
Efficient Lifetime Management of SSD-based
RAIDs Using Dedup-Assisted Partial Stripe Writes

Taejin Kim, Sungjin Lee∗, Jisung Park, and Jihong Kim

Department of Computer Science and Engineering, Seoul National University

{taejin1999, jspark, jihong}@davinci.snu.ac.kr
∗Department of Computer Science and Information Engineering, Inha Univeristy

sungjin.lee@inha.ac.kr

Abstract—For SSD-based RAID systems, the Diff-RAID tech-
nique has been proposed to reduce the probability of correlated
multiple failures among SSDs by differentiating the amount
of written data to each SSD. Although Diff-RAID works well
for workloads with many small random writes (which require
frequent parity updates), it does not perform well with recent data
center workloads (e.g., key-value stores) which are dominated
by large sequential writes (i.e., full stripe writes). In order to
efficiently differentiate the amount of written data to each SSD
for data center workloads, full stripe writes should be converted
to partial stripe writes. However, a naive solution such as using
a large chunk size significantly degrades the lifetime of SSDs
because of a large increase in parity updates. In this paper, we
propose a new lifetime management technique, DA-RAID, which
overcomes the limitation of Diff-RAID by using deduplication-
assisted partial stripe writes. In DA-RAID, a full stripe write
can be converted to a partial stripe write so that the age
differentiation among SSDs can be supported without increasing
the amount of parity updates. Our experimental results show
that DA-RAID can effectively sustain the age difference among
SSDs even for data center workloads (for which Diff-RAID fails)
without additional parity updates. DA-RAID achieves similar age
differences among SSDs as Diff-RAID with a large chunk size
while reducing the amount of parity updates by 32% over Diff-
RAID.

I. INTRODUCTION

A redundant array of independent disks (RAID) [1] is a
popular solution for enterprise storage systems because of its
unique advantages, including fault tolerance, high performance
and high capacity. In a RAID system, which is composed
of multiple disks where user data are distributed, an error
correction scheme is employed to provide a data recovery
capability. A typical parity bit-based recovery scheme keeps
additional parity chunks for multiple user-data chunks, called
stripes, which are a group of user data kept in the same logical
block offset over disks. Using parity chunks, original data can
be recovered in the event of a disk failure. For example, if a
single parity chunk is kept for a stripe, a RAID system can
sustain up to one disk failure.
Recently, RAID is widely used for flash-based solid-state

disks (SSDs). Using the conventional RAID architecture with
SSDs, however, may significantly decrease data reliability
because several disk failures can be highly correlated in
SSD-based RAID systems. Because of its mechanical nature,
failures of hard disk drives (HDDs) usually occur in a random
manner; that is, a probability of more than two HDDs being

malfunctioning at similar times is very low. On the other hand,
the reliability of an SSD is largely decided by the amount of
data written to it. Since a RAID system tends to write all
incoming data to different disks equally, SSDs in the same
RAID group are likely to be worn out at similar times, which
greatly increases a possibility of multiple simultaneous disk
failures. Once several SSDs die simultaneously, it is difficult
to recover original data, regardless of the existence of parity
chunks.

There were a lot of studies that attempt to resolve the
problem with correlated failures in SSDs [2], [3], [4], but many
of them stem from a common idea of Diff-RAID [5]. Diff-
RAID intentionally creates and maintains the age differences
among SSDs so that some SSDs are worn out earlier than
others. Diff-RAID is based on a key observation that a majority
of data is written by partial stripe writes whose lengths are
shorter than that of a stripe. When a partial stripe write is
requested, only a small part of a destined stripe needs to
be updated. A RAID controller, however, has to calculate a
new parity chunk with the up-to-date stripe and write the new
parity to disks again for future data recovery. For workloads
with many partial stripe writes, parity chunk writes account
for a non-trivial portion of total writes. Diff-RAID exploits
such a characteristic - by unevenly distributing parity chunks
to certain SSDs, it can automatically create the age differences
among SSDs, resolving the correlated disk failures problem
without any additional I/O costs.

