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Abstract

For NAND flash memory-based systems, garbage col-
lection remains a major performance bottleneck. To de-
crease the garbage collection overhead, data separation
techniques based on update frequency are widely used.
However, from our observations using the oracle predic-
tor on data update times, separating data by their update
times rather than data with high update frequencies is a
more important factor in reducing garbage collection over-
head. Based on the observations, we propose a novel update
time-based data separation technique. The proposed tech-
nique predicts what data will be updated together based on
program contexts hints which can record data update be-
haviors. Our technique finds program contexts which gen-
erate data with similar update times, and groups the pro-
gram contexts by estimated update times. A flash transla-
tion layer (FTL) using the proposed technique can reduce
garbage collection overhead by allocating data with similar
update times to the same blocks. Our experimental results
show that our technique can reduce the total execution time
of garbage collection on average 58% over a data update
frequency-based approach.

1. Introduction

NAND flash memory is widely used as a storage de-
vice from embedded systems to high-end enterprise servers.
Because of its many attractive characteristics for mobile
storage devices such as light weight, low power consump-
tion, durability, and high performance, it has been widely
used for mobile embedded systems. As the cost per byte
is falling while the storage capacity is increasing, large-
capacity NAND flash memory devices such as solid state
drives (SSDs) are more commonly employed for high-end
desktops and enterprise storage servers.

Since NAND flash memory does not allow in-place up-
date operations, garbage collection is necessary to find in-
valid blocks (whose data were replaced with more recent
writes to different blocks) and erase them so that new data
can be written into them. Since garbage collection involves
slow erase operations and many read and write operations,
which can be quite slow, high-performance NAND flash
memory-based systems require an efficient garbage collec-
tion support. For example, most systems with NAND flash
memory activate garbage collection during an idle state as
a background process. Nevertheless, garbage collection can
decrease the performance of NAND flash memory signifi-
cantly (e.g., by about 20% [3]).

In order to minimize the garbage collection overhead,
many techniques have been proposed [5]. Regardless of
garbage collection algorithms used, moving valid data from
selected victim blocks to new blocks during garbage collec-
tion takes a significant portion in the total execution time
of a garbage collection algorithm. Therefore, reducing the
total number of copied data from the victim blocks is a key
factor in improving the performance of a garbage collection
algorithm. To reduce the amount of copied data from the
victim blocks, a common approach is to separate data based
on their characteristics so that the number of dead blocks
(which have no valid data) or near-dead blocks (which have
few valid data) can be increased. The more dead or near-
dead blocks are generated, the more likely that they can be
selected as victim blocks during garbage collection, thus re-
ducing the garbage collection overhead.

One of the most widely used data separation heuristics
is to separate data by their update frequency. The basic
idea of this data separator is to classify data based on their
write temporal locality, and treat data with different tempo-
ral locality in a different fashion [2, 3]. This technique as-
sumes that data with high write temporal locality are likely
to be invalidated soon by successive update requests, thus
the number of dead blocks can increase if data with high



locality are gathered in the same block. For example, the
simplest version of this locality-based data separator divides
data into two groups, hot data and cold data, based on the
number of updates in a given time window. When data are
written to NAND flash memory either by a write request or
by a move request from a garbage collector, hot data and
cold data are written in separate hot blocks and cold blocks,
respectively. By gathering hot data into separate hot blocks,
they are more likely to be dead blocks soon.

