
Real-Time Imaging 2, 187–199 (1996)

1077-2014/96/030187 + 13 $18.00 © 1996 Academic Press Limited

UWICL: A Multi-Layered Parallel Image
Computing Library for Single-Chip
Multiprocessor-based Time-Critical
Systems

any software libraries have been created to support the commonly used primitive operations
needed in image processing, image analysis and image understanding. Generally, these librariesM are based on the single-layered Application Program Interface (API). While a single-layered

API provides the useful abstraction level to interact with the library and hides unnecessary implementation
details from the user, it does not produce an efficient program when a new algorithm is implemented by
assembling the selected existing library routines. The composed program suffers from the inefficient
data movement and additional loop control overhead. Furthermore, when a system employs a highly
integrated processor such as a single-chip multiprocessor, the single-layered API prevents the user
from fully utilizing the resources available in the system.

In this article, we describe the University of Washington Image Computing Library (UWICL), the
multi-layered high-performance parallel image computing library for Texas Instruments TMS320C80
Multimedia Video Processor (MVP)-based time-critical systems. Our goal in designing the UWICL
is to provide the TMS320C80 user community with efficient and flexible image computing library
routines. The UWICL provides three levels of APIs to the programmers under the multi-layered
organization, the MVP-level API, the DSP-level API, and APIs for data flow and processing cores. By
optimizing the processing core functions, we have achieved high performance in the individual func-
tion level, and by allowing the sub-primitive library routine composition, we can achieve efficient
image processing application development, avoiding most problems encountered in using the single-
layered library routines. The performance of the multi-layered organization vs. the single-layered one
is analysed and compared using the Canny’s edge detection algorithm as an example. The balanced
composition based on the multi-layered organization outperforms the single-layered composition by 14
to 41% depending on the system’s memory bandwidth available.

As an adjunct to the UWICL, we have also developed an integrated MVP performance monitor
(MPM). The MPM can identify the performance bottleneck of the TMS320C80 applications and can be
used in optimization by enabling the user to select the most efficient library composition level in
building the application with the UWICL. In order to provide the overall performance evaluation
model of the MVP, the simple MVP functional model has also been defined in the MPM. For the
image thresholding operation, the difference between the measured execution time and the analysis

Introduction

Many tasks in image processing and computer vision
applications require a large number of computing cycles.
For example, in order to convolve a 512 3 512 image with
a 5 3 5 kernel, over 13 million multiplications and addi-
tions are necessary. In addition, as applications require
more time-critical tasks (e.g., real-time road traffic monitoring
[1] and interactive telemedicine for remote consultation/
diagnosis), an even higher level of computing power is
necessary. To meet the heavy computing requirements of
various imaging applications in a cost-effective way, many
specialized programmable digital signal processors (DSPs)
such as Texas Instruments TMS320 series (e.g.,
TMS320C40 [2]) have been developed and used to support
these applications.

Traditionally, high-performance DSPs have several
unique architectural features optimized for signal process-
ing such as single cycle multiplier, multiple operations per
cycle and zero overhead looping. These performance-
enhancing features, however, often make it more difficult
for a compiler to produce the efficient code. So, DSPs are
typically programmed in assembly language for time-critical
applications. Because of the high development cost in
writing the efficient DSP programs, there exist many
software libraries which are optimized for specific DSPs.
For example, there are numerous libraries available for
Texas Instruments TMS320-series DSPs [3].

The library routines work as building blocks from which
more complex applications can be assembled quickly.
Typically, libraries are organized to provide the single-
layered Application Program Interface (API) to the
programmers. The single-layered API is defined in the
primitive operation level and provides the useful abstraction
level to interact with the library, hiding the implementation

details of the library routines. However, when an
application is developed by assembling the selected library
routines, its performance tends to suffer from the inefficient
data movement and additional loop overhead. This is
because the single-layered API library routine is usually
optimized at the individual function level. When several
library routines are combined, some portions of the library
routines become redundant. However, they are included in
the application because it is not possible for the user to
exclude redundant segments with the single-layered API.

For example, consider the simple image algebra, A + B * C,
where A, B and C are images of the same resolution, and
the + and * operators indicate pixel-by-pixel addition and
multiplication, respectively. If this is implemented by two
library routines, say, img_add() for an image addition
operation and img_multiply() for an image multiplication
operation, the resulting program shows generally poor
performance compared to the one programmed manually
without using library routines. The library routines
assembled may take extra steps for loop control and data
movement, and use redundant temporary space. If the
A + B * C computation were implemented without using
library routines, we could easily eliminate the additional
loop control and data movement, and dispense with
additional temporary space needed. Even though individual
routines are well optimized, the composition overhead
may limit the usefulness of library routines significantly,
especially when the library routines are designed to support
time-critical applications for specific DSPs.

Furthermore, the single-layered API is not appropriate
to utilize the available resources effectively in highly
integrated processors such as a single-chip multiprocessor
with large on-chip memory [4–7]. In such processors,
because of the large penalty associated with accessing
off-chip memory, it may be more efficient to apply a
sequence of primitive operations to one section of input

188 J. KIM AND Y. KIM

prediction is less than 2%. The design and implementation of the MPM, and the applicability and
usefulness of the MPM and MVP performance model are described in this article.

