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Abstract

As mobile applications are required to handle more
computing-intensive tasks, many mobile devices are de-
signed using VLIW processors for high performance. In
VLIW machines where a single instruction contains multi-
ple operations, the power consumption during instruction
fetches varies significantly depending on how the opera-
tions are arranged within the instruction. In this paper, we
describe a post-pass operation rearrangement method that
reduces the power consumption from the instruction-fetch
datapath. The proposed method modifies operation place-
ment orders within VLIW instructions so that the switching
activity between successive instruction fetches is minimized.
Our experiment shows that the switching activity can be re-
duced by 34% on average for benchmark programs.

1 Introduction

As mobile applications are required to handle more
computing-intensive tasks (such as video decoding), many
mobile devices are designed using VLIW processors for
high performance. For example, the Crusoe processors [6]
from Transmeta (which were developed for mobile Inter-
net computing market) are based on 64 bits or 128 bits
VLIW CPU cores. Fujitsu Microelectronics’ FR300 [4]
(whose main application area is in wireless cellular phones)
also has a VLIW architecture. In addition, there are many
VLIW digital signal processors such as Texas Instruments’
TMS320C6x series that can be used for wireless devices
[3, 5].

While VLIW CPU-based mobile devices generally pro-
vide enough computing power to handle many computing
intensive applications, they usually consume a large amount
of power. For example, TMS320C620x processors con-
sume between 1.2W and 2.3W at 1.8V while high-end em-
bedded microprocessors such as StrongArm 110 consume
between 100mW and 1W at 3V [15, 9]. Therefore, in de-
signing VLIW CPU-based mobile devices, low power con-
sumption becomes an important design constraint.

In digital CMOS circuits (that use well-designed logic
gates), dynamic power consumption accounts for over 90%
of total power consumption [1]. Since the dynamic power
consumption is proportionate to the switching activity� ca-
pacitance term, to reduce the overall dynamic power con-
sumption, the switching activity should be reduced from
the components having large capacitances. For example,
system-level off-chip busses are such components. The
power consumption from off-chip driving can reach up to
70% of the total chip power, where bus transitions are the
most dominant factor due to the large capacitances of the
bus lines [7].

Many techniques have been proposed and developed to
reduce the frequency of bit transitions in a system-level off-
chip bus [12, 11, 13, 16]. For example, various bus encod-
ing techniques [12, 11] convert bus data representations, ex-
ploiting the characteristics of bus access patterns, so that the
power consumption from the off-chip bus can be reduced.
On the other hand, low-power instruction scheduling tech-
niques [13, 16] modify instruction placement orders to re-
duce the bit changes from the successive instruction fetches.

In this paper, we propose a post-pass optimization
technique that can significantly reduce switching activity
from both the internal and external instruction busses of
VLIW processors. The proposed method takes advantage
of a VLIW machine’s instruction encoding characteristic:
VLIW CPUs can place the same operation in multiple op-
eration slots within the VLIW instruction.1 We reduce
switching activity by modifying operation placement or-
ders within VLIW instructions so that the switching activ-
ity in the instruction-fetch datapath is minimized. The pro-
posed technique also takes into account of the inter-block
switching activity, which was ignored in the existing low-
power instruction scheduling techniques, in scheduling in-
structions for low-power fetches.

The main contribution of this paper is two-fold. First,
as far as we know, our work is thefirst attempt to re-
duce the power consumption from the VLIW instruction-

1We distinguish between an operation and an instruction in a VLIW
CPU. A VLIW instructionis assumed to consist of severaloperations.
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fetch datapath2 by instruction scheduling. Second, the pro-
posed technique, unlike the existing low-power instruction
scheduling such as [13, 16], tries to reduce the overall power
consumption from both the on-chip and off-chip instruction
busses. In reordering instructions for low-power instruction
fetch, existing low-power instruction scheduling techniques
do not consider simultaneously both the on-chip bus con-
sumption and the off-chip bus consumption. For example,
the instruction scheduling technique [16] by Tomiyamaet
al. does not take account of the switching activity at the
on-chip instruction bus. For their target processors, since
off-chip bus accesses are the dominating power consumer,
the authors did not consider to reduce the power consump-
tion from the on-chip bus, which contributes much less to
the overall power consumption than the off-chip bus.