Although locality-based heuristics work reasonably
well, it is not clear if knowing the relative frequency of
block updates is sufficient or not in minimizing the garbage
collection overhead. In order to better understand the per-
formance of the existing data separator heuristic, we first
introduce predictor on future update times, which has com-
plete knowledge on future data update times. Using an FTL
based on the oracle predictor as an off-line optimal FTL,
we evaluate the performance of the existing data separation
heuristic (based on the write temporal locality). The oracle
predictor on data update times is denoted as ORA in this pa-
per. The off-line optimal FTL is based on the idea that the
garbage collection overhead is minimized when a garbage
collector always selects dead blocks as victim blocks. The
most obvious way to make more dead blocks is to predict
future data update times and gather data with similar update
times in the same blocks. Since the data in such blocks will
be invalidated almost simultaneously, these blocks will be-
come dead blocks quickly once the first data in the block is
overwritten. Therefore, such blocks will not incur unnec-
essary page migration overhead from moving valid pages
in victim blocks to new blocks during garbage collection.
Clearly, the ORA is not implementable in practice because
it requires the perfect information on future block update
times. In this paper, we use the garbage collection overhead
of an FTL based on ORA as an upper bound in evaluating
garbage collection heuristics.

From our comparative study using ORA, we have ob-
served that gathering data with similar future update times
to the same blocks, not data with high update frequencies,
is a more important factor in minimizing garbage collection
overhead. We have found that data with similar update fre-
quencies were not necessarily updated at similar times. For
example, there is no clear correlation on their update times
among hot data if they were classified as hot data at differ-
ent times. If several hot data groups with different locality
are stored in the same block, the probability that all data in
that block are updated together is small because data with
different locality have different update times. One of the
main reasons of the poor performance of existing garbage
collection heuristics can be attributed to the fact that they
ignore data update times in devising their data separation
techniques.

Based on our observations, we propose a novel data sep-

aration technique which predicts data update times by ex-
ploiting program contexts [6, 10] as hints. Our technique
estimates what data will be updated together based on the
data update history of the program context PC. Once data
with similar future update times are predicted, the data are
allocated into the same block by an FTL using the proposed
technique, both when a write request is processed and valid
data in a victim block are moved during garbage collection.
In this paper, we assume that there is an appropriate inter-
face between an operating system and an FTL to pass the
program context information from the operating system to
the FTL.

Conceptually, a program context represents one execu-
tion phase of a program. Since the program behaves sim-
ilarly when the same phase is executed, program contexts
can be used in predicting future block update patterns when
a particular program context is identified with its previous
block update history. For example, if a program context PC
generates update requests R1, R2, and R3, it is very likely
that the same program context PC will generate the same
update requests R1, R2, and R3 again when the program con-
text PC is re-executed. We can also group several program
contexts into a set of inter-related program contexts where
each member program context follows similar update re-
quest patterns with other member program contexts. Using
the program context-based predictions, our technique iden-
tifies a group of data that will be updated at similar times.

In order to evaluate the proposed data separation tech-
nique, we have experimented using write traces collected
from several programs. The experimental results show that
our technique reduces the total execution time of garbage
collection on average by 58% compared to a hash-based lo-
cality separation technique [7].

The rest of this paper is organized as follows. In Sec-
tion 2, we show that predicting data update times is more
important than estimating data locality in designing a high-
performance garbage collector. We describe our proposed
technique in Section 3. Section 4 presents the experimental
results, and Section 5 summarizes related work. Finally, we
conclude in Section 6.

2. Motivations

2.1 Garbage Collection Using ORA

If a garbage collector can choose a dead block as a vic-
tim block whenever a garbage collector is invoked, the total
execution time of the garbage collection process is reduced
to the total execution time of erase operations performed
during garbage collection. Although it is not trivial to de-
vise such an optimal garbage collector (even if the complete
details of write requests are known a priori), if we know fu-
ture block update times in advance, we can design a very



efficient garbage collector. In this section, we describe a
garbage collection process based on ORA.

When a write request arrives, an FTL consults the ORA
to get the future update time of the written data. Based on
the future update time, the FTL allocates the requested data
to the block where data with similar update times were al-
ready stored. During garbage collection, a garbage collector
moves valid data in a victim block to the block with simi-
lar update times, using ORA. Although it is impossible to
implement an on-line version of ORA in practice (because
we cannot build such an oracle predictor on future block
update times), ORA can be built off-line if we have a com-
plete trace of write requests including their request times.
In this paper, we implement an off-line version of ORA,
which will be used as a data separator, in evaluating other
data separation heuristics.