© 1996 Academic Press Limited

Jihong Kim* and Yongmin Kim†‡

*Department of Computer Science and Engineering, Box 352350
University of Washington, Seattle, WA 98195

E-mail: jihong@cs.washington.edu
†Department of Electrical Engineering, Box 352500

University of Washington, Seattle, WA 98195, USA
E-mail: kim@ee.washington.edu

‡Correspondence should be addressed to: Y. Kim.

data (while residing in on-chip memory) at a time in a tiled
fashion, instead of moving data back and forth to the
off-chip memory whenever each primitive operation in the
sequence is performed. However, since the single-layered
API is defined in the primitive operation level, it is not
possible to combine multiple library routines to process
only one section of input data at a time. For example, in
our example of A + B * C, it will be more efficient to
perform both addition and multiplication on the single
blocks from three images (which are brought into the
on-chip memory) at a time, avoiding unnecessary data
movements. Unfortunately, the single-layered API does not
allow this sub-primitive level library routine composition
because it was designed to process whole input images by
one primitive at a time.

In order to solve the inefficiency problem of the library
routine composition, the chaining mechanism was proposed
[8], which allows the delayed execution of library routine
invocation. By deferring execution, library routines can be
chained together in a sequence in the order in which they
are invoked, allowing some opportunities for further
optimization. For example, if chaining is requested for
A + B * C, more efficient codes can be dynamically
generated and linked into the executing program, or the
library can use one of the auxiliary routines for the
common combinations of operations. While the chaining
mechanism shows some promise of enhancing the
performance of the library routine composition, its general
applicability is somewhat limited. In order for the chaining
mechanism to be efficient and general, the efficient
dynamic code generation is necessary. But for many
advanced DSPs available today, the efficient code genera-
tion from the high-level languages is not always possible. If
the dynamic code generation and linkage are not supported
in the library, the chaining would benefit only in a finite
number of combinations that have been predetermined by
the library designers, not by the library users. Furthermore,
even with the chaining mechanism, the library interface is
still single-layered and could not support the sub-primitive
level library routine composition necessary for the efficient
programming of the highly integrated processors.

In this article, we describe the design and implementa-
tion of the University of Washington Image Computing
Library (UWICL), the multi-1ayered high-performance
parallel image computing library for Texas Instruments
TMS320C80 Multimedia Video Processor (MVP)-based
time-critical systems. The TMS320C80 is a single-chip
multiprocessor with many powerful and unique features
optimized for multimedia, video compression, image/signal
processing and computer graphics [9]. While the

TMS320C80 offers high performance over a wide range
of imaging applications, efficiently programming the
TMS320C80 to maximize its power is a major challenge.
Therefore, our main goal in developing the UWICL was to
provide the TMS320C80 user community with efficient and
flexible image computing library routines which support
most of the fundamental image computing algorithms. In
order to support the efficient library routine composition as
well as the highly optimized individual routines, and allow
more flexible library routine composition taking full
advantage of the highly integrated architecture of the
TMS320C80, the UWICL provides three levels of API to
the programmers, one of which is in the sub-primitive
operation level. We call this organization multi-layered API
approach. If applications are implemented by carefully
combining sub-primitive level library routines, their
performance could be significantly better than that of the
single-layered API organization. We demonstrate here the
advantage of the multi-layered API approach using the
Canny’s edge detection algorithm [10] as an example.

On the other hand, if sub-primitive level library routines
are carelessly composed, the resulting performance could be
worse than that of the single-layered API organization. In
order to help the UWICL library users select the most effi-
cient library composition level for their application, some
form of performance monitoring of the composed applica-
tion was necessary. We have developed an integrated
performance modeling and monitoring tool for the
TMS320C80, the MVP Performance Monitor (MPM), to
support performance monitoring of the composed applica-
tions as well as individual library routines. The MPM
identifies various performance bottlenecks for the given
TMS320C80 program such as cache misses, on-chip shared
memory contentions, and synchronization overhead. In this
article, we describe both the UWICL and MPM in detail.

The TMS320C80 Processor and MS5000 System

In this section, we briefly describe the TMS320C80 (MVP)
processor and a TMS320C80-based multimedia system, the
MediaStation 5000 (MS5000). The MS5000 system has
been used as a test system for the UWICL. (For the detailed
description, see references [9,12,13] for the TMS320C80
and reference [11] for the MS5000 system.)

Overview of TMS320C80 Processor

The TMS320C80 can be described as a single-chip, hetero-
geneous, MIMD multiprocessor connected via a crossbar to

UWICL: A MULTI-LAYERED PARALLEL IMAGE COMPUTING LIBRARY 189

multiple on-chip shared memory modules. It combines a
RISC processor and four advanced DSPs as well as an
intelligent direct memory access (DMA) controller and two
video controllers into a single-chip device. It is capable of
processing more than 2 billion operations per second
(BOPS) with the 2.4 Gbytes/sec on-chip data transfer rate.
In order to reduce the data transfer overhead with the
external memory/devices, the large on-chip memory
(25 2-kbyte modules) is provided as well.

Figure 1 shows a high-level block diagram of the major
functional blocks of the TMS320C80. The Master
Processor (MP) is a general-purpose RISC processor with
an integral IEEE 754 compatible floating-point unit. In a
typical operation mode, the MP serves as the main
supervisor and distributor of tasks within the TMS320C80.
Also, the MP is the preferred processor for performing
floating-point operations. The four Parallel Processors
(PPs) or advanced DSPs (DSP 0-3) have a highly parallel
architecture optimized for multimedia, video/image
compression, image/signal processing and computer
graphics. Each DSP is capable of performing up to 15
RISC-equivalent operations in a single clock cycle via a
long instruction word (64 bits) mechanism and has many
powerful features not found in conventional DSPs. They
include:

(i) Single-cycle accesses to large on-chip memory, allow-
ing two 32-bit data transfers per processor in every
cycle concurrently with data operations.

(ii) Three-operand 32-bit arithmetic and logical unit
(ALU) which can be optionally split into two 16-bit or
four 8-bit units.

