

(Within a fetch packet FPB
i
, the �rst operation is OP

FPB
i

1 and the last one is OP
FPB

i

Nop
.)

dfp(FP
B
i
; FPB

j
) The Hamming distance between the fetch packets FPB

i
and FPB

j
.

dop(OP
FPB

i
n ;OP

FPB
j

m ) The Hamming distance between the operations OP
FPB

i
n and OP

FPB
j

m .

TABLE 1

Notations used in Section IV.B

where

SW
inter
FP (FP

B
i ; FP

B
i+1) =

dfp(FP
B
i ; FP

B
i+1) + � � dop(OP

FPB
i

Nop
; OP

FPB
i+1

1 ) (4)

SW
intra
FP (FP

B
i ) =8><

>:
� � dop(1; OP

FPB
i

1 ) + Sop if i = 1

� � dop(OP
FPB

i

Nop
;1) + Sop if i = Nfp(B)

Sop otherwise

(5)

(where Sop = � �

Nop�1X
n=1

dop(OP
FPB

i
n ; OP

FPB
i

n+1 ))

Given a basic block B, the LOR problem is to
�nd an equivalent basic block B0 such that SWB

0

�

SWB
00

for all B00 2 EQ(B). If operations are re-

arranged, dfp(FP
B

i
; FPB

i+1), dop(OP
FP

B
i

Nop
; OP

FP
B
i+1

1 ) and

dop(OP
FP

B
i

n ; OP
FP

B
i

n+1 ) in Equations (4) and (5) are
changed.

C. Optimal Solution for LOR

We compute an optimal solution for the LOR prob-
lem by converting the LOR problem to the shortest path
problem between two special nodes, START and END.
Using the notations described in Table 2, given a ba-
sic block B, we construct a weighted directed graph
GB = fV;E;Wnode;Wedgeg, where

V = fSTART;ENDg [

Nfp(B)[
i=1

EQ(FPB
i )

= fSTART;ENDg [

Nfp(B)[
i=1

fFPB
i;1; � � � ; FP

B

i;Neq(FP
B
i
)
g,

E = f(v; w)
�� v = START; w 2 EQ(FPB

1 )g [

f(v; w)
�� w = END; v 2 EQ(FPB

Nfp(B)
)g [

f(v; w)
�� v 2 EQ(FPB

i ); w 2 EQ(FPB
i+1)

for 1 � i < Nfp(B)g,

Wnode(v) =

n
SW intra

FP
(v) if v 2 V � fSTART;ENDg

0 otherwise , and

Wedge(v; w) =

n
SW inter

FP
(v; w) if v; w 2 V � fSTART;ENDg

0 otherwise.

���
�
�
�
��
��
��
��

������������

������
��
��
��
��
��
��
��

��������

������
������
������
������
����������
����������
����������
����������
��������
��������
��������
��������
����
����
����
����

���
���
���
���
�����
�����
�����
�����
�������
�������
�������
�������
���
���
���
���

��
��
��
��
�����
�����
�����
�����
���
���
���
���

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

��
��
��

��
��
��

�
�
�

�
�
�

���
���
���

���
���
���

�
�
�
�

���������������������������������������������� ������������

��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�

���������������������������������������� ����

����������

������
������
������
������

����

����
����
����
����

��������
��������
��������

��������
��������
��������

����

����

����������
����������
����������
����������

����

FP FP FP

FPFP FPi,1 i,2 i,3

i+1,1 i+1,2 i+1,3

B B B

BB B

END

START

i+1

B(FP     )

FP
B

i,X

FPi+1,Y
B

i
(FP   )B

Y = N

X = Neq

eq

Fig. 5. A shortest path problem formulation of the LOR problem

(with node and edge weights omitted).