2.2 Evaluation of Existing Locality-based
Heuristic

A locality-based data separator has been widely used in
various FTLs. In particular, many researchers have pro-
posed different data separation techniques that aim to in-
crease the accuracy of data locality classification. For ex-
ample, recently proposed techniques include 2-level LRU-
based heuristic [3], hash table-based heuristic [7], and re-
quest size-based approach [2]. Since the hash table-based
heuristic can accurately classify data with a small mem-
ory footprint and low time complexity, we use the hash
table-based heuristic as a representative locality-based data
separator. The hash table-based data separation heuristic
is denoted as HASH in this paper. We also assume that a
page-level mapping FTL is used in this paper. To evaluate
different data separation techniques under the equal condi-
tions, we use a garbage collector (except for a data sepa-
ration technique) in the same page-level FTL. We use an
FTL based on the cost-age-time heuristic [4] which takes
account of the cleaning cost, erased counts, and the time
elapsed (since the last modification) in selecting a victim
block. (Unless confusion arises, we use ORA and HASH
to indicate both data separation techniques and FTLs based
them.)

Compared to the ORA algorithm, however, the HASH
cannot achieve a high performance even if HASH can per-
fectly identify data update locality. For example, although
hot data are clustered in the same block, if the update times
are different among the hot data, the block may be half-
dead, that is, some hot data in the block remain valid while
other data in the same block are invalid. Such half-dead
blocks significantly increase the amount of copied data dur-
ing garbage collection.

Figures 1 and 2 show examples which illustrate a poor
performance of HASH over ORA. In Figures 1 and 2, we

Figure 1. A comparison of data allocation us-
ing (a) HASH and (b) ORA

Figure 2. A snapshot comparison of garbage
collection using (a) HASH and (b) ORA

assume that eight write requests, which are shown on top
of Figure 1 as eight rectangles. Since we assume a page-
level mapping FTL, each rectangle represents a page write
request. A tuple (i, tu) in a rectangle represents the i-th re-
quest with the next update time tu. We further assume that
data written by the write requests in the examples have been
already classified as hot data. In Figure 1.(a), since all the
data requests were classified as hot data by data locality, an
FTL writes them to the same block according to the request
order. On the other hand, in Figure 1.(b), an FTL using
ORA allocates the requested data to Blocks 2 and 3 group-
ing requested page writes according to their future update
times. Figure 2 shows snapshots of garbage collection us-
ing HASH and ORA. Assuming that garbage collection is
invoked at time 55, in HASH as shown in Figure 2.(a), be-
cause bottom two pages in Block 0 remain valid at time 55,
although all pages in Block 0 are full of hot data, the valid
pages are moved to Block 5, which is a newly allocated
block. Since these pages will not be invalidated until their
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Figure 3. Distributions of the number of
copied pages per victim block

respective update times, time 89 and time 90, they may be
copied to other victim blocks several times whenever these
pages belong to a victim block. In ORA as shown in Figure
2.(b), Block 2 has been changed to a dead block at time 52,
hence Block 2 is reclaimed with only one erase operation.

In order to investigate the efficiency of a locality-based
data separator in reducing garbage collection overhead, we
have compared ORA and HASH using several benchmark
programs. (For a more detailed description of the experi-
mental setup, refer to Sec. 4.) In HASH, only 66.3% of
hot data pages in hot blocks were updated in similar times,
leaving about 34% of hot data pages still valid after other
pages got invalidated. These valid pages produce a large
number of half-dead blocks which can increase the garbage
collection overhead when selected as victim blocks. Figure
3 shows distributions of the number of copied pages per
victim block when HASH and ORA are applied in two pro-
grams used in our experiments. The X-axis and the Y-axis
denote the numbers of victim blocks and copied valid pages
per victim block, respectively. In Figures 3.(a) and 3.(b),
HASH tends to copy more valid pages per victim block than

ORA. Since these copied valid pages invoke more garbage
collection processes, HASH may suffer poor performance
of garbage collection. In our observations, HASH increases
the total number of copied valid pages during garbage col-
lection by 44 times over ORA. These results strongly sug-
gest that a better data separation technique can be developed
if data with similar future update times can be found.

