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ABSTRACT 
 

We describe a DVS scheme for power-aware implementation of mobile 3D graphics system. Based on an 
energy consumption analysis of typical mobile 3D graphics applications, we propose intra-frame and inter-
frame DVS low-power techniques that can be useful for mobile devices with a variable voltage processor. 
Our implementation on a PDA development board shows that the proposed techniques achieve an energy 
saving of up to 46% over a power-unaware implementation. 
 
 
1. Introduction 
 

As mobile devices get more powerful, more desktop PC applications including 3D graphics are moving 
into the mobile domain. Even though performance requirements are met, reducing power consumption is an 
important design requirement for battery-powered mobile devices such as PDA and cellular phones. For 
mobile 3D graphics applications such as 3D games and 3D navigations, an efficient power management is 
even more important since they require a large number of arithmetic operations as well as a high frequency of 
memory accesses, making them power-hungry applications. 

Previously, low-power 3D graphics have been investigated at different abstraction levels including the 
circuit level, architecture level and algorithm level. In this paper, we analyze the power consumption of 
mobile 3D graphics pipelines, and show that there exist imbalances, i.e. slacks, across the pipeline stages 
based on the dynamic 3D graphics workloads for each 3D graphics application and its characteristics. The 
slacks can occur in the differences due to the 3D graphics features such as frame rate, the number of 
primitives, lighting parameters, texture mapping parameters, and the number of fragments, etc. 

Based on this observation - energy consumption analysis of typical mobile 3D graphics applications, we 
propose intra-frame and inter-frame DVS power saving techniques for mobile 3D graphics systems, which 
can be useful for mobile devices based on variable voltage processors. The intra-frame DVS technique 
estimates the required workload of each frame based on the characteristics of scene description of a given 
frame. If the required workload is less than the expected workload, the supply voltage is accordingly adjusted. 
While the intra-frame DVS technique exploits the slack time within the current frame, the inter-frame DVS 
technique takes advantages of unused idle intervals from previous frames. 

In order to design and implement our proposed techniques, we develop an energy-efficient software 
implementation of a 3D graphics library, for mobile devices based on a variable-voltage processor. As a 
specific target platform, we use a prototype PDA system running Linux on Intel's XScale PXA255. The target 
system does not have any 3D graphics acceleration support. Our implementation on the target PDA 
development board shows that the proposed techniques achieve an energy saving of up to 46% over a power-
unaware implementation. 

The rest of the paper is organized as follows. In Section 2, we introduce some background about 3D 
graphics pipeline. In Section 3, we describe the system model. Section 4 explains the proposed DVS scheme. 
The implementation and experimental results are discussed in Section 5 and Section 6 concludes the paper 
with future directions. 
 
 
2. 3D Graphics Pipeline 
 

There are several emerging standard APIs for mobile 3D graphics such as OpenGL ES [3], Java mobile 3D 
Graphics API (JSR-184), and Direct 3D Mobile, etc. OpenGL ES defines a standardized cross-platform API 
for full-function 2D and 3D graphics on embedded systems, which is a well-defined subset of OpenGL. In 



this paper, we use several 3D graphics terms limited to OpenGL ES. 
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Figure 1: 3D graphics pipeline 

 
The 3D graphics pipeline structure is shown in Figure 1. This pipeline can be broadly divided into two 

phases, Geometry and Rasterization. The pipeline stages in the Geometry phase require a large 
number of floating calculations per vertex while the pipeline stages in the Rasterization phase need a 
large number of memory accesses per fragment. The Triangle Setup stage comprises per-triangle 
floating-point operations for scan conversion which generate fragments. Texture mapping and 
Fragment operations fills the fragments with the appropriate color (via z-test, alpha test, etc.) and 
Framebuffer shows the created image to the display screen. 