On the other hand, in VLIW processors, an instruc-
tion scheduling technique must weigh the switching activity
from the on-chip instruction bus as well as the off-chip in-
struction bus. Since the width of the on-chip instruction bus
is generally much larger than that of the off-chip instruction
bus in VLIW architectures, if an instruction schedule were
produced considering only the bit changes from the off-chip
bus, it might be a bad (thus more bit-changing) schedule for
the on-chip instruction bus. Furthermore, since the on-chip
instruction bus has the large wire capacitance as well as the
large output load capacitance [17] and it is used every cycle
in a high speed, the impact on the total power consumption
of the switching activity at the on-chip instruction bus can-
not be ignored.

The organization of the rest of the paper is as follows.
Before presenting the proposed operation rearrangement
technique, we review prior work on low-power techniques
for instruction fetch in Section 2. In Section 3, we describe
a target VLIW machine model and define several terms. An
operation rearrangement technique is explained in Section
4. Experimental results are presented in Section 5 followed
by conclusions in Section 6.

2 Related Work

The research to reduce the bit transitions of bus can be
classified by three approaches.

The first approach is the bus encoding. Bus-invert cod-
ing [12] reduces a significant number of bit changes from
bus lines by dynamically inverting the bus lines when the
number of switched bus lines is more than half the number
of bitlines. Shinet al. advanced the bus-invert coding by
selecting a sub-group of bus lines involved in bus encod-
ing to avoid unnecessary inversion of bus lines not in the
sub-group [11].

2This includes an external memory, an off-chip bus, an instruction
cache and an on-chip bus.

The second approach is the instruction scheduling. Su
et al. proposed an instruction scheduling technique, called
cold scheduling, to reduce the amount of switching activity
in the control path [13]. Used in conjunction with a tradi-
tional list scheduling algorithm, cold scheduling schedules
instructions in the ready list based on the power cost of an
instruction. The power cost of an instruction is determined
by the number of bit changes when the instruction in ques-
tion is scheduled following the last instruction. Tomiyama
et al. proposed an instruction scheduling technique which
reduces transitions on an instruction bus between an on-chip
cache and a main memory when instruction cache misses
occur [16]. This scheduling technique schedules instruc-
tions in each basic block in a way that binary representa-
tions of consecutive two machine instructions are less dif-
ferent while maintaining the control/data dependencies of
the original program.

The third approach is the instruction encoding. Regis-
ter relabeling [8] assigns register numbers of instructions so
that more frequently consecutive register numbers have a
smaller Hamming distance, thus reducing the switching ac-
tivity of the instruction bus and decode logic. The instruc-
tion scheduling and instruction encoding techniques also re-
duce the switching activity of the instruction fetch and de-
coding logic.

Most of existing low-power instruction scheduling tech-
niques (including the techniques described above), how-
ever, assume that processors can issue at most one instruc-
tion at each cycle. Therefore, these techniques cannot be
directly applied to multiple-issue machines such as a VLIW
CPU. In a VLIW CPU, since multiple operations are packed
into a single instruction, two levels of scheduling decisions
should be made to reduce power consumption. In the first
level, we have to decide that which operations are packed
into which instructions. Once the first level scheduling de-
cision is made, in the second level, we have to decide which
orders the selected operations are placed in specific instruc-
tions. The technique proposed in this paper solves the
second-level low-power scheduling problem for a VLIW
CPU assuming that the decision for the first-level schedul-
ing problem was already made.

3 VLIW Machine Model and Definitions

3.1 Target VLIW Machine Model

VLIW architectures use long instruction words to exe-
cute multiple operations simultaneously. In specifying mul-
tiple operations within a single VLIW instruction, two en-
coding methods are typically used: uncompressed encoding
and compressed encoding [2]. In a VLIW machine with an
uncompressed encoding, each operation slot of a VLIW in-
struction corresponds to a particular functional unit. The
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operation specified in a particular operation slot, therefore,
is executed only in the corresponding functional unit. If a
functional unit is not scheduled to execute an operation at
the given cycle, NOP should be specified in the correspond-
ing operation slot. Under this encoding method, the number
of candidate operation slots for an operation is limited to the
number of corresponding functional units that can execute
the operation.