3 Program Context-Aware Data Separation
Technique

3.1 Correlation between Program Con-
texts and Updates

Although taking account of update times of data is use-
ful in reducing garbage collection overhead, it is impossible
to know accurate update times before actual update requests
occur. In this paper, we indirectly identify data which are
updated together in similar time periods by exploiting typi-
cal update behavior of a program. We use program contexts
to keep track of program’s write/update behavior. Since a
program context represents a program phase and the same
phase is likely to be executed multiple times, program con-
texts have been used in predicting future behaviors of pro-
grams (e.g., [8, 9]). Since a program phase consists of con-
secutive instructions executed and the instructions can be
specified with program counters, program counters can be
used to distinguish different program contexts.

We use the signature program counter [6] to identify sig-
nificant program contexts, which are distinguished by dif-
ferent program context (PC) IDs. Each PC is identified
by summing program counter pc values of each execution
path of function calls that lead to system calls which cause
write requests. (To avoid confusions, we use a lowercase
pc to indicate the program counter while the program con-
text is denoted by using an uppercase PC.) For instance,
a program can issue a write request through system func-
tions such as write() and writev() in the Linux kernel. If
the functions a(), b(), and c() were called in sequence be-
fore reaching the system functions, the pc values of these
three functions can be obtained by a stack frame traversal
when the write request is processed. The signature pc for
this write request is computed by summing those three pc
values. Although this traversal is carried out whenever a
write request occurs, it is negligible in processing a write
request because the additional overhead of getting a sig-
nature pc is 0.19 microseconds on a 2 Ghz Intel Pentium
personal computer with 2 GB RAM [6], while performing
a write operation in NAND flash memory requires several
hundred microseconds. We assume that PC IDs are passed
to an FTL through APIs between a file system and an FTL.

In order to evaluate the feasibility of using PCs in pre-
dicting data update patterns, we investigated the relation-



(a) cscope+gcc (b) tpc-r

Figure 4. Distributions of program contexts in some benchmark programs

ship between updated data and their corresponding PCs
(which have generated the updated data). Figure 4 shows
distributions of PCs which have produced updated data re-
quests in benchmark programs. A horizontal axis indicates
the logical times which increase by one whenever data are
updated. A vertical axis denotes distinct PCs which have
generated the updated data requests at each logical time.
For example, if data are written from a PC at logical time
t, and the data are updated by new write requests from the
PC at logical time t+ α, where α is a positive number, the
PC is shown at logical time t+ α.

From our analysis, we have observed two key PC char-
acteristics that can be used in designing our heuristic on
data update times. First, a small number of PCs domi-
nate. These dominating PCs generate repeatedly a large
number of write requests, and the data from the dominating
PCs are updated. Figures 4.(a) and 4.(b) show such cases;
a few PCs produce repeatedly most of write requests, and
the written data are updated in similar times. In the bench-
marks used in our experiments, top five dominating PCs
of each benchmark generate about 76% of updated data re-
quests. Since data from these PCs tend to be updated con-
secutively, if an FTL allocates these data to the same blocks,
it is likely that data from these PCs in the same blocks will
be updated together. Second, data from non-dominating
PCs are often highly correlated with dominating PCs, be-
cause consecutive update requests are often generated from
several PCs. For example, in the dotted boxes in Figure
4.(a), data from non-dominating PCs which appeared in-
frequently are updated together with data from dominating
PCs in similar time periods. In our observations, 63% of
PCs which generate updated data requests are involved in
sequential update patterns. If an FTL can find these PCs

by checking update access patterns of PCs, the FTL can
gather data from these PCs into the same blocks. Our
observations suggest that PCs are closely related with up-
dated data, which means that PCs can be used as important
hints in estimating data updated in a similar time.