Although the key insight behind Diff-RAID is novel, the
main weakness of Diff-RAID is that it may not work well
for all workloads. In particular, Diff-RAID does not work
properly when large sequential writes are dominant. For such
workloads, full stripe writes are frequently observed. Com-
pared with partial stripe writes, full stripe writes incur a
smaller number of parity chunk updates, so Diff-RAID fails
to maintain the age differences among SSDs. Considering
workload characteristics of recent storage systems, in partic-
ular data center workloads, this weakness can be a serious
obstacle for Diff-RAID to be widely deployed in real systems.
For example, recent NoSQL-based database systems, such
as Cassandra [6], MongoDB [7], and RocksDB [8], mostly
issue sequential writes to storage systems because their data
management engines are based on the LSM Tree [9]. For
example, when we analyzed write requests of Cassandra about
94% of data were written by full stripe writes, thus severely
limiting a possibility of sustaining the required age differences



2

among SSDs. Write workloads of log-structured and copy-on-
write file systems (e.g., F2FS [10], BtrFS [11], and HDFS [12])
can cause similar problems as well for Diff-RAID because
these file systems tend to append new data by sequentially
appending to storage devices using full stripe writes.
In order to efficiently differentiate the amount of written data

to each SSD, full stripe writes should be converted to partial
stripe writes. However, a naive solution such as using a large
chunk size significantly degrades the lifetime of SSDs because
of a large increase in parity updates (as explained in Sec-
tion II). In this paper, we propose a new lifetime management
technique, DA-RAID, for RAID systems which overcomes the
technical limitation of Diff-RAID without degrading the SSD
lifetime. In DA-RAID, deduplication is employed as a main in-
strument of converting full stripe writes to partial stripe writes.
By removing duplicated pages from a full stripe write using
a deduplication technique, we can convert many full stripe
writes into partial stripe writes. Since the converted partial
stripe writes enable more flexibility in deciding a destination
SSD for each page of partial stripe writes we can better meet
the age difference requirement for among SSDs. In order to
sustain the required age differences among SSDs, we also
propose a simple but effective SSD re-allocation technique that
adaptively changes destination SSDs for partial stripe writes
by accounting for each SSD’s aging pattern. Our experimental
results show that DA-RAID can effectively sustain the age
difference among SSDs even for data center workloads (for
which Diff-RAID fails) without additional parity updates. DA-
RAID achieves similar age differences among SSDs as Diff-
RAID with a large chunk size while reducing the amount of
parity updates by 32% over Diff-RAID.
The rest of the paper is organized as follows. Section II

describes the limitations of existing RAID and Diff-RAID
techniques. Section III presents the proposed DA-RAID in
detail and shows how it solves problems with the existing
RAID solutions. In Section IV, experimental results of DA-
RAID are presented. Finally, Section V concludes with a
summary and future work.

II. MOTIVATION

In this section, we briefly explain RAID systems and intro-
duce problems with Diff-RAID. Figure 1 shows an example of
a RAID-5 and Diff-RAID system with four disks. In RAID-5,
three of them are used to store user data (i.e., data chunks)
while the other one is for keeping parity data. According to
the specification of RAID-5, the parity is distributed across
the four disks [1]. For example, in Figure 1(a), A0, B1, and
C2 are data chunks and Ap and Bp are parity chunks. Since a
parity chunk is calculated by xoring all the data chunks in the
same stripe, it should be updated when at least one data page
in the same stripe is updated.
There are two methods for writing a stripe in RAID-5

depending on the size of the write request. When the size of a
write request fits to the size of a stripe (i.e., a full stripe write),
the parity can be directly calculated by data to be written
without reading existing one. Therefore, data and parity of
the stripe can be written together. On the other hand, when
the size of a write request is smaller than the size of a stripe
(i.e., a partial stripe write), existing data and parity in the stripe
should be read so that the new parity can be calculated.