On the other hand, in a VLIW machine with a com-
pressed encoding, the position of operation slots within a
VLIW instruction does not directly correspond to a partic-
ular functional unit. The assignment of a particular func-
tional unit to an operation is generally decided by the func-
tional unit subfield of the operation encoding. The func-
tional unit subfield specifies which functional unit should
be assigned to the operation. In addition, in order to in-
crease memory utilization, NOP operations are not explic-
itly encoded in the VLIW instruction. In this type of VLIW
machines, an operation can be placed in any operation slot
within the same VLIW instruction.

Figures 1 shows compressed encoding method using a
sample VLIW program sequenceS. In the program se-
quenceS, three VLIW instructions are shown where “k”
specifies parallel operations that are executed simultane-
ously. For a compressed VLIW instruction encoding shown
in Figures 1.(b) and 1.(c), there are many chances for oper-
ation rearrangements because there is no direct correspon-
dence between the position of an operation slot and a corre-
sponding functional unit. For example, for the first VLIW
instruction ofS, 4! different operation rearrangements are
all possible.3 Although the proposed operation rearrange-
ment technique is equally effective for a VLIW machine
with an uncompressed encoding, we assume that a target
VLIW CPU was encoded using a compressed encoding
method.

Throughout this paper, we consider a target system with
an architectural organization shown in Figure 2. The VLIW
processor with a compressed encoding has an on-chip in-
struction cache. The VLIW instructions are fetched through
thebcache-bit width instruction bus. If the instruction is not
found in the on-chip instruction cache, the corresponding
memory block is fetched from the main memory through
the bmem-bit width instruction bus. Because of the com-
pressed encoding format, several VLIW instructions can be
fetched together in a single fetch from the instruction cache.
We call these instructionsa fetch packetas a group. For a
description purpose, we make the following assumptions on
the target system:

3In Figures 1.(b) and 1.(c), parallel operations within the same VLIW
instruction is specified using tail bits (shown in the shaded boxes). If a tail
bit of an operationO is 1, the operationO is executed in parallel with the
next operation. Otherwise, the next operation is executed after the current
instruction is executed.

|| FADD

|| STORE
|| LOAD

IADD /*IntU*/

/*MemU*/
/*MemU*/
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|| IMUL
ISUB

/*IntU*/
/*IntU*/

(a)
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/*BrU*/
/*IntU*/
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Figure 1. Compressed VLIW instruction en-
coding; (a) a sample instruction sequence S,
(b) one compressed encoding of Sand (c) an
alternative encoding of S.

� In a singlebcache-bit fetch packet, exactlyN operations
are included. (That is, the width of a single operation
slot is exactlybcache=N .)

� No instruction crosses the fetch packet boundary.

� bmem is equal to the operation width. (That is,bmem =
bcache/N.)

� When the external instruction bus is not used, each line
in the external bus is assumed to hold a logic 1 value
to prevent from the high impedance condition.

core

Cache
Instruction

Address Bus

Instruction
Bus

CPU

Unit

Memory
Main

Bus
InstructionDecoding

Address Bus

VLIW Processor

VLIW

Bus width
= bcache

Bus width
= bmem

Figure 2. Target system architecture.

3.2 Definitions

In explaining the operation rearrangement technique, we
use the following definitions:

Definition 1 A permutation� : f1, � � �, n g ! f1, � � �,
n g is said to be an operation rearrangement function.

Definition 2 Two VLIW instructionsI1 = ( OP 1
1 ,OP 1

2 ,
� � �, OP 1

n ) andI2 = ( OP 2
1 , OP 2

2 , � � �, OP 2
n ) are said to
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be equivalent under operation rearrangement if there exists
an operation rearrangement function� such thatOP 1

�(i) =

OP 2
i for all 1 � i � n.
Definition 3 Two fetch packetsFP1 = (I11 ; I

1
2 ; � � � ; I

1
n)

andFP2 = (I21 ; I
2
2 ; � � � ; I

2
n) are said to be equivalent under

operation rearrangement if there exist operation rearrange-
ment functions(�1; �2; � � � ; �n) such thatI1i is equivalent
to I2i under�i for all 1 � i � n. EQ(FPi) is used to rep-
resent the set of equivalent fetch packets for a givenFPi.