Figure 5 shows an example graph constructed by trans-
forming the LOR problem to the shortest path problem.
For each fetch packet FPB

i
, Neq(FP

B

i
) vertices are cre-

ated in GB , and for successive fetch packets, FPB

i
and

FPB

i+1, every pair of (FP
B

i;k
; FPB

i+1;k0 ) is connected by an

edge. We call the Neq(FP
B

i
) vertices created from the

fetch packet FPB

i
to be in the level i. In the graph GB ,

the distance of a path P = (START; v1; � � � ; vk;END) is

given by
P

k

i=1Wnode(vi)+
P

k�1

i=1 Wedge(vi; vi+1). The dis-
tance of path P is equal to SWB when each fetch packet
FPB

i
is reordered to vi for 1 � i � k.

An optimal solution of the shortest path problem de-
scribed above can be found by using a modi�ed shortest
path algorithm shown in Figure 6. The modi�ed shortest
path algorithm is based on the following theorem whose
proof is trivial.



Symbol Meaning

Nins(FP
B
i
) The number of instructions in FPB

i
.

I
FPB

i

j
The j-th instruction of FPB

i
(1 � j � Nins(FP

B
i
)).

Nop(I
FPB

i
j

) The number of operations in I
FPB

i
j

.

Neq(I
FPB

i
j

) The number of instructions that are equivalent to I
FPB

i
j

(Neq(I
FPB

i
j

) = (Nop(I
FPB

i
j

))!).

Neq(FPB
i
) The number of fetch packets that are equivalent to FPB

i
(Neq(FPB

i
) =
QNins(FP

B
i
)

j=1
Neq(I

FPB
i

j
)).

FPB
i;n

The n-th fetch packet in EQ(FPB
i
) (1 � n � Neq(FP

B
i
)).

TABLE 2

Notations used in Section IV.C

1: for i  0 to Nfp(B) f

2: /� for each vertex in the level i+ 1 �/

3: for k  1 to Neq(FP
B
i+1) f

4: SWmin := 1;

5: /� for each vertex in the level i �/

6: for j  1 to Neq(FP
B
i ) f

7: SWcur := dP (FPB
i;j

) + Wedge( FP
B
i;j ; FP

B
i+1;k)

8: + Wnode(FP
B
i+1;k);

9: /� �nd the minimum value �/

10: if ( SWmin > SWcur ) f

11: SWmin:= SWcur;

12: MinNode := j;

13: g

14: g

15: dP (FPB
i+1;k

) := SWmin;

16: /� store MinNode for the �nal path construction �/

17: MinPath[FPB
i+1;k] := FPB

i;MinNode;

18: g

19: g

Fig. 6. A modi�ed shortest path algorithm.

Theorem 1 Let a path P (FPB

i;j
) = (START, v1, � � �,

vi�1, FP
B

i;j
) be the shortest path from START to FPB

i;j
2

EQ(FPB

i
) and the distance of the path P (FPB

i;j
) be

dP (FPB
i;j

). Then the minimum distance of the path

P (FPB

i+1;k)=(START; v1; � � � ; vi; FP
B

i+1;k), dP (FPB
i+1;k

), is

given by

min1�j�Neq(FPBi )[dP (FPB
i;j

) +Wedge(FPi;j ; FPi+1;k)

+Wnode(FPi+1;k)]: (6)

In Figure 6, SWmin is a variable to store the minimum
distance of a path from START to FPB

i+1;k (in Line 15)
and SWcur is a variable to store the minimum distance of
a path from START to FPB

i+1;k that passes through FP
B

i;j
.

The shortest path is constructed by visitingMinPath in
reverse order. The complexity of the modi�ed shortest

path algorithm is given by O(Nfp(B) � (NFPB

eq
)2) where

NFPB

eq
= 1

Nfp(B)

PNfp(B)

i=1 Neq(FP
B

i
). NFPB

eq
is bounded

by Nop!.

V. Global Operation Rearrangement Problem

In the GOR problem, all the basic blocks in a program
are simultaneously considered to �nd a global optimal so-
lution. Since the LOR problem does not take account
of inter-block switching activity, simply solving the LOR
problem for each basic block does not minimize the num-
ber of bit changes for a complete program. In order to
compute an optimal solution for the GOR problem, we
need additional information on the dynamic behavior of
program execution. For example, we should know how
many times each basic block is executed, how often each
basic block experiences cache misses, and how basic blocks
are related each other, etc.