(a) RAID-5 (b) Diff-RAID

Fig. 1: An example RAID-5 and Diff-RAID configuration with
4 disks.

In the RAID-5 array, parity chunks are evenly distributed
across SSDs so that extra load from updating parity chunks
can be equally shared among SSDs. For instance, if a chunk
consists of a single page and four random pages (which
are allocated to chunk A0, B1, C1, and D2) are updated in
Figure 1(a), all the pages are written by the partial stripe write
method so each SSD receives both data and parity updates.
As a result, the overhead of the parity updates is equally
distributed among four SSDs in RAID-5.

As pointed out in Section I briefly, this even distribution of
parity chunks in RAID-5 could cause the correlated multiple
failure problem because it leads that all SSDs are worn out at
similar times. To avoid this, Diff-RAID allocates more parity
chunks to an older SSD to differentiate the aging rate of
SSDs. Figure 1(b) shows how Diff-RAID allocate parity chunk
among SSDs. For example, when three different pages, A0, B1,
and C2, are randomly written to the disks, Disk 0 gets three
writes while the others gets single write.

Unfortunately, Diff-RAID cannot work when three pages,
A0, A1, and A2, are written sequentially. For instance, if three
sequential pages (which are allocated to chunk A0, A1, and
A2) are requested to be written for a page-sized chunk in
Figure 1(b), the pages are written by the full stripe write so four
SSDs (including the parity SSD) should be written regardless
of how we re-allocate the parity chunk. Thus, there is a limited
chance to differentiate the aging rate of SSDs for Diff-RAID
with sequential writes.

In order to evaluate the reliability degradation problem due
to the full stripe writes, we ran several traces on the Diff-
RAID array that is implemented based on a Linux RAID
module, MD [13] with four SSDs. Figure 2 shows the per-
centage of number of written pages per SSD for various
traces. Web, homes, mail traces are from [14] and Random
trace is a synthetic small random write workload. Since the
Random trace incurs only partial stripe writes Diff-RAID
effectively differentiate the number of written pages between
SSDs. However, the difference of number of written pages is

0

0.2

0.4

0.6

0.8

1

web homes mail Random

N
o
rm

a
li
ze
d
A
m
o
u
n
t
o
f

W
ri
tt
e
n
P
a
g
e
s
p
e
r
S
S
D

SSD0

SSD1

SSD2

SSD3

Fig. 2: The difference of written pages of Diff-RAID with
various traces.



3

0

1000

2000

3000

4000

5000

6000

4 KB 16 KB 64 KB 256 KB 1 MB

To
ta
l
n
u
m
b
e
r
o
f
re
q
u
e
st
e
d
p
a
g
e
s

parity

data

Fig. 3: The amount of written data varying chunk sizes.

not sufficient for web, homes, mail traces because of the
significant sequential writes ratio, which are 87%, 63%, and
94%, respectively.
The limitation can be overcome by increasing the chunk

size so that more writes are written to a single SSD and
even distribution of writes is avoided. If we change the chunk
size to be three pages in the previous example, the requested
three pages are allocated to the chunk A0 together. Unlike
the previous example, the pages are written by partial stripe
writes instead of full stripe writes. Since only two SSDs are
written, the aging rate of SSDs can be differentiated and can
be managed by re-allocating the chunk Ap to another SSD.
Although using the large chunk size can mitigate the sequential
write problem in Diff-RAID, the total amount of writes is
increased due to more frequent parity updates. In other words,
the lifetime of SSDs should be sacrificed to achieve a higher
reliability.
We evaluated how the chunk size affects the amount of

parity update by running a workload that issues 1 MB-sized
write requests on top of MD. Figure 3 shows the total amount
of written pages varying chunk sizes. As shown in Figure 3,
the amount of written parity page is significantly increased as
the chunk size increases due to the frequent parity updates.
Figure 4 shows the amplified writes of Diff-RAID when a

large chunk size (512 KB) is used. Since only a part of SSDs
receive writes when the chunk size becomes large, the number
of written page difference is similar to the Random trace. As
mentioned above, however, the number of parity updates in-
creases due to the large chunk size. Particularly, the writes are
amplified up to 1.8x for mail trace, significantly decreasing
the lifetime of RAID. In conclusion, Diff-RAID may fail to
satisfy the endurance and the reliability requirements at the
same time when the portion of full stripe writes become large.