3.2 Overview of Program Context-Aware
Data Separation Technique

We designed a program context-aware data separation
technique based on the correlation between PCs and up-
date requests. Figure 5 briefly explains how an FTL based
on the proposed technique works. Our technique is used

Figure 5. The flowchart of data allocation in
an FTL using the proposed technique



both when a write request arrives from a host system and
valid pages in a selected victim block are written to a new
block during garbage collection. When a write request ar-
rives in both situations, our technique checks the PC which
has generated the current write request. If the proposed data
separation technique determines that data request from the
PC is likely to be updated later, the proposed technique pre-
dicts what data will be updated together with the requested
data, and provides the update information to the FTL. If a
PC generates a write request R and the data written by R
are updated later, we call such a PC the update PC, denoted
as PCupdate. To allocate a page to the requested data, the
FTL finds a block storing data that will be updated together
with the requested data. A block is called an update block if
its data are updated later. If the block is write-once, we call
such a block write-once block. For a write request from an
update PC, we store the requested data to an update block
with similar estimated update times. If our technique pre-
dicts that the requested data will not be updated based on
the PC which has generated the request, the data are writ-
ten to a write-once block. If a PC generates write requests,
and if the written data are not updated later, such a PC is
called write-once PC, denoted as PCwrite once.

Figure 6 shows an example of data allocation based on
our technique using the same example in Figure 1. Each
write request tuple of Figure 1 is modified to include the
PC identifier idPC so that each write request (i, idPC) in-
dicates that the i-th write request has been generated from
the PC idPC . The idPC of each request is sent to an FTL
from a host system whenever a write request occurs. In
this example, idPC was computed to 5 by summing pcs of
functions a() and b(), and it is delivered to an FTL. Assume
that first seven write requests have been processed. When
a write request arrives, the FTL searches the program con-
text information table with the requested idPC , 5, to predict
whether the requested data will be updated or not. The pro-
gram context information table stores update information
of previously identified PCupdates to find data with similar
estimated update times. A row in the table stores a tuple
(idPC , idUG, Nupdate), which means that PC idPC gen-
erated Nupdate write requests which were updated in sim-
ilar time periods together with data from the PCupdates in
an update group UG, whose identifier is idUG. An update
group UG is a group of PCupdates that are expected to be
updated in a similar time period. (We will describe how a
tuple is created in the table in the next subsection.) Since
the PC whose idPC is 5 exists in the table, our technique
decides that data written by this request will be updated to-
gether with data fromPCupdates in theUGwhose identifier
idUG is 1, thus the FTL finds an update block for this UG
to store the requested data. To keep track of update blocks
allocated to UGs, an update block information table records
an update block number which stores data from PCupdates

Figure 6. An example of data allocation using
the proposed data separation technique

in an UG. Since many update blocks can be used by an
UG, the update block number used most recently is stored
with idUG. Since this table indicates that data from the
PCupdates in the UG whose idUG is 1 are stored in Block
4, the requested data are written to Block 4. Prior write re-
quests have been processed in the same way except for the
fifth write request. Since the idPC 3 does not exist in the
program context information table, our technique regarded
the PC whose idPC is 3 as a write-once PC, thus the FTL
wrote the data to Block 6, which is a write-once block.

In this way, the FTL gathers data from PCupdates in the
same UG to the same update blocks. However, if an update
block is selected as a victim block before all the pages in the
block are invalidated, many read and write operations may
occur during garbage collection. To avoid this situation, the
FTL gives the lowest priority to update blocks when a vic-
tim block is chosen. By allowing enough time to update
blocks, data in the update block are very likely to be invali-
dated before it is selected as a victim block.