A. GOR Problem Formulation

If a program S is composed of basic blocks
bb1; bb2; � � � ; bbNbb(S), then the total number of bit changes
SWS from instruction fetches while executing the pro-
gram S is given as follows, using the notations described
in Table 3:

SW
S
=

Nbb(S)X
i=1

Nbb(S)X
j=1

SW
inter
BB (bbi; bbj) +

Nbb(S)X
i=1

SW
intra
BB (bbi) (7)

where

SW
inter
BB (bbi; bbj)

= w(bbi; bbj) � SW
inter
FP (FP

bbi
Nfp(bbi)

; FP
bbj
1 ) (8)

SW
intra
BB (bbi)

= w(bbi) � (

Nfp(bbi)�1X
i=1

SW
inter
FP (FP

bbi
i ; FP

bbi
i+1)

+

Nfp(bbi)X
i=1

SW
intra
FP (FP

bbi
i )) (9)

SW
inter
FP (FP

bbi
n ; FP

bbj
m ) = dfp(FP

bbi
n ; FP

bbj
m ) (10)

SW
intra
FP (FP

bbi
n )



Symbol Meaning

Nbb(S) The number of basic blocks in a program S.

w(bbi; bbj) The expected number of times that a basic block bbj is executed right after a basic block bbi.

w(bbi) The expected number of times that a basic block bbi is executed.

MB(FP
bbi
n ) The memory block that contains FP

bbi
n .

FP
MB(FP

bbi
n )

j
The j-th fetch packet in the memory block that contains FP

bbi
n .

R
MB(FP

bbi
n )

miss
The cache miss rate of the memory block MB(FP

bbi
n ).

TABLE 3

Notations used in Section V.A

Symbol Meaning

Neq(bb
S
i ) The number of basic blocks that are equivalent to bbSi (Neq(bb

S
i ) =

QNfp(bb
S
i
)

j=1
Neq(FP

bbS
i

j
)).

bbS
i;n

The n-th basic block in EQ(bbS
i
) (1 � n � Neq(bbSi )).

TABLE 4

Notations used in Section V.B

= � �R
mb
miss � (

Nfp(MB)X
j=1

Nop�1X
k=1

dop(OP
FPmb

j

k ; OP
FPmb

j

k+1 )

+

Nfp(MB)�1X
j=1

dop(OP
FPmb

j

Nop
; OP

FPmb
j+1

1 )

+ dop(1; OP
FPmb

1
1 ) + dop(OP

FPmb
Nfp(MB)

Nop
;1) ) (11)

(where mb =MB(FP
bbi
n ))

In Equations (8), (9), and (11), w(bbi; bbj), w(bbi) and
Rmb

miss
can be calculated by analyzing program execution

traces. When a cache miss occurs for a fetch packet F,
all the fetch packets in the missed memory block that
contains F are fetched from the main memory. Therefore,
in Equation (11), all the fetch packets in MB(FP bbi

n
) are

considered in computing the bit changes at the external
instruction bus. We assume that basic blocks are aligned
by the cache memory block size. In Equation (10), the
hamming distance between the last operation of FP bbi

n

and the �rst operation of FP
bbj
m is omitted because it is

included in Equation (11). Given a program S, the GOR
problem is to �nd an equivalent program S0 such that
SWS

0

� SWS
00

for all S00 2 EQ(S).

B. Optimal Solution for GOR

We solve the GOR problem in a similar fashion as the
LOR problem by transforming the GOR problem to the
shortest path problem. The main di�erence from the
LOR problem is that since a program generally contains
branches and loops, a constructed graph may span multi-
ple paths from a given node. In order to utilize the same
shortest path algorithm used in solving the LOR prob-
lem, we transform the constructed graph so that the new
graph has no branches and loops.