III. ENDURANCE IMBALANCING TECHNIQUE USING

DEDUP-ASSISTED PARTIAL STRIPE WRITES

A. Dedup-assisted Partial Stripe Writes

In this section, we describe the lifetime improvement tech-
nique for SSD-based RAID using dedup-assisted partial stripe

0

0.5

1

1.5

2

web homes mail

N
o
rm

a
li
ze
d
A
m
o
u
n
t
o
f

To
ta
l
W
ri
tt
e
n
P
a
g
e
s

Fig. 4: The amount of amplified writes of Diff-RAID.

Fig. 5: An example of replacing full stripe write by dedupli-
cation.

writes. As discussed in Section II, for the sequential workload,
the amount of written data is inevitably increased due to
the large chunk size for differentiating the aging rates of
SSDs in Diff-RAID. Instead of using a large-sized chunk, we
can efficiently replace the full stripe writes to partial stripe
writes by removing duplicated data in the full stripe writes.
Figure 5 shows how the deduplication is combined with RAID
to increase the ratio of partial stripe writes. In Figure 5,
the deduplication stage is added to the RAID controller so
that we can find duplicated data across SSDs in the RAID-
5 array. When RAID controller receives a write request, it
computes fingerprint of each page using a collision-resistant
hash function. The fingerprint computation can be supported
by the hash instruction (e.g., Intel SHA Extensions) to decrease
the overhead of hash function. After fingerprinting, each fin-
gerprint is looked up in the dedup table which maintains the
fingerprints of written data to SSD. Each entry of the dedup
table is composed of a key-value pair, {fingerprint, location},
where the location indicates a SSD number and address of
written data. If the same fingerprint is found, it is not necessary
to write data. Instead, the mapping table is updated so that
the corresponding mapping entry points to the location of
previously written data. If there is no matched fingerprint in
the dedup table, the new fingerprint is inserted into the dedup
table with its location.
For example, three sequential pages, whose contents are C,

D, and E, are requested to be written and data A, B, and C

is already written at the first stripe of RAID. Since data C is
duplicated in the example, we need to write only two pages,
which mean a full stripe write is replaced by a partial stripe
write. After deduplication, the write request is assigned to
the second stripe and the parity is calculated using the non-
duplicated data, D, and E in the example. Before the stripe is
written, the endurance-aware SSD allocation step can change
the location of eliminated data in order to make sure the
difference of written pages across SSDs is maintained. The
detailed method for SSD allocation will be explained in the
following section.

B. Dynamic SSD Allocation

Since the SSD location of duplicated data cannot be guar-
anteed, converting to partial stripe write may not be able to
incur the desired difference of written pages across SSDs. In
order to satisfy the number of written page difference of Diff-
RAID, we propose a dynamic SSD allocation technique for a



4

Fig. 6: An example of dynamic SSD allocation.

full stripe write that contains duplicated data. The endurance-
aware SSD allocator in Figure 5 re-assigns the location of
data before the stripe is written to the RAID array. In order to
create the age difference among SSDs same as Diff-RAID, the
number of issued writes per SSD and the target age distribution
are maintained. The target ratio is obtained from Diff-RAID
with (82, 6, 6, 6) allocation. Then, the allocator re-assigns
the SSD location to meet the target ratio by the following
policy. First, since the parity should be updated whenever data
in the same stripe is updated, the parity is allocated to the SSD
which has the most target ratio. Second, when the duplicated
data is eliminated, it is located to the SSD which has the least
target ratio so that the SSD would receive less writes than
other SSDs. Third, if an SSD receives more writes than the
target ratio, the SSD is not allocated. Instead, we change the
SSD location to an SSD whose written page ratio is below the
target if available. When there are multiple SSDs that exceed
the target ratio, the SSD with larger target ratio is selected
to be written because it is more reliable to have more young
SSDs when an SSD has failed.
Figure 6 shows an example of the dynamic SSD allocation.