(iii) Multiple flags (mf) register which captures the
multiple status results (flags) from split-ALU
operations, and expander which takes 1, 2, or 4 bits in
the mf register and replicates them 32, 16, or 8 times.

(iv) Barrel rotator which can pre-rotate an input to the
ALU by 0 to 31 bits.

(v) Three zero-overhead hardware loop controllers which
allow three levels of nested loops to be controlled
with no associated overhead.

(vi) Dedicated adders for address generation which can
also be used for arithmetic operations.

(vii) Conditional ALU and data transfer operations which
substitute many compare-and-branch operations.

The Video Controllers (VC) provide supports for
programmable video timing to control both capture and
display. The processors and on-chip shared-memory modules
are fully interconnected through the high-performance
crossbar switch network.

While five processors (the MP and four DSPs) provide
the computing power for the TMS320C80, the Transfer
Controller (TC), a dedicated memory controller with
sophisticated data transfer logic, manages all the data
transfer requests and cache misses from these processors.
The TC prioritizes different types of data transfer requests
and transfers data within and between the on-chip and
external memories. Because of the high data bandwidth
required for image computing algorithms and the overhead
of accessing off-chip memory directly, five processors
typically work with data brought into the on-chip shared
memory by the TC. Since the processors and the TC can
operate in parallel, most data movement by the TC is hidden
from the processors in the optimized implementation; while
a processor is working on the current block of data residing
in the shared memory, the TC is servicing a request for the
next block in parallel. The TC which works as a dedicated
memory controller for the whole MVP chip supports highly
sophisticated data transfer logic. The TC’s main data
transfer mechanism is a packet transfer (PT), a transfer of
data blocks between two areas of the MVP memory. Packet
transfers are initiated by the MP, DSPs, VC or external
devices as requested to the TC under the software or
hardware control. Once a processor has submitted a transfer
request, it can continue program execution without waiting
for the completion of the transfer. Many different modes of
packet transfers are available such as multi-dimensional
transfers, table-guided transfers, fill-with-value, and serial
register transfers (SRT) [13].

Overview of MS5000

The MS5000 system based on the TMS320C80 is a highly
integrated desktop multimedia system implemented on a
single personal computer (PC) plug-in board. It transforms

190 J. KIM AND Y. KIM

Figure 1. High-level block diagram of the TMS320C80.

a PC into a programmable high-performance multimedia
and imaging workstation, off-loading the host computer
from computer-intensive tasks using a TMS320C80, cus-
tom programmable logic devices and other supporting
chips. It supports real-time MPEG compression and decom-
pression [14] and still-picture processing [15] as well as
image processing and 2D/3D computer graphics. The
MS5000 has several built-in special I/O features such as a
video digitizer and a stereo audio coder/decoder for multi-
media applications as well.

Overview of UWICL

In programming the MVP, three main components are typi-
cally required. The first component is the communications
between the MP and the host and between the MP and the
DSPs. The host processor issues a service request to the
MP which in turn may off-load the image computing task
to the DSPs. Such a service request typically involves the
passing of parameters between the host, the MP and the
DSPs. The second component of an MVP program is the
transfer of data between the external memory and on-chip
shared-memory associated with each DSP. These transfers
usually take place by issuing packet transfer (PT) requests
to the TC. The third component is the processing of the
data inside the DSPs. The four DSPs can operate in
parallel, pipelined or many different modes.

Corresponding to these three components, we have
divided an MVP program into three hierarchical segments
in the UWICL. The overall structure of the UWICL pro-
gram and its mapping to the MVP are shown in Figure 2.

The first segment is the MP module whose main function is
to interact with the host and the DSPs. The MP module
includes MP functions, and a simple server program
(host-to-MP server in Figure 2) which interacts with the
host and invokes the appropriate MP function for servicing
a host request. The MP function receives the commands
and parameters such as the addresses of the input and the
output image locations from the host and is responsible for
dividing the task among the DSPs, passing the parameters
and issuing commands to the DSPs. These MP functions
form the highest level of three-layered APIs, the MVP-
level API, in the UWICL.

The second segment is the DSP-level functions. The
entry point for the DSP-level function is passed to the DSP
from the MP when the MP function configures a task on
each DSP. The DSP-level function also receives the
parameters from the MP and sets up all the required PTs to
move the data between the external memory and DSP’s
on-chip memory using the data-flow functions. Once the
data are available in the on-chip memory, the DSP-level
function calls the processing core functions for the actual
computing with on-chip data. The DSP-level functions
form the mid-level API of the UWICL while the processing
core and data-flow functions provide the lowest-level API.
The division of the DSP-level task into the processing and
data-flow parts is based on the typical operation mode of
many image computing algorithms, i.e., the repetition of
structured operations to the sequence of localized regions.
For example, in the convolution operation with a p 3 p
kernel, p2 multiplications and p221 additions are
repeatedly applied between the sequence of p 3 p sub-
images and the p 3 p kernel.

UWICL: A MULTI-LAYERED PARALLEL IMAGE COMPUTING LIBRARY 191

Figure 2. Overall structure of the UWICL program and its mapping to the MVP.

In programming these algorithms at the lowest level,
there are two main issues: (i) data-flow programming which
specifies how to divide an image into localized regions, and
when and where to move localized regions and their
processed output, and (ii) processing programming which
specifies how to produce the desired output utilizing data
from localized regions. Since most of data processing take
place in the processing core functions, the processing core
functions are implemented in the DSP assembly language
for the maximum efficiency.