Definition 4 Two basic blocksbb1 = ( FP 1
1 , FP 1

2 ,
� � �, FP 1

n ) and bb2 = (FP 2
1 ; FP

2
2 ; � � � ; FP

2
n) are said

to be equivalent under operation rearrangement ifFP 1
i is

equivalent toFP 2
i under operation rearrangement for all

1 � i � n. EQ(bb) is used to represent the set of equivalent
basic blocks for a given basic blockbb.

Definition 5 Two programsS1 = (bb11; bb
1
2; � � � ; bb

1
n)

andS2 = (bb21; bb
2
2; � � � ; bb

2
n) are said to be equivalent un-

der operation rearrangement ifbb1i is equivalent tobb2i under
operation rearrangement for all1 � i � n. EQ(S) is used
to represent the set of equivalent programs for a given pro-
gramS.

In the rest of paper, we use “equivalent” to mean “equiv-
alent under operation rearrangement” where no confusion
arises.

4 Operation Rearrangement Problem

In this section, we introduce the operation rearrangement
problem and present its solution, formulating the problem
into a shortest path problem.

4.1 Basic Idea

In order to reduce the switching activity during the in-
struction fetch phase in a target system, we reduce the num-
ber of bit transitions between successive instruction fetches,
because switching activity is directly proportional to the
number of bit changes. Since, in a VLIW machine with
a compressed encoding, an operation can be placed in any
operation slot within the instruction boundary, the number
of bit transitions between successive instruction fetches can
be reduced by reordering given VLIW instructions to equiv-
alent instructions that have less switching activity. Consider
an example shown in Figure 3. There are four fetch pack-
ets each of which is 32-bit wide (that is,bcache = 32). In
the example, each fetch packet consists of a single VLIW
instruction which in turn consists of four operations. Fig-
ure 3.(b) shows the instruction sequence after an operation
placement order was modified to reduce the bit transitions
in the instruction bus. When the four instructions are exe-
cuted sequentially only once, the rearranged instruction se-
quence shown in Figure 3.(b) reduces the total number of

bit changes by about 25% from 39 to 29, while maintaining
the same semantics of the original sequence.

00010101 10010101 10011001 00000000

00011101 10001111 01011101 00000010
10 bit transitions

11 bit transitions

10011101 10011001 11111111 10010000

10001111 00011101 10100101 00011100

Instruction Cache Instruction Cache

1 1 01

1 1 01

1 1 01

1111111

1000111

0001110

1001110

1010010 0001110

1001000

1 0

1 1 01

1 1 01

1 1 01

1

Fetched values on Instruction Bus Fetched values on Instruction Bus

00010101 10010101 10011001 00000000

14 bit transitions

12 bit transitions

10001111 00000011 00011101 01011100

10011101 10011001 10010001 11111110

10100101 10001111 00011101 00011100

1000111

1

1001110

1010010

1001010

0000001

1001100

1000111

1001100

0001110

1001000

0000000

0101110

1111111

0001110

1 0100010101 000000010011001001010

1000111 0101110 0000001

1001100

00011100001110

0001010

13 bit transitions

8 bit transitions

(a) Before operation rearrangement (b) After operation rearrangement

the total number of bit changes = 39 the total number of bit changes = 29

Figure 3. An operation rearrangement exam-
ple.

4.2 Problem Formulation and Solution

We first consider the operation rearrangement problem
for a single basic block where each basic block is assumed
to be independent. We call this problem the single basic
block (SBB) problem. A complete operation rearrangement
problem is solved by extending the solution for the single
basic block problem.