Using the notations described in Table 4, given a pro-
gram S, we construct a weighted directed graph GS =
fV;E;Wnode;Wedge; g, where

V = fSTART;ENDg [

Nbb(S)[
i=1

EQ(bbSi )

= fSTART;ENDg [

Nbb(S)[
i=1

fbbSi;1; � � � ; bb
S

i;Neq(bb
S
i
)
g,

E = f(v; w)
�� v = START; w 2 EQ(bbSEntry)g [

f(v; w)
�� w = END; v 2

[
i2ExitS

EQ(bbSi )g [

f(v; w)
�� v 2 EQ(bbSi ); w 2 EQ(bbSj ) for 1 � i; j � Nbb(S)

where bbSj is an immediate successor of bbSi

in a control ow graphg,

Wnode(v) =

n
SW intra

BB
(v) if v 2 V � fSTART;ENDg

0 otherwise , and

Wedge(v; w) =

n
SW inter

BB
(v; w) if v; w 2 V � fSTART;ENDg

0 otherwise

bbS
Entry

is the entry point of the program S and the

ExitS contains the indices of basic blocks that are the
exit points of the program S.
In order to reduce the computational complexity of the

GOR problem, we eliminate bbS
i;k

from GS if there exists

bbS
i;j

(where j 6= k) such that

FP
bbS
i;j

1 = FP
bbS
i;k

1 ; (12)

FP
bbS
i;j

Nfp(bb
S
i
)
= FP

bbS
i;k

Nfp(bb
S
i
)
, and (13)

SW intra
BB (bbSi;j) � SW intra

BB (bbSi;k) (14)



If bbS
i;k

satis�es Equations (12), (13), and (14), bbS
i;k

cannot be a part of an optimal GOR solution because
both bbS

i;j
and bbS

i;k
have the same SW inter

BB
value. For

each basic block bbS
i
, applying a modi�ed LOR algorithm

(with the �rst and last fetch packets �xed) Neq(FP
bb
S
i

1 )�

Neq(FP
bb
S
i

Nfp(bb
S
i
)
) times, we can construct a simpli�ed GS

with no redundant bbS
i;k
's. Eliminating redundant bbS

i;k

from GS , Neq(bb
S

i
) is e�ectively reduced to Neq(FP

bb
S
i

1 )�

Neq(FP
bb
S
i

Nfp(bb
S
i
)
). (For the rest of the paper, we use Ni

to represent Neq(FP
bb
S
i

1 )�Neq(FP
bb
S
i

Nfp(bb
S
i
)
) for a simpler

description.)
Once a simpli�ed GS is constructed, it is further con-

verted to remove branching nodes and looping nodes so
that the shortest path algorithm for the LOR problem can
be reused. Figure 7 illustrates how the branch merging
and loop rolling operations work on the GS graph using
the example control structures.

15

b4

b1

b4

15b1

Ub (2,3)

v1

v2

v2

b3

17

6

60 4852 53

15+17

3+3

b1 15

6

174b

79

6 88

97
20+18+4+6

(b) loop rolling

(a) branch merging

16 15 13 17

17

2

4 5

3

5 7

43

b2 2b 3 29 33 28 32

756

11 9 1012

b3

b2

18

20

45
6

3

b1 15

6 8

174b

79

24

25

4 7
4

6

(2,3)U
v

v1 v1

v4v4

v4

v3

v1

v4

v3 3v2

Fig. 7. E�ects of branch merging and loop rolling on the GS

graph.

Branch merging replaces two branch successor nodes vi
and vj with a new node vi�j . For the new node vi�j ,
Neq(bbi�j) is set to Neq(bbi)�Neq(bbj). For example, in
Figure 7.(a), the basic blocks b2 and b3 have 2 equiva-
lent basic blocks respectively. After the branch merging
operation is applied, v2�3 has 4 equivalent basic blocks.
The node v2 (with Wnode(v2) = 16) and the node v3
(Wnode(v3) = 13) are merged into the node v2�3 whose
Wnode value is 29 (= 16 + 13). The node v2�3 has an
edge with v1 and its edge weight is 6 (= 2 + 4).
After branch merging in Figure 7.(a), three basic blocks