A hierarchical organization of the UWICL for a simple
image invert operation is illustrated in Figure 3. The
host-level API, host_img_invert(), is linked to the
MVP-level API, mp_img_invert(), by the host interface
and related driver routines. The mp_img_invert()
routine divides the input image into four subimages, passes
the addresses of one input subimage and its corresponding
output subimage locations to each DSP and starts the
DSP-level routine, dsp_img_invert(), on each DSP. The
dsp_img_invert() routine then calls the data-flow library
routine, dataflow_set_up_row_by_row_transfer(),
which sets up the packet transfer tables for bringing one
row of the input image into on-chip memory and writing
back one row of the inverted image to the external output
image location. The actual data transfer takes place when
the dataflow_get_next_row(), dataflow_request_
next_row()* or dataflow_write_back_output_row()
routines are executed. These routines submit the prepared
packet transfers to the TC. Once data are read into on-chip
memory, the processing core library routine, proc_core_
img_invert(), inverts image data and stores the results
temporarily in on-chip memory before they are written
back to their output image locations.

The multi-layered and modular design approach used in
the UWICL provides the user with a flexible architecture.
The user may choose any of three hierarchical APIs for
building an application depending on the application’s
performance requirement and the user’s familiarity with
the MVP programming. A novice user may choose the
packaged MVP-level API which uses all the MVP
resources in a predetermined way. A more experienced user
who would like to customize the use of some of the MVP
resources may choose the DSP-level API. Still, a more
advanced MVP user who understands the intricacies of the
MVP’s data transfer protocol and DSP programming in
assembly may choose only the data-flow and processing

core API. The MVP-level API allows the users to build
their applications quickly with minimal coding and under-
standing. But the composed application program is large in
size, and the large external memory is necessary for storing
the temporary outputs. On the other hand, if the processing
core API is used and the composed application does not
introduce any new performance overhead, the better
performance can be obtained with the smaller code size and
no extra memory required. However, more custom coding
(both in the MP and DSPs) would be necessary.

UWICL Performance

In this section, we discuss the performance of the UWICL
library routines. Then, the UWICL implementation of the
Canny’s edge detection algorithm is described as an example
to demonstrate the efficient composition of a higher-level
routine under the UWICL’s multi-layered organization.

Performance of Individual Library Functions

The current release of the UWICL (Version 1.1) supports
94 image computing functions including most low-level
image processing functions such as filtering operators (e.g.,
convolution and median filtering), morphological operators
(e.g., erosion and dilation), histogram operators (e.g.,
histogram equalization), unitary transform operators (e.g.,
Fourier transform and discrete cosine transform) and

192 J. KIM AND Y. KIM

* Both routines read one row of the input image into on-chip memory.
However, in dataflow_get_next_row(), the DSP is busy-waiting until
the data transfer is completed while, in dataflow_request_next_row(),
the DSP continues its processing after submitting the packet transfer.

Figure 3. Multi-layered API organization for an image invert
operation.

geometric operators (e.g., rotate, zoom and warping). It
includes arithmetic and logical operators (e.g., addition and
exclusive-OR) and segmentation operators (e.g., threshold)
as well. Table 1 shows the execution time of the selected
UWICL MVP-level library routines implemented on the
MS5000 with the TMS320C80 running at 50 MHz.
512 3 512 8-bit test images have been used. As listed in
Table 1, most functions run in real time (less than 33 ms).
All these functions utilize four DSPs operating in parallel. In
most functions, each DSP is assigned with a quarter of the
image, and runs to its completion independent of the others.

High performance of the UWICL routines shown in
Table 1 also indicates that no significant degradation in
performance is introduced in the individual function level
because of the UWICL’s multi-layered organization. In
order to measure the overhead of using the multi-layered
organization over the single-layered full assembly
implementation in the DSP level, we have implemented
several functions in both organizations and compared their
performance. Because of the added flexibility in the
multi-layered organization, the performance of the UWICL
routines cannot exceed that of the full assembly implementa-
tion. However, the performance difference was negligible
because of the efficient hierarchical decomposition in the
UWICL as well as the highly optimized implementation of
processing core library routines. For most functions, the
performance difference between the multi-layered and
single-layered organizations was less than 5%.

In implementing the processing core library routines,
several key features of the TMS320C80 described earlier
are heavily utilized to speed up execution. For example,
consider the thresholding operation which produces an
8-bit binary output image from an 8-bit input image. If the
input pixel is greater than or equal to the threshold value,
the corresponding output pixel is set to the user-selected
non-zero output pixel value. Otherwise, they are set to zero.
In the first instruction, the 32-bit ALU is split into four
8-bit units, and the differences of four input pixels and a
threshold value are calculated simultaneously in each DSP.
The carry bits from this operation are saved in the mf
register. The carry bit is set if the input pixel is larger than
or equal to the threshold value. In the next instruction,
the saved four least significant bits of the mf register are
replicated 8 times using the expander, and four bitwise
logical AND operations with the user-specified output
pixel value are performed. If the carry bit was 1, the bit-
wise logical AND operation is performed between the
user-specified pixel value and 0xFF. If the carry bit was 0,
the bitwise logical AND operation is performed between
the user-specified pixel value and 0x00. Therefore, thresh-

olding can be performed in 0.5 cycles per pixel on each
DSP. With four DSPs running concurrently, 8 pixels can be
thresholded in every cycle. This demonstrates the MVP’s
processing power when programmed in an optimal fash-
ion. A similar technique is used as well to optimize the
implementation of 3 3 3 median filtering.