4.2.1 Single Basic Block (SBB) Problem

For a given execution of a programP , the total number
of bit changesSWB from a basic blockB during the in-
struction fetch phase is given by the sum of two terms,
SWB

cache andSWB
mem. SWB

cache represents the number of
bit changes at the internal instruction bus andSWmem in-
dicates the number of bit changes at the external instruction
bus. Using the notations explained in Table 1,SWB

cache

andSWB
mem are computed as follows. (In the explanations

below, we use the basic blockBeg shown in Figure 4 as
an example. The basic blockBeg consists of three cache
memory blocks,MB1, MB2 andMB3, and each cache
memory block consists of three fetch packets. Each fetch
packet consists of four operations.)
SWB

cache is the sum of all the bit changes incurred dur-
ing successive fetches of fetch packets from the instruction
cache and calculated as follows:

SWB
cache = w(B)

Nfp(B)�1X
i=1

dfp(FP
B
i ; FP

B
i+1) (1)
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Symbol Meaning

w(B) The number of times that a basic blockB is executed.
Nfp(B) The number of fetch packets in a basic blockB.
Nop The number of operations in a fetch packet. (This is a fixed value regardless ofB.)
1 The bit vector where every bit is 1 and whose length isbmem.
FPB

i Thei-th fetch packet of a basic blockB.

OP
FPB

i
n Then-th operation ofFPB

i .

(Within a fetch packetFPB
i , the first operation isOP

FPB
i

1 and the last one isOP
FPB

i

Nop
.)

dfp(FP
B
i ; FP

B
j ) The Hamming distance between the fetch packetsFPB

i andFPB
j .

dop(OP
FPB

i
n ; OP

FPB
j

m ) The Hamming distance between the operationsOP
FPB

i
n andOP

FPB
j

m .
MB(FPB

i ) The memory block that containsFPB
i .

NMB
miss The number of cache misses of the memory blockMB.

Table 1. Notations used in Section 4.2.1

wherew(B) is the number of times that a basic blockB is
executed. The upper portion of Figure 4 shows how Equa-
tion (1) is calculated for the example basic blockBeg .
SWB

mem is equal to the sum of all the bit changes be-
tween adjacent operation fetches from the main memory be-
cause we assumed thatbmem = bcache=Nop in Section 3.1.
For the description purpose, if we assume that basic blocks
are aligned by the cache memory block size, and their sizes
are the multiple of cache memory block size,SWB

mem can
be computed by adding the bit changes of all the memory
blocks that consist of the basic blockB. For such a mem-
ory blockMB, if we assume that the memory block hasK
fetch packets, the number of bit changesSWMB

mem from the
memory blockMB at the external instruction bus is given

SWMB
mem =

KX
i=1

NMB
miss � intra(i) +

K�1X
i=1

NMB
miss � inter(i) (2)

whereNMB
miss is the number of cache misses of the memory

blockMB, and

intra(i) =

8<
:

dop(1;OP
FPMB

i
1 ) + Sop(i) if (i%K) = 1

dop(OP
FPMB

i

Nop
;1) + Sop(i) if (i%K) = 0

Sop(i) otherwise

(3)

(whereSop(i) =

Nop�1X
n=1

dop(OP
FPMB

i
n ; OP

FPMB
i

n+1 ))

inter(i) =

�
0 if (i%K) = 0

dop(OP
FPMB

i

Nop
; OP

FPMB
i+1

1 ) otherwise
(4)

In Equations (3) and (4),FPMB
i represents thei-th fetch

packet of the memory blockMB. In Equation (3), the num-
ber of bit transitions between the1 vector and the first oper-
ation of the memory block and the number of bit transitions
between the last operation of the memory block and1 vector
are included in the calculation. This is because we assumed
that in Section 3.1, each bus line of the external instruction
bus holds a logic 1 value when the bus is not used. The
intra(i) andinter(i) terms above can be easily understood
with an example. For example, for the first memory block
MB1 of the Figure 4 that consists of three fetch packets,
theintra(i) andinter(i) terms are as follows:

intra(1) = dop(1; A) + dop(A;B) + dop(B;C) + dop(C;D)

intra(2) = dop(E;F ) + dop(F;G) + dop(G;H)

intra(3) = dop(I; J) + dop(J;K) + dop(K;L) + dop(L;1)

inter(1) = dop(D;E), inter(2) = dop(H; I), inter(3) = 0

SinceSWB
mem can be computed by summingSWMB

mem over

1 A B

A B C D

E F G H

I J K L

1 2 3 4

5 6 7 8

9 10 11 12

c da b

e f g h

i j k l

K L 1

A B C D

E F G H

I J K L

1 2 3 4

5 6 7 8

9 10 11 12

c da b

e f g h

i j k l

SWmem
MB1

FP1

i j k l

e f g h

E F G H

A B C D

SWcache
B

fp 2 3

. . .