b1,b2�3, and b4 can be merged into a single basic block
using the LOR algorithm. The resulting node has the
Wnode value of 78. We call this extra merging sequential

merging. If the basic blocks bi; � � � ; bj are merged into a
single basic block by a sequential merging operation, the

merged basic block has Neq(FP
bb
S
i

1 ) � Neq(FP
bb
S
j

Nfp(bb
S
j
)
)

equivalent nodes.
Loop rolling works in a similar fashion as sequential

merging. It merges loop body nodes vi; � � � ; vj into a new
node v[(i;���;j) as with sequential merging. The di�erence
is that loop rolling adds the weights of back edges in com-
puting the weight of the merged node. For example, in
Figure 7.(b), consider the basic blocks b2 and b3 that have
two equivalent basic blocks respectively. The nodes v2
and v3 are merged into the new node v[(2;3) whose Wnode

value is 60 (= 25 + 24 + 4 + 7). The node v[(2;3) has an
edge with the node v1, and its edge weight is 6 that is the
value of Wedge(v1; v2).
When nodes vi; vj are merged into a new node v0 by

branch merging or loop rolling, the following changes are
made to the GS graph:

V = V [ EQ(v0) �EQ(vi)� EQ(vj)

E = E [ f(v; w)jv 2 EQ(v0); w 2 EQ(vk)g

[f(v; w)jv 2 EQ(vh); w 2 EQ(v0)g

�f(v; w)jv 2 EQ(vi) [ EQ(vj); w 2 EQ(vk)g

�f(v; w)jv 2 EQ(vh); w 2 EQ(vi) [EQ(vj)g

�f(v; w)jv 2 EQ(vi); w 2 EQ(vj)g

�f(v; w)jv 2 EQ(vj); w 2 EQ(vi)g

for all k such that k 6= i; k 6= j;

and ((vi; vk) 2 E or (vj ; vk) 2 E), and

for all h such that h 6= i; h 6= j;

and ((vh; vi) 2 E or (vh; vj) 2 E)

Wnode(v
0) = Wnode(vi) +Wnode(vj )

+Wedge(vi; vj) +Wedge(vj ; vi)

Wedge(v
0; vk) = Wedge(vi; vk) +Wedge(vj ; vk)

for all k such that k 6= i; k 6= j;

and ((vi; vk) 2 E or (vj ; vk) 2 E)

Wedge(vh; v
0) = Wedge(vh; vi) +Wedge(vh; vj)

for all h such that h 6= i; h 6= j;

and ((vh; vi) 2 E or (vh; vj) 2 E)

Once the GS is converted to a graph with no branches
and loops, the shortest path algorithm used for the LOR
problem can compute the optimal solution.

C. Heuristic Solution for GOR

Finding an optimal GOR solution using the GS graph
constructed in the previous section may require an exces-
sive amount of memory and cycles. For example, for each
basic block bi, Ni node structures are required. Further-
more, when two basic blocks bi and bj are merged using
a branch merging operation, the required number of node
structures for the merged node increases to Ni �Nj . In
this section, we propose a heuristic solution for the GOR
problem which we call the GOR-H algorithm.



The GOR-H algorithm reduces the memory require-
ment and computing cycles signi�cantly by two heuristic
rules. First, all the basic blocks are not equally treated.
For each basic block bbi, we associate FR(bbi) which is
de�ned as follows:

FR(bbi) =
w(bbi) �Nfp(bbi)P

Nbb(S)

j=1 w(bbj) �Nfp(bbj)

FR(bbi) represents an e�ective fetch rate of the fetch
packets in the basic block bbi over all the basic blocks
of a program. Since a basic block with a larger FR(bbi)
value has a bigger e�ect on the total switching activity
during the instruction fetch phase, basic blocks with large
FR(bbi) values are more thoroughly reordered than ones
with small FR(bbi) values.
Second, for each basic block bbi, not all the equivalent

basic blocks in EQ(bbi) are tried to �nd an optimal solu-
tion. Only Ncand equivalent basic blocks are created and
included in GS . These Ncand equivalent basic blocks are
ones with up to the Ncand� th smallest switching activity
value among all the basic blocks in EQ(bbi).
Once the GS graph is constructed by the two rules

above, the rest of processing steps (that is, branch merg-
ing, loop rolling and sequential merging) are same as done
in the previous section. From the transformedGS , we can
solve the GOR problem using the LOR algorithm.