A full stripe write (data C, D, and E) is requested to be
written and SSD 2 is the original location of parity. Since
the full stripe write is deduplicated, we can apply the dynamic
SSD allocation policy. As mentioned above, the parity is re-
allocated to SSD 0 so we can make an SSD with the most
target ratio get more writes. Moreover, SSD 1 received more
writes than the target ratio so we allocate the eliminated data
C to SSD 1. Since Diff-RAID utilizes only the uneven parity
distribution, the writes are distributed indirectly. The proposed
technique, however, dynamically changes SSD location so that
the age difference among SSDs is created more effectively than
Diff-RAID.
Furthermore, the proposed SSD allocation technique is

applicable only to the full stripe writes because the partial
stripe writes require different mechanism for changing the
allocation. The different SSD allocation mechanism between
the full stripe writes and the partial stripe writes comes from
the different parity calculation. For the full stripe writes, since
the old parity and old data is not needed to calculate new
parity, we can freely overwrite the old data and parity. Unlike
the full stripe writes, old data and old parity are necessary for
the parity calculation for the partial stripe writes. If we re-
allocate SSD 0 to SSD 1, the old data at SSD 1 should be
moved to SSD 0 to avoid the data loss by overwriting.

C. Excluding Duplicated Data for Parity

For applying deduplication on RAID, since the original data
could be placed in other SSD, data recovery process can be

(a) Dedup after parity calculation
example

(b) Dedup before parity calculation
example

Fig. 7: Examples of data recovery when an SSD 0 has failed.

complicated. In this section, we describe how the recovery
process can be simplified in the proposed method. As explained
in Section III-A, the deduplication is applied before the parity
calculation so that the parity does not contain eliminated data.
The exclusion of duplicated data for parity enables the simple
data recovery process. For a deduplicated stripe, if we apply the
deduplication after the parity calculation, we need to recover
the original data first. If this procedure is repeated for multiple
times, called chained recovery, the recovery time would be
significantly increased.
Figure 7 shows the data recovery process when SSD 0 has

failed for the cases that the deduplication is applied after the
parity calculation and the reverse order. In both example, data
B at Stripe 1 and D at Stripe 3 is deduplicated and
the location where the original data were written is linked
with an arrow in the figure. In Figure 7(a), the parity includes
entire data in the same stripe regardless of whether the data
is deduplicated because the deduplication is applied after the
parity calculation. In order to recover Stripe 1, we need
data B, C and the parity. However, since data B is deduplicated,
we need to get original data B. Unfortunately, the original B
was written at SSD 0 so we need to recover Stripe 3 first.
A similar process is required for recovering the Stripe 3

because data D is also deduplicated and the original data D

is not able to obtain. Finally, after data D at Stripe 2 is
recovered, Stripe 3 and Stripe 1 are also recovered. As
a result, more than one stripe is additionally required to be
restored for recovering the deduplicated stripe.
Unlike the previous example, we do not need to recover

other stripes if the deduplication is applied before the parity
calculation. As shown in Figure 7(b), the parity does not
include the deduplicated data. For recovering data A, we only
need data C and the parity since data B was not included to
the parity. Thus, we apply the deduplication before the parity
calculation in this paper.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

In order to evaluate the effectiveness of DA-RAID, we
conducted a set of experiments on the Linux operating sys-
tem. As a baseline RAID-5 platform, we selected Linux’s
software-based RAID subsystem, called a multiple device
driver (MD) [13], because it was widely used in enterprise
servers. We have implemented both Diff-RAID and DA-RAID
on top of DM. For flash disks, we have used FlashBench [15]
that emulated the detailed behaviors of NAND flash and flash
controllers using host DRAM. To build a RAID-5 system with
4 disks, we attached four instances of FlashBench to the Linux
MD. A default chunk size was set to 4 KB. This setup was
beneficial to improving overall SSD lifetime because only a