SW B
mem mem

MB1
= N      SW

MB1

miss

. . .

+ d   (A,B)

+ d   (B,C)

+ d   (K,L)

+ d   (L,1)

= d   (1,A)

op

op

op

op

op

. . .

MB1

MB2

MB3

FP2

FP3

FP4

FP5

FP6

FP7

FP8

FP9

Cache Memory

CPU

. . .
fp 8 9

+ d   (FP ,FP )

+ d   (FP ,FP ))

mem

MB3
+ N      SW

MB3

missmem

MB2
+ N      SW

MB2

miss

eg

eg

fp 1 2eg= w(B  ) (d   (FP ,FP )

Figure 4. An example calculation of bit tran-
sitions at the instruction busses during the
execution of a basic block Beg .

all the memory blocks ofB, SWB
mem is calculated as fol-

lows:

SWB
mem =

Nfp(B)X
i=1

N
MB(FPB

i
)

miss � intra(i)

+

Nfp(B)�1X
i=1

N
MB(FPB

i
)

miss � inter(i) (5)

Assuming the load capacitance ratio of the external instruc-
tion bus to the internal instruction bus is�, SWB , in the
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number of bit transitions at the internal bus, is computed as
follows using the Equations (1) and (2):

SWB = SWB
cache + � � SWB

mem

=

Nfp(B)�1X
i=1

SW inter
FP (FPB

i ; FP
B
i+1)

+

Nfp(B)X
i=1

SW intra
FP (FPB

i ) (6)

where

SW inter
FP (FPB

i ; FP
B
i+1)

= w(B) � dfp(FP
B
i ; FP

B
i+1) + � �N

MB(FPB
i
)

miss � inter(i)(7)

SW intra
FP (FPB

i ) = � �N
MB(FPB

i
)

miss � intra(i) (8)

Given a basic blockB, the SBB problem is to
find an equivalent basic blockB0 such thatSWB0

�
SWB00

for all B00 2 EQ(B). If operations are re-

arranged,dfp(FPB
i ; FP

B
i+1), dop(OP

FPB
j

n ; OP
FPB

j

n+1 ) and

dop(OP
FPB

j

Nop
; OP

FPB
j+1

1 ) in Equations (1), (3) and (4) are
changed.

4.2.2 Solution for the SBB Problem

We compute an optimal solution for the SBB problem
by converting the problem to the shortest path prob-
lem between two special nodes,START and END. Us-
ing the notations described in Table 2, given a basic
block B, we construct a weighted directed graphGB =
fV;E;Wnode;Wedgeg, where

V = fSTART;ENDg [

Nfp(B)[
i=1

EQ(FPB
i )

= fSTART;ENDg [

Nfp(B)[
i=1

fFPB
i;1; � � � ; FP

B

i;Neq(FP
B
i
)
g,

E = f(v; w)
�� v = START; w 2 EQ(FPB

1 )g [

f(v; w)
�� w = END; v 2 EQ(FPB

Nfp(B)
)g [

f(v; w)
�� v 2 EQ(FPB

i ); w 2 EQ(FPB
i+1)

for 1 � i < Nfp(B)g,

Wnode(v) =

n
SW intra

FP
(v) if v 2 V � fSTART;ENDg

0 otherwise , and

Wedge(v; w) =

n
SW inter

FP
(v; w) if v; w 2 V � fSTART;ENDg

0 otherwise.

Figure 5 shows an example graphGB constructed by
transforming the operation rearrangement problem to the
shortest path problem. For each fetch packetFPB

i ,
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Y = N

X = Neq
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Figure 5. A shortest path problem formulation
of the operation rearrangement problem (with
node and edge weights omitted).