3.3 Program Contexts Grouping Algo-
rithm

Based on the relationship between PCs and updated
data, our technique groups PCs which generate data with
similar estimated update times into the same UGs. As men-
tioned in Sec. 3.1, since a small number of PCs generate
repeatedly many write requests which tend to be updated
consecutively, our technique finds a dominating PC, PCd,
and inserts the PCd to an UG. Moreover, our technique
finds a sequential PC, PCseq , which repeatedly generates
updated data requests forming sequential update access pat-



Algorithm 1 Program Context Grouping Algorithm
Input : idPC , lba
Output : idUG

1: Ipc←program context information table(idPC)
2: if Ipc = NULL then
3: IPC .idPC ← idPC

4: IPC .idUG ← NULL
5: IPC .Nupdate ← 1
6: insert tuple(IPC)
7: else
8: Ipc.Nupdate←Ipc.Nupdate+1
9: if Ipc.idUG = NULL then

10: if (Ipc.Nupdate≥threshold) then
11: NUG←NUG + 1
12: Ipc.idUG←NUG

13: else
14: if ((prev lba+ size of page)= lba)

&& (prev UG6=NULL) then
15: Ipc.idUG←prev UG
16: end if
17: end if
18: end if
19: end if
20: prev lba← lba
21: prev UG← Ipc.idUG

22: return Ipc.idUG

terns with data from other PCds, and inserts the PCseq to
the UG including the PCds.

Algorithm1 describes how our technique groups update
PCs into an UG. This algorithm takes as input PC ID
idPC and logical block address lba, and returns UG ID
idUG. Note that the idPC in this algorithm is not the identi-
fier of the PC which generates current data request, but the
identifier of the PC which has generated the data updated
by the current write request. Since the objective of this algo-
rithm is to find update PCs which generate data expected to
be updated together and to group into an UG, only the PCs
of the updated data are considered. Whenever an update
write request occurs, this algorithm searches the program
context information table with the idPC to check whether
the PC has been determined as an update PC or not (line
1). If there is no update information of the PC, which is
denoted as IPC , a new tuple is created and its idPC , idUG,
and Nupdate are set (lines 3-5). Since the data from the
PC is updated for the first time, UG and Nupdate are set to
NULL and 1, respectively, and this tuple is inserted into the
table (line 6). The size of the memory required for keep-
ing the program context information table depends on how
many PCs in a program are related to update requests. For
the applications used in our experiments, update requests
are generated from 48 to 89 PCs.

If the IPC for the PC exists, the number of updates in-
crements by one (line 8), because data from the PC are
updated. To find out whether the PC has been included in
an UG or not, this algorithm checks the UG information

of the PC (line 9). If an UG including the PC does not
exist, this algorithm decides either to create a new UG for
the PC or insert the PC to one of existing UGs based on
Nupdate and update request pattern. IfNupdate of the PC is
greater than a predefined threshold value, this algorithm re-
gards the PC as a dominating PC, thus making a new UG
and including the current PC to the new UG (lines 11-12).
If Nupdate is less than the predefined threshold value, our
technique checks the current PC is a sequential PC or not.
If the current update request forms sequential update pat-
terns with data updated previously, and if the previous data
are from an update PC included in an UG, our technique
inserts the PC into the same UG (lines 14-15). For the de-
termination, the lba and idUG previously processed in this
algorithm are stored (lines 20-21). By returning the idUG

to an FTL, proper blocks can be allocated to write requests.

4 Experiments

To evaluate the proposed technique, we used a trace-
driven FTL simulator. The FTL in the simulator triggers
garbage collection if the total number of remaining blocks
in NAND flash memory is less than 5% of the total number
of blocks in NAND flash memory, and the garbage collec-
tion process is finished if 15% of the total number of blocks
in NAND flash memory are reclaimed. Since garbage col-
lection does not occur if there is enough free space to write
new data, we filled 90% of the NAND flash memory space
with meaningless values, before each experiment is per-
formed. Respective latencies of read, write, and erase op-
eration are 25µs, 200µs, and 1.2ms [1]. HASH and ORA
are used for comparisons, and our technique is denoted as
PC-aware in our experiments.