5

0

0.2

0.4

0.6

0.8

1

web homes mail PC Package KV_H

N
o

rm
a

li
ze

d
 A

m
o

u
n

t 
o

f 

W
ri

tt
e

n
 P

a
g

e
s 

p
e

r 
S

S
D

 

SSD0

SSD1

SSD2

SSD3

(a) Diff-RAID with the 4KB-sized chunk

0

0.2

0.4

0.6

0.8

1

web homes mail PC Package KV_H

SSD0

SSD1

SSD2

SSD3

(b) Diff-RAID with the 512KB-sized chunk

0

0.2

0.4

0.6

0.8

1

web homes mail PC Package KV_Q KV_H

SSD0

SSD1

SSD2

SSD3

(c) DA-RAID

Fig. 8: The difference of written pages among SSDs for various schemes.

small number of parity updates were generated. For a fair
comparison, we built a trace-based experimental environment.
While running real world applications, we first collected I/O
traces that included timestamps, request types, logical ad-
dresses, actual data contents, and so on. Using this information,
we constructed real block I/O requests and sent them to the
Linux’s MD layer. This experimental setup allowed us to
repeat exactly the same workloads under different RAID setups
(e.g., Diff-RAID and DA-RAID). While replaying I/O traces,
we measured important performance numbers that included the
amount of written data, deduplication ratios, and request sizes.
We used six different I/O traces for the evaluations. Three

production system traces, web, homes and mail were from
the FIU [14]. All of them included actual data. Three in-
house traces, PC, Package, and KV traces were collected
while running real-world applications. PC was a desktop PC
workload such as a web surfing, emailing, and document
editing, whereas Package captured all of the I/O activities
while downloading and installing software packages. KV was a
key-value store workload that was collected from YCSB [16]
running on top of Cassandra [6]. We modified YCSB so that
it wrote data with a specific deduplication ratio (e.g., 25%
or 50%). The detailed configuration for data generation is de-
scribed in Section IV-D. Table I summarizes the characteristics
of the I/O traces such as amount of writes, average sequential
write request size, the ratios of sequential write requests and
duplicated data.

B. Inter-SSD Lifetime Fluctuation Evaluation

Figure 8 compares the amount of data written to SSDs for
Diff-RAID and DA-RAID under different benchmarks. We
first conducted experiments with a default chunk size, 4 KB,
on Diff-RAID. As depicted in Figure 8(a), Diff-RAID fails
to achieve good age distributions under workloads with the
4KB chunk. Because of its small chunk size, almost all of
the write requests become full stripe writes with only few
parity updates. Therefore, there is only a little chance for Diff-
RAID to control age differences among SSDs. In particular,
for the mail and KV traces, Diff-RAID exhibits very low age

Traces
Amount of Avg. Seq. Write % of Seq. Dedup
Writes (GB) Req. Size (KB) Write Req. (%) Ratio (%)

web 37.28 37.48 87 28

homes 65.27 19.96 63 39

mail 1483.4 75.16 94 31

PC 3.1 31.19 77 29

Package 4.9 40.44 69 20

KV 1.2 509.89 96 25(Q) or 50(H)

TABLE I: Write characteristics of traces used in our experi-
ments.