VI. Experiments

In order to evaluate how well the proposed operation
rearrangement technique works on application programs,
we have performed experiments using a VLIW digital sig-
nal processor, TMS320C6201 [7], from Texas Instruments.
The TMS320C6201 is a �xed-point DSP that can specify
eight 32-bit operations in a single 256-bit instruction. The
TMS320C6201 uses a compressed encoding with bcache
= 256. As benchmark programs, various DSP programs
were used. The proposed technique was implemented as
a separate post-pass tool, which takes as an input an exe-
cutable �le produced by the TI's TMS320C6x optimizing
C compiler and produces as an output the rearranged low-
power version of the same program.
We have measured the number of bit transitions dur-

ing the instruction fetch phase for each benchmark pro-
gram using a switching activity counter. Given an exe-
cutable �le with appropriate input data, a switching ac-
tivity counter program computes the number of bit tran-
sitions from both the internal and external busses during
the program execution using instruction address traces.
Instruction address traces for benchmark programs were
collected by a manual analysis of benchmark source pro-
grams.
Table 5 summaries the experimental results with se-

lected DSP benchmark programs. For each benchmark
program, the average number of bit transitions per in-
struction fetch (BT/IF) is computed. For �, we have used

100 [12]. We have compared BT/IF's among TI compiler
generated programs (the default column in Table 5), re-
arranged programs by the proposed LOR technique (the
LOR column in Table 5) and the GOR heuristic technique
(the GOR-H column in Table 5). We have used 100 for
Ncand in the GOR heuristic technique.

As shown in Table 5, our operation rearrangement tech-
nique reduces the number of bit transitions during the in-
struction fetch phase on an average by 34.3% compared
with the programs generated by the TI compiler. The
GOR heuristic technique outperformed the LOR tech-
nique by 2.9% more reduction in the switching activity.
For many benchmark programs, however, the LOR tech-
nique was quite e�ective, resulting in the almost equiva-
lent switching activity reduction as in the GOR heuristic
technique.

VII. Conclusions

In this paper we have described and evaluated an op-
eration rearrangement method during instruction fetches
in VLIW machines. The proposed method, which works
as a post-pass tool for compiled programs, reorganizes
the operation placement orders within VLIW instructions
such that the resulting program has the minimum num-
ber of bit transitions during instruction fetches. The ex-
perimental results show that the proposed rearrangement
technique can signi�cantly reduce the switching activity
during the instruction fetch phase in VLIW machines. For
our benchmark programs, the switching activity was re-
duced by 34% on an average.

In this paper, we considered the problem of modify-
ing operation orders for pre-compiled VLIW programs.
However, optimization decisions made during the com-
pilation process can a�ect the outcome of operation rear-
rangement. For example, depending on how instructions
are scheduled, the number of bit changes during the in-
struction fetch phase can vary signi�cantly. We plan to
investigate the phase-ordering problem between the op-
eration rearrangement and other optimization steps as a
next topic.

References

[1] A. Chandrakasan, T. Shung, and R. W. Broderson.
Low power CMOS digital design. IEEE Journal of

Solid State Circuits, 27(4):473{484, 1992.

[2] T. Conte, S. Banerjia, S. Larin, K. N. Menezes, and
S. W. Sathaye. Instruction fetch mechanisms for
VLIW architectures with compressed encodings. In
Proc. of the 29th IEEE/ACM Int. Symp. on Microar-

chitecture, pages 201{211, 1996.