Example Application: Canny’s Edge Detection Algorithm

The Canny’s edge detection algorithm is a popular method
of computing higher-precision edge images [10]. It is based
on a computational approach to edge detection. Its various
implementations differ in several details such as how to
establish the gradient direction and how to suppress non-
maximal edge points. Our implementation is similar to the
one described by Canny [10] and involves the following
tasks:

task 1: convolve the input image I by a 3 3 3 horizontal
Canny kernel to get the horizontal component of the
gradient image, Gx.

task 2: convolve the input image I by a 3 3 3 vertical
Canny kernel to get the vertical component of the
gradient image, Gy.

task 3: compute the absolute value images, |Gx| and |Gy|.
task 4: compute the approximate gradient magnitude

image M by adding |Gx| and |Gy|.
task 5: compute the approximate gradient direction

image D by encoding one of four directions (N-S,
E-W, NE-SW, and NW-SE) for each pixel.

task 6: refine the rough boundary by non-maximum sup-
pression. For each pixel I(i, j), the gradient
magnitude M(i, j) is compared with two neighboring
pixels’ (along the gradient direction D(i, j)) gradient
magnitude values. If the gradient magnitude M(i, j) of
the pixel I(i, j) is the maximum among three pixels, it
is unchanged. Otherwise, it is set to zero. The final
gradient magnitude image contains the edge image.

UWICL: A MULTI-LAYERED PARALLEL IMAGE COMPUTING LIBRARY 193

Table 1. Execution time of various UWICL MVP-level library
routines on the MS5000 system with a 512x512 8-bit image

Operation Execution time (ms)

Thresholding 3.6
3 3 3 convolution 19.4
3 3 3 median filter 10.7
8 3 8 block-based discrete cosine transform 9.5
16-bit to 8-bit mapping 8.5
Binary erosion or dilation with a 5 3 5 structuring

element 12.7
Wavelet transform of up to 6 levels with

Daubechies’ D4 wavelet 27.7
Histogram equalization 8.3

Figure 4 shows the input image and its corresponding edge
image produced by the above algorithm implemented on
the MS5000 system.

Because of the UWICL’s multi-layered architecture,
there are many variations in mapping these tasks into the
UWICL library routines. For example, all the operations
can be mapped to the MVP-level functions or to the
processing core functions. For the best performance, we
have implemented the above six tasks into two MVP-level
functions, one for tasks 1–5 and the other for task 6 as
shown in Figure 5. This division of tasks resulted in a
balanced implementation between the processing and data
transfer times and did not introduce any new overhead from
combining the five processing core functions in construct-
ing the first MVP-level function. If we had combined all six
tasks in the processing core function level, we would have
introduced extra cache misses in each iteration because of
the large program size, and the resulting performance
would have been much worse than that of using two
MVP-level functions.

In order to demonstrate the composition efficiency of
the UWICL’s multi-layered approach over the single-
layered one, we have also implemented the Canny’s edge
detection by chaining six separate MVP-level functions. If
we had used the single-layered API approach for the
UWICL, the Canny’s edge detection algorithm would
have been implemented this way. Table 2 summarizes the
execution time of two implementations measured on the
MS5000. A 512 3 512 input image was used, and the
3 3 3 window was used for convolution and non-maximal
suppression. The multi-layered columns correspond to the

balanced implementation with two MVP-level functions
while the single-layered columns correspond to the imple-
mentation with six MVP-level functions. The balanced
composition outperforms the full MVP-level composition
(thus, the single-layered API approach) by 14 to 41%
depending on the data bandwidth available. The balanced
composition avoids any extra I/O time by sharing the
common data flow for the five tasks, thus improving
performance significantly over the single-layered com-
position, especially when slower and narrower memories
are used as the source and destination. The performance
advantage of the multi-layered organization is amplified
when the off-chip data bandwidth is limited because the
MVP-level functions need to spend more time in data
I/O.

194 J. KIM AND Y. KIM

(a) (b)

Figure 4. Canny’s edge detection example: (a) original image and (b) edge image.

Figure 5. Balanced UWICL implementation of the Canny’s edge
detection algorithm.

MVP Performance Monitor (MPM)

The MVP is a multiprocessor system even though it is a
single-chip DSP. In order to develop an efficient MVP
program, a programmer should have a good understanding
of not only the algorithm and DSP’s intricacies, but also
the overall system’s performance. Without the system-
wide performance understanding, the MVP program can
suffer from the overheads such as the resource conflicts
(e.g., on-chip shared-memory access contentions among
the DSPs) and the unbalanced synchronization (e.g., one
DSP’s excessive waiting for the other DSPs). These
extra overheads could significantly degrade the overall
performance of the MVP program. Unfortunately, these
overheads are often difficult to predict and identify even
for the experienced programmers. For example, in the
MVP, each DSP can access all the on-chip shared-memory
modules except others’ instruction caches through the
crossbar switch network. No (or minimal) crossbar switch
contentions among the DSPs would be desirable for
efficient algorithm implementation. However, it is difficult
without any systematic tool support to flnd out the number
of contentions in the MVP program. Even if the number of
contentions were found, it would not be easy to determine
if the crossbar contention is really the performance bottle-
neck.

The MVP Performance Monitor (MPM) has been
developed to help the MVP programmers to understand the
potential problem areas easily and identify performance
bottlenecks among potential candidates. It supports three
types of performance monitoring (cache monitoring,
contention monitoring and custom monitoring) and works
with the simple MVP performance model. The MPM
could improve not only the performance of custom MVP
programs, but also that of an application implemented by
composing the UWICL library routines. As discussed

earlier, the application implemented from the processing
core API can be more efficient than one built at the higher-
level APIs such as MVP-level API. However, if the
composition of the processing core library routines intro-
duces any new performance penalty such as extra cache
misses due to the increased code size of the developed
application, the performance might be worse than that of
the application implemented from the higher-level library
routines. For example, in the Canny’s edge detection
algorithm, if the combined processing cores had not fitted
nicely into the DSP’s instruction cache, the extra cache
misses that occur in each iteration would have degraded the
overall performance significantly. The MPM can be used to
detect such cases and help the application developers to
select the most efficient API level for their applications.