differences because of sequential dominant write traffic. To
understand behaviors of Diff-RAID in detail, we also perform
another experiment with Diff-RAID after increasing a chunk
size to 512 KB. As shown in Figure 8(b), Diff-RAID performs
very well with the 512 KB chunk - it shows excellent age
distributions among SSDs. As expected, this is because partial
stripe writes are mostly observed at the RAID level which
cause lots of parity updates. Unfortunately, this benefit comes
at the cost of more extra writes, that is, more parity updates.
We will show how it badly affects overall lifetime of SSDs
in the next section. As shown in Figure 8(c), DA-RAID is
not seriously affected by a small chunk size. By eliminating
duplicate pages from full stripe writes, DA-RAID creates many
partial stripe writes. This allows us to dynamically distribute
parity updates to different SSDs. Unlike Diff-RAID, as a
result, DA-RAID can effectively differentiate the amount of
written pages among SSD under workloads where sequential
writes are dominant. This benefit is maintained even when the
deduplication ratio is relatively low, for example, 25% (KV_Q),
DA-RAID still shows good age differences, achieving a much
lower correlated failure ratio than Diff-RAID.

C. Endurance Evaluation

As we mentioned earlier, Diff-RAID achieves good age
differences only when the chunk size is large enough (i.e.,
512 KB). Even though it is beneficial to differentiate the ages
among SSDs, it incurs lots of extra party updates, so degrades
SSD lifetime in overall. To understand its effect, we measure
the total number of pages written to the SSDs under different
chunk sizes. Figure 9 shows our experimental results for the
various traces. The results shown in Figure 9 are normalized
to the number of original page writes from the traces. Since
RAID-5 incurs redundant writes (i.e. parity updates), the
amount of written pages is always larger than 1 unless data
deduplication is used. As shown in Figure 9, Diff-RAID with

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

web homes mail PC Package KV

N
o

rm
a

li
ze

d
 A

m
o

u
n

t 
o

f 

W
ri

tt
e

n
 P

a
g

e
s 

Diff-RAID_4KB

Diff-RAID_512KB

DA-RAID

Fig. 9: The amount of written pages under various schemes.



6

0.0

0.2

0.4

0.6

0.8

1.0

0% 25% 50% 75%

N
o

rm
a

li
ze

d
 A

m
o

u
n

t 
o

f 

W
ri

tt
e

n
 P

a
g

e
s 

p
e

r 
S

S
D

 

SSD0

SSD1

SSD2

SSD3

Fig. 10: The difference of written pages among SSDs under
varying dedup ratios.

the 512 KB chunk experiences much higher write traffic than
one with the 4 KB chunk. Considering its negative impact on
longevity of SSDs, the lower correlated failure ratio of Diff-
RAID with a larger chunk fades into insignificant. Figure 9 also
illustrates the number of written pages in DA-RAID with the
4 KB chunk. From this figure, we can confirm that DA-RAID
takes advantage of both fewer parity updates with small chunks
and a low correlated failure ratio. Furthermore, by leveraging
data deduplication, DA-RAID shows a significant reduction
in the amount of written pages. For example, the normalized
write traffic is below 1.0 - the amount of data actually written
to NAND flash is smaller than that of original data requested
to be written by traces. As a result, DA-RAID reduces the
amount of written pages by 32% on average and up to 48%
for KV trace over Diff-RAID, extending the lifetime of SSD-
based RAID by the same amount.

D. Sensitivity Study on Dedup Ratio

As DA-RAID is based on the deduplication technique, the
effectiveness of DA-RAID largely depends on the dedup ratio,
which is the ratio of amount of eliminated (i.e., deduplicated)
data to the size of an original data. We have conducted a simple
sensitivity experiment to compare the age difference between
SSDs when dedup ratio varies. We ran YCSB with Cassandra
for this experiment. In order to control the dedup ratio of the
workload, we modified the data generation function of YCSB
so that it can generate data to meet the predefined dedup ratio
using the data generation function borrowed from IOzone [17].
Figure 10 shows the difference of written pages among two
SSDs in DA-RAID under different dedup ratio from 0% to
75% and Diff-RAID with a large chunk size. When there are
no duplicate data, 0%, DA-RAID works like Diff-RAID so
the age difference of SSDs is not created. As duplicate data
increases, the difference of written pages among SSDs also
increases from 25% to 75%, reaching target ratio. According
to [18], the average dedup ratio is around 30% in production
systems. Therefore, we expect that a deduplication ratio would
not be a limiting factor for DA-RAID to be used in real-world
applications.