In order to generate input traces for our simulator, we
used four programs and two application sets as shown in
Table 1. Although most applications used in our exper-
iments do not generate many update write requests, they
are enough to evaluate garbage collection overhead because
they trigger a large number of garbage collection processes
in NAND flash memory which is almost fully filled with
data. For example, gcc is known as a CPU-bound appli-
cation. However, it creates many object files and a ker-

Benchmarks Scenario Nwrite Nupdate

cscope Linux source code examination 17575 15398
gcc Building Linux Kernel 10394 3840

viewperf Performance measurement 7003 119
tpc-h Accesses to database 23522 20910
tpc-r Accesses to database 21897 18803

multi1 cscope+gcc 28400 19428
multi2 cscope+gcc+viewperf 35719 20106

Nwrite: the number of write requests (unit : page)
Nupdate: the number of update write requests (unit: page)

Table 1. Summary of various benchmarks
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Figure 7. Total execution times of garbage
collection in various traces

nel image file while it compiles Linux kernel source in our
experiment.In the case of tpc-h, it is a read-dominant
workload with a small number of update requests, which
come from concurrent data modifications. Nevertheless, it
causes a large number of garbage collection processes be-
cause we start with almost full NAND flash memory.In the
case of viewperf, since it does not have a lot of update
requests, we performed experiments with multi2 combin-
ing viewperf with cscope and gcc.

Figure 7 shows the total execution time of garbage col-
lection where each data separation technique is applied. The
X-axis and the Y-axis denote data separation techniques and
the total execution time of garbage collection, respectively.
The results show that our technique reduces the total execu-
tion time of garbage collection on average 58% over HASH.
Since HASH determines data locality based on data update
frequency in a given time window, if data are not updated
frequently in the time window, HASH does not work well.
In the cases of tpc-h and tpc-r, since they have rela-
tively random write patterns over other programs, it is un-
likely that data are written again and again in the same time
window.

In order to understand why our technique outperforms
HASH and how our technique is compared to ORA, we
compared the number of dead blocks, the average num-
ber of copied pages per victim block, and the number of
erased blocks. Table 2 shows the total number Ndead of
dead blocks generated, the average number Navg cped of
copied pages per victim block, and the total number Nerase

of erased blocks when each data separation technique is ap-
plied.Compared to HASH, our technique generates more
dead blocks, and reduces valid page copies per victim block
by 25%. Moreover, HASH erases on average about five

Benchmarks Separator Ndead Navg cped Nerase

cscope
HASH 1.0 125.4 318

PC-aware 42.3 60.6 189
ORA 61.0 35.8 199

gcc
HASH 0.0 108.2 225

PC-aware 0.2 105.6 154
ORA 8.0 25.1 94

multi1
HASH 0.0 110.5 655

PC-aware 39.8 88.7 303
ORA 77.0 24.6 280

multi2
HASH 0.0 109.3 793

PC-aware 34.7 89.1 345
ORA 83.0 30.4 325

tpc-h
HASH 0.0 123.4 3178

PC-aware 0.3 90.0 385
ORA 144.0 26.9 250

tpc-r
HASH 0.0 123.8 3235

PC-aware 0.2 93.6 423
ORA 145.0 26.2 165

arithmetic average
HASH 0.2 116.8 1400.7

PC-aware 19.6 87.9 299.8
ORA 86.3 28.2 218.8

Table 2. A comparison of the proposed tech-
nique over HASH and ORA for garbage col-
lection overhead

times more blocks than our technique. These results clearly
mean that predicting data to be updated together with pro-
gram contexts hints is effective in reducing garbage collec-
tion overhead. On the other hand, ORA produces about
four times more dead blocks than our technique. Besides
the number of generated dead blocks, our technique copies
about three times more valid pages per victim block than
ORA. ORA erases on average 27% less blocks than our
technique. Although ORA works based on off-line analy-
sis, these results strongly suggest that there may be a room
for improving our technique further.