Architectural Overview of MPM

The overall architecture of the MPM is shown in Figure 6.
The MPM was designed to work together with the Texas
Instruments MVP Debugger tool which is widely used in
developing the MVP program. The core of the MPM is
the extended MVP simulator. The extended MVP simula-
tor consists of the MVP C++ simulator which was
developed by Texas Instruments, the customized MPM
extensions to the MVP C++ simulator which include three
types of monitoring support and TC debugging capability,
and the communication and synchronization module
(CSM) which is responsible for communicating with the
MPM user interface. The MPM user interface (which was
implemented using the Tcl/Tk languages) spawns a child
process which monitors the user-specified monitoring
event [16]. The communication between the MPM user
interface and the monitoring process is supported using
the send command from the Tk language while the
communication between the monitoring process and the

UWICL: A MULTI-LAYERED PARALLEL IMAGE COMPUTING LIBRARY 195

Table 2. Execution time of two implementations of the Canny’s edge detection algorithm on the MS5000 using the UWICL library
routines

Faster memorya Slower memoryb

Multi-layered Single-layered Multi-layered Single-layered

Horizontal convolution 19.8 ms 19.8 ms 19.8 ms 19.8 ms
Vertical convolution 19.8 ms 19.8 ms 19.8 ms 19.8 ms
Two absolute values 1.6 ms 7.2 ms 1.6 ms 21.4 ms
Two additions 0.8 ms 5.4 ms 0.9 ms 16.0 ms
Gradient direction 5.4 ms 5.6 ms 5.4 ms 16.4 ms
Non-maximal suppression 17.6 ms 17.6 ms 17.6 ms 17.6 ms

Total 65.0 ms 75.4 ms 65.1 ms 111.0 ms

Difference 10.4 ms 45.9 ms

a64-bit bus width and 2 cycles per access
b32-bit bus width and 3 cycles per access

CSM of the extended MVP simulator is supported through
the shared memory and message type UNIX interprocess
communication utilities.

Figure 7 shows the snapshot of the MPM environment
with a cache monitoring example. The whole simulation
starts from the MPM user interface (Area 1). Once the
MPM is started, the TI MVP Debugger is started (Area 2)
for simulation of the MVP program. The user typically
sets a breakpoint at the start address of a code segment S
which will be monitored by the MPM. If the simulation is
stopped at the breakpoint, the user selects an appropriate
type of monitoring from the MPM user interface, and the
user interface for the selected monitoring event appears
(Area 3). In Figure 7, cache monitoring was selected. The
user then sets another breakpoint at the end address of
the code segment S and continues simulation. When the
simulation stops, the user can examine the monitoring
result on the separate window (Area 4). For cache moni-
toring, information on the cache misses for the code
segment S is displayed, including the total number of
cache misses, the total cache-miss service time, the total
number of non-compulsory cache misses, and the total
cache-miss service time for non-compulsory cache
misses. It also displays the summary of all the cache
misses in the table where the source and destination
addresses for the cache miss, the average service time for
each cache miss and the frequency of the cache miss are
displayed. Based on this information, the user can restruc-
ture the MVP program or reduce the program size to
improve the performance. Contention monitoring works
in a similar fashion and displays the total number of
crossbar switch contentions for each processor.

Custom monitoring is different from cache and conten-
tion monitoring in that the event in custom monitoring is

defined by the user, not predetermined by the MPM. In
the current version of the MPM, a user-defined event is
specified by DSP checkpoints which are the addresses of
interesting DSP instructions. For example, when the user
is interested in knowing how long the DSP waits for the
packet transfer completion, the address of the DSP pol-
ling instruction which checks for the packet transfer
completion could be set as a DSP checkpoint. The result
from custom monitoring is displayed in a graph, e.g.,
Figure 8. The x-axis of this graph indicates the MVP
cycle numbers. In this example, the DSP polling instruc-
tion for the packet transfer completion was set as the
DSP checkpoint. Figure 8 shows that this polling instruc-
tion is executed for a large number of cycles (a solid line
in the lower row), meaning that the DSP3 is wasting a
number of cycles waiting for the completion of the
requested packet transfer. The lines in the upper row of
Figure 8 indicate the status of the packet transfers sub-
mitted by the DSP3. The thick line indicates the time
interval when the packet transfer service is delayed
because the TC is servicing the higher priority requests
while the thin line shows the time interval when the
requested packet transfer is actually serviced by the TC.
The user can measure each of these intervals by clicking
the mouse button.

196 J. KIM AND Y. KIM

Figure 6. Overall software architecture of the MPM.

Figure 7. Snapshot of the MPM environment.

MVP Functional Model

In designing a functional model for the MVP, we have
assumed a simple interaction model between the MP and
the DSPs: they interact with each other only when the MP
initiates the DSPs and the DSPs inform the MP of the
completion of their subtasks. With this assumption, the
execution time, tMVP,A, of a task A on the MVP with p DSPs
is given by

where tmp 2 initialization is the MP’s initialization time
including the DSP subtask configuration and parameter
construction, and tmp 2 wrapup is the MP’s time spent in
cleaning up after all the subtasks are completed. The DSP’s
waiting time before getting started by the MP is
tDSP(k),invoke 2 waiting, and the execution time of a subtask on
the DSP is tDSP(k),subtask(A,k). Figure 9 illustrates the MVP
functional model with a task running on four DSPs. In this
example, the DSP1 takes the most time to complete its
subtask.