V. CONCLUSION

In this paper, we proposed a lifetime management tech-
nique, DA-RAID, for SSD-based RAIDs that can meet the
required age differences among SSDs so that multiple SSD
failures can be avoided. By using deduplication as a means
to convert full stripe writes to partial stripe writes, DA-
RAID can satisfy inter-SSD lifetime fluctuations required by

Diff-RAID while avoiding the write amplification problem
of the existing approach. Our evaluation results show that
DA-RAID can successfully sustain the age differences among
SSDs for various workloads including ones for which Diff-
RAID performs poorly. Furthermore, DA-RAID achieves the
skewed age distribution among SSDs without sacrificing the
SSD lifetime. DA-RAID improves the lifetime of SSDs by
32% over a naive solution of using a large chunk size in Diff-
RAID.

VI. ACKNOWLEDGMENTS

This research was supported by National Research Founda-
tion of Korea (NRF) grant funded by Ministry of Science, ICT
and Future Planning (MSIP) (NRF-2013R1A2A2A01068260)
and the Next-Generation Information Computing Develop-
ment Program through the NRF funded by the MSIP (NRF-
2015M3C4A7065645). The ICT at Seoul National University
and IDEC provided research facilities for this study.

REFERENCES

[1] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson, “RAID: High-
Performance, Reliable Secondary Storage,” in ACM Computing Surveys,
vol. 26, no. 2, pp. 145-185, 1994.

[2] I. Mir, and A. McEwan, “A Reliability Enhancement Mechanism for
High-assurance MLC Flash-based Storage Systems,” in Proceedings on
17th International Conference on Embedded and Real-Time Computing
Systems and Applications, 2011.

[3] Y. Zhang, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Warped Mirrors
for Flash,” in Proceedings on 29th Symposium on Mass Storage Systems
and Technologies, 2013

[4] J. Hsieh, and M. Liu, “Configurable Reliability Framework for SSD-
RAID,” in Proceedings on Non-Volatile Memory Systems and Applica-
tions Symposium, 2014

[5] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi, “Differen-
tial RAID: Rethinking RAID for SSD Reliability,” in ACM Transactions
on Storage, vol. 6, no. 2, pp. 1-22, 2010.

[6] “The Apache Cassandra Project,” http://cassandra.apache.org.

[7] “Mongo DB,” http://www.mongodb.org.

[8] “RocksDB: A persistent key-value store for fast storage environments,”
http://rocksdb.org.

[9] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (LSM-tree),” inActa Informatica vol. 33, no. 4, pp. 351-385,
1996.

[10] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A New File System for
Flash Storage,” in Proc. 13th USENIX Conference on File and Storage
Technologies, 2015.

[11] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-tree
Filesystem,” in ACM Transactions on Storage, vol. 9, no. 3, 2013.

[12] “Apache Hadoop Distributed File System,” http://hadoop.apache.org.

[13] N. Brown, “mdadm,” http://en.wikipedia.org/wiki/Mdadm.

[14] R. Koller, and R. Rangaswami, “I/O Deduplication: Utilizing Content
Similarity to Improve I/O Performance,” in Proc. 8th USENIX Confer-
ence on File and Storage Technologies, 2010.

[15] S. Lee, J. Park, and J. Kim, “FlashBench: A Workbench for Rapid
Development of Flash-Based Storage Devices,” in Proc. 23rd IEEE
International Sympoisum on Rapid System Prototyping, 2012.

[16] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proc. 1st ACM
Symposium on Cloud Computing, 2010.

[17] “IOzone Filesystem Benchmark,” http://www.iozone.org.

[18] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “iDedup:
Latency-Aware inline data deduplication for primary storage,” in Proc.
10th USENIX Conference on File and Storage Technologies, 2012.