Neq(FP
B
i ) vertices are created inGB , and for suc-

cessive fetch packets,FPB
i and FPB

i+1, every pair of
(FPB

i;k; FP
B
i+1;k0 ) is connected by an edge. We call the

Neq(FP
B
i ) vertices created from the fetch packetFPB

i to
be in the leveli. In the graphGB , the distance of a pathP =

(START; v1; � � � ; vk;END) is given by
Pk

i=1Wnode(vi) +Pk�1
i=1 Wedge(vi; vi+1). The distance of pathP is equal to

SWB when each fetch packetFPB
i is reordered tovi for

1 � i � k.
An optimal solution of the shortest path problem de-

scribed above can be found by using a modified shortest
path algorithm shown in Figure 6. The modified shortest
path algorithm is based on the following theorem whose
proof is trivial.

Theorem 1 Let a pathP (FPB
i;j) = (START, v1, � � �, vi�1,

FPB
i;j) be the shortest path fromSTART to FPB

i;j 2 EQ(FPB
i )

and the distance of the pathP (FPB
i;j) be dP (FPB

i;j
). Then the

minimum distance of the pathP (FPB
i+1;k)=(START, v1, � � �, vi,

FPB
i+1;k ), dP (FPB

i+1;k
), is given by

min1�j�Neq (FP
B
i
)[dP (FPB

i;j
) +Wedge(FPi;j ; FPi+1;k)

+Wnode(FPi+1;k)]: (9)

In Figure 6,SWmin is a variable to store the minimum
distance of a path fromSTART to FPB

i+1;k (in Line 15)
andSWcur is a variable to store the minimum distance of
a path fromSTART to FPB

i+1;k that passes throughFPB
i;j .

The shortest path is constructed by visitingMinPath in
reverse order. The complexity of the modified shortest
path algorithm is given byO(Nfp(B) � (NFPB

eq )2) where

NFPB

eq = 1
Nfp(B)

PNfp(B)
i=1 Neq(FP

B
i ). NFPB

eq is bounded
byNop!.
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Symbol Meaning

Nins(FP
B
i ) The number of instructions inFPB

i .

I
FPB

i
j Thej-th instruction ofFPB

i (1 � j � Nins(FP
B
i )).

Nop(I
FPB

i

j
) The number of operations inI

FPB
i

j
.

Neq(I
FPB

i
j ) The number of instructions that are equivalent toI

FPB
i

j (Neq(I
FPB

i
j ) = (Nop(I

FPB
i

j ))!).

Neq(FPB
i ) The number of fetch packets that are equivalent toFPB

i (Neq(FPB
i ) =

QNins(FP
B
i
)

j=1
Neq(I

FPB
i

j )).

FPB
i;n Then-th fetch packet inEQ(FPB

i ) (1 � n � Neq(FPB
i )).

Table 2. Notations used in Section 4.2.2

1: for i  0 to Nfp(B) f
2: /� for each vertex in the leveli+ 1 �/
3: for k  1 to Neq(FPB

i+1) f
4: SWmin :=1;
5: /� for each vertex in the leveli �/
6: for j  1 to Neq(FPB

i ) f

7: SWcur := dP (FPB
i;j

) + Wedge( FP
B
i;j ; FP

B
i+1;k

)

8: +Wnode(FP
B
i+1;k

);
9: /� find the minimum value�/
10: if ( SWmin > SWcur ) f
11: SWmin:= SWcur;
12: MinNode := j;
13: g
14: g
15: dP (FPB

i+1;k
) := SWmin;

16: /� store MinNode for the final path construction�/
17: MinPath[FPB

i+1;k
] := FPB

i;MinNode
;

18: g
19:g

Figure 6. A modified shortest path algorithm.

4.2.3 Operation Rearrangement Problem for Whole
Program

The operation rearrangement solution for the SBB prob-
lem described above does not take account of inter-block
switching activity. Therefore, simply solving the SBB prob-
lem for each basic block does not minimize the number of
bit changes for a whole program. In order to find a global
(thus better) solution for the complete program, we need
additional information on the dynamic behavior of program
execution as well as ones required for the SBB problem. For
example, we should know how branches are resolved in run
time to compute the relative adjacency frequency between
two basic blocks.