The subtask execution time tDSP(k),subtask(A,i) on the DSP(i)
is given by

where tcompute is the processing time for subtask(A,i) and ti/o
is the data transfer time for subtask(A,i). If ti/o is greater
than tcompute, the subtask is I/O-bound. Otherwise, it is
compute-bound. tcompute and ti/o can be defned by

where tpure 2 processing and tpure 2 i/o are the pure processing
and data transfer time without any delay, respectively.
tdsp 2 xbar 2 cont and ttc 2 xbar 2 cont are time delayed because
of the crossbar switch contentions with other processors.
tcache 2 miss 2 overhead is the total cache-miss service time, and
tpt 2 waiting 2 overhead is the total waiting time related to the
packet transfer services. tpt 2 waiting 2 overhead includes the
initial waiting time (before the submitted packet transfer is
actually serviced by the TC) and the suspended service
time (because of the TC being preempted by other higher-
priority TC requests). tbusy 2 waiting is the total waiting time
related to any type of synchronization among the DSPs.
ti/o 2 waiting is the total waiting time before the first data
transfer request is submitted to the TC from the DSP.
tpt 2overhead is the total overhead related to managing the
packet transfer information, and tmem 2 overhead is the total
overhead related to the external memory system organiza-
tion and depends on the memory type, page size, refresh
rate. Figure 10 illustrates the subtask functional model. The
example subtask runs on the DSP1 and is compute-bound
because tcompute is larger than ti/o.

Table 3 summarizes how to determine 13 parameters
used in the MVP functional model. There are four
categories. The parameters in the first group are ignored
in performance evaluation since their contribution is negli-
gible in the most image computing routines. For example,
tDSP(i),invoke 2 waiting is very small because all the DSPs start
almost simultaneously. The parameters in the second group
are manually calculated by analysing the DSP program
and system organization. tpure 2 processing and tpure 2 i/o, for

t t t t

t t

t

i o pure i o i o waiting pt overhead

mem overhead tc xbar cont

pt waiting overhead

/ / /= + + +

+ +

()

− − −

− − −

− − 4

t t t

t t

compute pure proces g dsp xbar cont

cache miss overhead busy waiting

= + +

+ ()
− − −

− − −

sin

3

t t t /DSP i subtask A i compute i o() () = () (), , max , 2

t t t

t

t

MVP A mp initialization mp wrapup

p
DSP k invoke waiting

DSP k subtask A k

k i i

,

,

, ,

max

,...,

= + +

∈{ } +(
) ()

− −

() −

() ()

1

1

UWICL: A MULTI-LAYERED PARALLEL IMAGE COMPUTING LIBRARY 197

Figure 8. An example display for the custom monitoring result.

Figure 9. An example task analysis with the MVP functional
model of equation (1).

example, are easily computed from the DSP program once
the data-flow and processing core functions are finalized.
The parameters in the third group are experimentally
measured from the actual system. tpt 2 overhead is computed
by multiplying the measured overhead per packet transfer
(about 15 cycles) with the total number of packet transfer
submissions in the DSP program. ti/o 2 waiting is determined
by actually measuring the execution time of the DSP
initialization part which is executed before any data transfer
is started. The parameters in the last group are monitored
by the MPM. They include the overheads from cache
misses, crossbar switch contentions, synchronization
among the processors, and idling packet transfer service
cycles.

Example: Image Thresholding

In order to demonstrate the accuracy of the MVP func-
tional model and the MPM’s monitoring capability, the
performance of the MVP-level image thresholding library
routine on the MS5000 was analysed in detail. As
described earlier, image thresholding was very efficiently
implemented on the DSPs and the overall implementation
becomes I/O-bound. Table 4 lists the calculated, measured
and MPM-monitored times of various I/O parameters
derived for a single DSP, DSP1, with four DSPs running in
parallel. The total subtask execution time on the DSP1
with the functional model was 3.65 ms, 72% of which
come from tpt 2 waiting 2 overhead. This large tpt 2 waiting 2 over-

head value is caused by the long waiting time before the TC
can start servicing packet transfers submitted by the DSP1.
Due to the I/O-bound nature of the image thresholding
algorithm on the MVP, the TC is usually servicing other
DSPs’ packet transfers when the DSP1 submits its packet

transfer requests. We have measured the actual execution
time on the MVP of the MS5000 system (with four DSPs
running in parallel) to compare with the analysis result.
The measured execution time was 3.60 ms, a 1.4%
deviation from the predicted execution time. The closeness
of two numbers shows the accuracy of the model and the
MPM.

Conclusion

We have described the UWICL, a multi-layered parallel
image computing library for the TMS320C80-based time-
critical systems. Our goal in designing the UWICL was to
provide the TMS320C80 user community with efficient
and flexible image computing library routines. The
UWICL provides three levels of APIs to the programmers
under the multi-layered organization, the MVP-level API,
the DSP-level API and APIs for data flow and processing
cores. By optimizing the processing core functions, we
have achieved high performance in the individual func-
tion level. By allowing the sub-primitive library routine

198 J. KIM AND Y. KIM

Figure 10. An example subtask analysis with the subtask func-
tional model of equation (2).