Figure 8 shows the normalized garbage collection over-
head under different threshold values of Algorithm 1. The
X-axis and the Y-axis denote various thresholds in each pro-
gram and normalized total execution time of garbage collec-
tion, respectively. The results of each program are normal-
ized to the worst case of each program. As shown in Figure
8, each program has different threshold values which cause
the smallest execution time of garbage collection. Since a
combination of PCs included in each UG can be changed
by the threshold, the influence of the threshold on garbage
collection overhead is noticeable. If the threshold is small,
most of PCs which have produced updated data may be
classified as update PCs, thus more UGs are created. If
the PCs classified as update PCs generate many write re-
quests, and the written data are updated later, the proposed
technique works fine. On the contrary, if data from the PCs
are not updated later, the data cause more extra copies and
trigger more garbage collection. In the case of gcc, since
PCs classified early as update PCs generate many write re-
quests, and most of the data are updated later, gcc has the
minimal total execution time when a threshold is 1. A large
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Figure 8. Normalized execution times of
garbage collection under different threshold
values

threshold may suppress creating UGs, because PCupdates
which issue a lot of updated data requests can be inserted
to an UG. In the case of tpc-h, by preventing PCs with
a small number of updated write requests from being clas-
sified as update PCs, the total execution time of garbage
collection is minimal when a threshold is 16.

5 Related Work

Data separation techniques have been studied to reduce
garbage collection overhead. Chang et al. [3] suggested
two-level LRU lists for hot-cold identification. The first
level list stores logical block addresses of data written twice
or more in a short period, while the second level list stores
logical block addresses which have been accessed once
in recent time or have been evicted from the first level
list. Chang [2] proposed a size-based prediction technique.
Based on the observation that small-sized requests tend to
be accessed frequently, this technique classifies data locality
according to sizes of requested data. Hsieh et al. [7] sug-
gested a hash table-based data separation technique. This
technique keeps track of the number of all write requests on
each logical block addresses, and records the access infor-
mation in a table. To reduce size of the table, this technique
adopts multiple hash function which makes several logical
block addresses share an entry in the table. Since this tech-
nique periodically divides the number of written counts of
data by 2, it is likely that frequently updated data in recent
times are considered as hot. The objective of these tech-
niques is to accurately identify data. However, although
data have similar write temporal locality, if they are updated
in different times, frequency-based approaches are not ef-

fective in reducing garbage collection overhead. Moreover,
these techniques do not work if there is no distinct locality
in given data.

6 Conclusions

We have proposed a novel program contexts aware data
separation technique. Taking account of the correlation be-
tween program contexts and update write patterns, the pro-
posed technique predicts update times of data by examining
program contexts which have produced the write requests.
By gathering the data with similar update times to the same
blocks, an FTL based on our technique can reduce total exe-
cution time of garbage collection operations by 58% over a
hash-based hot/cold separation scheme. These results prove
that predicting update times of data with program contexts
can be a remarkable method in data separation technique.

Our work can be extended to several directions. For ex-
ample, we plan to extend our technique for efficient wear-
leveling management. Using the proposed technique, an
FTL may identify cold pages more efficiently based on fu-
ture update time information.

Our technique can be also extended for hybrid mapping-
based FTLs. As well as update times of data, write patterns
such as random and sequential are also important factors in
reducing garbage collection overhead of hybrid mapping-
based FTLs. In addition to estimating data update times,
we plan to investigate the correlation between program con-
texts and write access patterns.The program context-aware
approach may maximize the advantages of hybrid mapping-
based FTLs such as the small sized memory footprint and
high performance with sequential accesses by separating the
sequential and random access patterns.
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