The solution of the operation rearrangement problem for
a whole program can be solved in a similar fashion on the
SBB problem by transforming the problem to the shortest
path problem. The main difference is that in the whole
program, because of branches and loops, nodes in a con-
structed graph for a shortest path problem formulation may

span multiple paths from a given node. We use two tech-
niques, branch merging and loop rolling [10] to convert the
graph with no branches and loops. Once the graph is con-
verted to have no branches and loops, the shortest path al-
gorithm for the SBB problem can be used to find a global
solution [10].

5 Experiments

In order to evaluate how well the proposed operation re-
arrangement technique works on application programs, we
have performed experiments using a VLIW digital signal
processor, TMS320C6201 [14], from Texas Instruments.
The TMS320C6201 is a fixed-point DSP that can specify
eight 32-bit operations in a single 256-bit instruction. The
TMS320C6201 uses a compressed encoding withbcache =
256. As benchmark programs, various DSP programs were
used. The proposed global solution was implemented as
a separate post-pass tool, which takes as an input an exe-
cutable file produced by the TI’s TMS320C6x optimizing
C compiler and produces as an output the rearranged low-
power version of the same program.

We have measured the number of bit transitions during
the instruction fetch phase for each benchmark program us-
ing a switching activity counter. Given an executable file
with appropriate input data, a switching activity counter
program computes the number of bit transitions from both
the internal and external busses during the program execu-
tion using instruction address traces.

Table 3 summaries the experimental results with selected
DSP benchmark programs. For each benchmark program,
the average number of bit transitions per instruction fetch
(BT/IF) is computed. For�, we have used 100 [12]. We
have compared BT/IF’s between TI compiler generated pro-
grams (the default column in Table 3), and rearranged pro-
grams by the proposed operation rearrangement technique
(the ORT column in Table 3).

As shown in Table 3, our operation rearrangement tech-
nique reduces the number of bit transitions during the in-
struction fetch phase on an average by 34.3% compared
with the programs generated by the TI compiler.
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Benchmark Bit transitions/IF
Program default ORT Reduction

vector multiply 68.6 43.7 36.3%
FIR8 86.8 56.7 34.6%
FIRcx 79.5 60.5 24.0%
IIR 71.7 51.7 28.0%
lattice analysis 88.4 58.2 34.2%
W vec 89.5 57.1 36.3%
dotp sqr 79.2 44.3 44.1%
minerror 50.6 31.3 38.1%
biquad 78.1 52.3 33.0%

Average 76.9 50.6 34.3%

Table 3. Experimental results

6 Conclusions

In this paper we have described and evaluated an oper-
ation rearrangement method for power optimization in in-
struction fetches of VLIW machines. The proposed method,
which works as a post-pass tool for compiled programs, re-
organizes the operation placement orders within VLIW in-
structions such that the resulting program has the minimum
number of bit transitions during instruction fetches. The
experimental results show that the proposed rearrangement
technique can reduce the switching activity significantly
from the complete instruction-fetch datapath of VLIW ma-
chines. For our benchmark programs, the switching activity
was reduced by 34% on an average.

The work described in this paper can be extended in sev-
eral directions. One of important future tasks is to quan-
tify the real energy gains, not the simulated ones, from
using the proposed technique. We are currently building
a cycle-accurate measurement-based power profiling tool
for an embedded microprocessor. If this tool works as ex-
pected, we plan to extend it for VLIW processors in the
future.

Although we focused on VLIW processors in this paper,
a similar operation rearrangement technique can be effec-
tive for low-power instruction fetches in superscalar proces-
sors. The preliminary result using a four-way superscalar
processor suggests that thetotal processor energy can be re-
duced by about 7%. We are currently implementing a mod-
ified operation rearrangement algorithm for a superscalar
processor.

In this paper, we considered the problem of modifying
operation orders forpre-compiledVLIW programs. How-
ever, optimization decisions made during the compilation
process can affect the outcome of operation rearrangement.
For example, depending on how instructions are scheduled,
the number of bit changes during the instruction fetch phase
can vary significantly. We plan to investigate the phase-
ordering problem between the operation rearrangement and
other optimization steps as a next research topic.
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