Table 3. Summary on how the MVP functional model parameters
are determined

Category Parameter

Ignored tmp 2 initialization
tmp 2 wrapup

tDSP(i),invoke 2 waiting

Calculated tpure 2 processing
tpure 2 i/o

tmem 2 overhead

Measured ti/o 2 waiting
tpt 2 overhead

MPM Monitored tdsp 2 xbar 2 cont
ttc 2 xbar 2 cont

tcache 2 miss 2 overhead
tbusy 2 waiting

tpt 2 waiting 2 overhead

Table 4. Performance analysis example with an image thresholding
operation

Category Parameter Time (ms)

Calculated tpure 2 i/o 0.66
tmem 2 overhead 0.12

Measured ti/o 2 waiting 0.11
tpt 2 overhead 0.15

MPM Monitored ttc 2 xbar 2 cont 0.00
tpt 2 waiting 2 overhead 2.61

total 3.65

composition, we can achieve efficient image processing
algorithm developments, avoiding most problems encoun-
tered in using the single-layered library routines, such as
additional data movement, extra memory requirement and
extra loop control overhead. Using the Canny’s edge
detection algorithm, we have demonstrated the process
and performance advantage of the multi-layered organiza-
tion over the single-layered one in composing new
applications using the UWICL routines. Two implementa-
tions of the Canny’s edge detection algorithm showed that
by sharing the common data flow in several processing
cores, we can improve the performance of the composed
application significantly compared to the performance
with the single-layered library routines, especially when
the I/O bandwidth is limited. Furthermore, two lower-
level APIs allow the user to configure the TMS320C80
flexibly with many different combinations of the DSPs
and subtasks.

As an adjunct to the UWICL, we have also developed
the MPM, an integrated MVP performance monitor. The
MPM can identify the performance bottleneck of the
TMS320C80 applications and can be used in optimization
by enabling the user to select the most efficient API level in
building the application using the UWICL. In order to
provide the overall performance evaluation model of the
MVP, the simple MVP functional model was also defined
in the MPM.

Currently, we are extending both the UWICL and the
MPM. The first and second releases of the UMCL were
distributed in 1995 through the industry consortium for the
UWICL, and we are working for the next release in 1996.
The next release will support many more image computing
algorithms such as color image processing, color space
conversion, image registration and generalized warping.
Over the next few years, we are planning to support enough
functions to implement the PIKS foundation compliance
profile (of ISO/IEC image processing and interchange
standard) which specifies a minimally compliant level of
PIKS functionality [17,18]. The MPM is also going to be
extended to support the custom monitoring more efficiently.
For example, in the current version, only one type of the
user-defined event can be specified for a single monitoring
session. It can be extended to support the multiple number
of the user-defined events simultaneously within one
monitoring session.

References

1. Ali, A. T. & Dagless, E. L. (1992) A parallel processing
model for real-time computer vision-aided road traffic moni-
toring, Parallel Process Lett. 2(3): 257–264.

2. Texas Instruments (1991) TMS320C4x User’s Guide.
3. Texas Instruments (1994) TMS320 Software Cooperative: A

Library of Standard DSP Building Blocks.
4. Araki, T., Toyokura, M., Akiyama, T., Takeno, H., Wilson,

B. & Aono K. (1994) Video DSP architecture for MPEG2
codec, in Proceedings IEEE 1994 International Conference
on Acoustics, Speech and Signal Processing, pp. 417–420.

5. Veendrick, H., Popp, O., Postuma, G. & Lecoutere, M.
(1994) A 1.5 GIPS video signal processor (VSP), in
Proceedings IEEE 1994 Custom Integrated Circuits
Conference, May 1994, pp. 95–98.

6. Goodenough, J., Meacham, R. J., Morris, J. D., Seed, N. L. &
Ivey, P. A. (1994) A general purpose, single chip video signal
processing (VSP) architecture for image processing, coding
and computer vision, in Proceedings IEE Colloquium on
Parallel Architectures for Image Processing, May 1994, pp.
1–4.

7. Young, I. & Tomisawa, O. (1993) Microporcessors in the
year 2000, in IEEE International Solid-State Circuits
Conference Digest of Technical Papers, pp. 202–203.

8. Cok, D. R. & Cok, R. S. (1992) A chaining and extension
mechanism for image processing software, in Proceedings
SPIE Image Processing and Interchange: Implementation
and Systems, 1659, pp. 192–203.

9. Guttag, K., Gove, R. J. & Van Aken, J. R. (1992) A single-
chip multiprocessor for multimedia: The MVP, IEEE
Computer Graph. Appl., 12(6): 53–64.

10. Canny, J. (1986) A computational approach to edge detec-
tion, IEEE Transactions on Pattern Anal. Mach. Intell., 8(6):
679–698.

11. Lee, W., Kim, Y., Gove, R. J. & Read, C. J. (1994)
MediaStation 5000: integrating video and audio, IEEE
MultiMedia, 1(2): 50–61.

12. Gove, R. J. (1994) The MVP: a highly-integrated video
compression chip, in Proceedings 4th IEEE Data
Compression Conference, pp. 215–224.

13. Texas Instruments (1994) TMS320C8x (MVP) Online
Reference (Release 1.00).

14. Le Gall, D. (1991) MPEG: a video compression standard for
multimedia applications, Comm. ACM, 34(4): 46–58.

15. Wallace, G. K. (1991) The JPEG still picture compression
standard, Comm. ACM, 34(4): 30–44.

16. Ousterhout, J. K. (1994) Tcl and the Tk Toolkit. Reading,
MA: Addison-Wesley, 1994.

17. Image processing and interchange functional specification,
part 2: programmer’s imaging kernel system application
program interface, ISO/IEC, JTC1 SC24 IS 12087-2, 1994.

18. Pratt, W. K. (1992) An overview of the ISO/IEC program-
mer’s imaging kernel system application program interface,
in Proceedings SPIE Image Processing and Interchange:
Implementation and Systems, 1659, pp. 117–129.

UWICL: A MULTI-LAYERED PARALLEL IMAGE COMPUTING LIBRARY 199