[3] S. Devadas and S. Malik. A survey of optimization
techniques targeting low power VLSI circuits. In



Benchmark Bit transitions/IF Reduction

Program default LOR GOR-H LOR GOR-H

vector multiply 68.6 46.0 43.7 33.0% 36.3%

FIR8 86.8 59.3 56.7 31.6% 34.6%

FIRcx 79.5 60.6 60.5 23.9% 24.0%

IIR 71.7 52.1 51.7 27.4% 28.0%

lattice analysis 88.4 63.4 58.2 28.3% 34.2%

W vec 89.5 62.9 57.1 30.0% 36.3%

dotp sqr 79.2 44.5 44.3 43.9% 44.1%

minerror 50.6 33.2 31.3 34.3% 38.1%

biquad 78.1 54.6 52.3 30.0% 33.0%

Average 76.9 53.0 50.6 31.4% 34.3%

TABLE 5

Experimental results

Proc. of Int. Symp. on Low Power Electronics and

Design (ISLPED'97), pages 239{242, 1997.

[4] P. Faraboschi, G. Desoli, and J. A. Fisher. The latest
word in digital and media processing. IEEE Signal

Processing Magazine, 15(2):59{85, 1998.

[5] Fujitsu Microelectronics, Inc.
Fujitsu's new high-performance VLIW processor

cores. http://www.fujitsumicro.com/.

[6] R. Henning and C. Chakrabarti. High-level design
synthesis of a low power, VLIW processor for the IS-
54 VSELP speech encoder. In Proc. of Int. Conf. on

Computer Design (ICCD'97), pages 571{576, 1997.

[7] Texas Instruments. TMS320C62xx CPU and Instruc-

tion Set, 1997.

[8] Texas Instruments. TMS320C6000 Power Consump-

tion Summary, 1999.

[9] A. Klaiber. The technology behind the Crusoe pro-

cessor. Transmeta Corporation White Paper, 2000.

[10] M. T. Lee, V. Tiwari, S. Malik, and M. Fujita. Power
analysis and minimization techniques for embedded
DSP software. IEEE Trans. VLSI Systems, 5(1):123{
135, 1997.

[11] H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and
D. Ghosh. Techniques for low energy software. In
Proc. of Int. Symp. on Low Power Electronics and

Design (ISLPED'97), pages 72{75, 1997.

[12] E. Musoll, T. Lang, and L. Cortadella. Exploiting the
locality of memory references to reduce the address
bus energy. In Proc. of Int. Symp. on Low Power

Electronics and Design (ISLPED'97), pages 202{207,
1997.

[13] J.-M. Puiatti, J. Llosa, C. Piguet, and E. Sanchez.
Low-power VLIW processors: A high-level evalua-
tion. In Proc. of Int. Workshop - Power and Timing

Modeling, Optimization and Simulation (PATMOS

'98), pages 399{408, 1998.

[14] M. R. Stan and W. P. Burleson. Bus-invert coding
for low power I/O. IEEE Trans. on VLSI Systems,
3:49{58, Mar. 1995.

[15] C. L. Su, C. Y. Tsui, and A. Despain. Low power
architectural design and compilation techniques for
high-performance processor. In Proc. of COMP-

CON94, pages 489{498, 1994.

[16] V. Tiwari, S. Malik, and A. Wolfe. Compilation tech-
niques for low energy: An overview. In Proc. of Int.

Symp. on Low-Power Electronics, 1994.

[17] V. Tiwari, S. Malik, and A. Wolfe. Power analysis
of embedded software: A �rst step towards software
power minimization. IEEE Trans. VLSI Systems,
2(4):437{445, 1994.

[18] M. C. Toburen, T. M. Conte, and M. Reilly. Instruc-
tion scheduling for low power dissipation in high per-
formance microprocessors. In Proc. of Power Driven

Microarchitecture Workshop in conjunction with the

25th International Symposium on Computer Archi-

tecture (ISCA'98), 1998.

[19] H. Tomiyama, T. Ishihara, A. Inoue, and H. Ya-
suura. Instruction scheduling for power reduction in
processor-based system design. In Proc. of the 1998

Design Automation and Test in Europe (DATE '98),
pages 855{860, 1998.