 
 

3. System Model 
 

Considering general 3D graphics architecture with any possible optimizations, a pipeline is consist of n 
stages, which is represented as P = {pstage-1, …, pstage-n}. A 4-tuple {Si, Pth-i, Ci, Ni } is used to represent each 
pipeline stage Pstage-i, where Si is the state enabled or disabled by graphics feature, Pth-i is the throughput factor 
which is the parallelism determined in design time and Ci is the worst case execution time (WCET) of the 
pipeline stage at the maximum processor speed. The graphics features in 3D graphics are the global states 
determined by the parameters of glEnable (glDisable) command of OpenGL ES, shading model, lighting 
parameters, texture mapping parameters before the beginning of drawing each scene. Ni is the iteration factor 
based on the number of primitives, the number of fragments, and depth complexity. Hence, the execution path 
and execution time of each pipeline stage can be changed depending on these features. Parallelism is defined 
in design time for optimization and means that how many operations can be done in time, for example, 
parallel vector operations on SIMD architecture or several pixel-element processors which can process several 
fragments. Therefore, the execution time of jth frame can be stated as (1): 

 

∑
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Since Ci and Pth-i are determined in design time, they are fixed values, and the frame deadline and 

bottleneck come from application’s workloads. Even though the pipeline is well optimized, there can exist 
slack times due to the imbalances occurred in differences from Si and Ni, depending on applications. 

When the execution time Bj of the bottleneck stage of whole pipeline in the frame is (2), the other stages 
can process more their inputs or have slack times. This means we can have chance to optimize the 
performance via load-balancing, or slowdown the supply voltage by using these slack times in the system 
whose the frame rate is 1/max(Dj). 
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Usually, while pixel fill-limited applications which have a small number of large triangles tend to be 
memory-limited (i.e. rasterization-limited), geometry-limited applications which have a large number of small 
triangles are compute- (or interfacing buffer) limited. The designers of graphics architecture choose fill-rate 
and fix memory bandwidth based on cost-effective memory technology, and determine triangle rate - 
processor capability in the design phase. Therefore, in this design phase, the performance goal is selected and 
then the number of pipeline stages and the capability of each component are defined. 

Many researchers have focused on optimizations on the components of each pipeline stage by efficient s/w 
and h/w design [6-17]. Despite all optimizations, there can exist slack times due to the imbalances occurred in 
the non-bottleneck stages. They show the analysis of 3D graphics workload depending on several features and 
propose basic DVS scheme in [4]. However, their history based approach is naive and they do not consider 
frame-by-frame variations in dynamic workload. In this paper, we specifically focus on DVS techniques for 
mobile 3D graphics. 
 
 
4. Intra-Frame and Inter-Frame DVS 
 

Figure 2 shows two levels of DVS for 3D graphics applications. In inter-frame DVS, the voltage is 
adjusted by a frame granularity based on the slack times generated from the previous frame. On the other 
hand, in intra-frame DVS, the voltage is adjusted by an object granularity within a frame. 
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Figure 2: The Inter-frame vs. Intra-frame DVS 

 
In this paper, we assume a frame starts from glClear() call and ends with eglSwapBuffer() call, and each 

object of a scene is distinguished by glDrawArrays() or glDrawElements() from OpenGL ES applications. A 
frame deadline is the time period to display one scene with a given frame rate at the highest frequency. An 
object deadline is the time to finish whole pipeline processing for that object. Since a scene (a frame) can 
have several (m) objects, we restate the equation (1) as (3): 

 

∑∑
−

=
o i ith

o
i

o
ii

j P
NSCD ,       (1 ≤  i ≤  n, 1 ≤  o ≤  m)    (3) 

 
In intra-frame DVS, each object can have static slacks due to (2) or dynamic slacks between objects. The 

latter uses the slack from the previous object. We assume when the frequency is changed to fk, the voltage 
level is also proportionately set to Vk, where the range of scalable voltages and frequencies is 1 to s and 1≤ k 
≤ s. When we use the slack times for adjusting the supply voltage in intra-frame DVS, the frequencies is 
determined for static (4) or dynamic distribution (5) of the slack. 
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The in (4) is determined by distributing slack time evenly to each pipeline stage for drawing an 

object. This static slack-distribution can avoid too frequent voltage scaling. However, it cannot be fair 
depending on the bottleneck stage (2). So, we also consider frequency for each pipeline stage in (6). Using 
dynamic distribution (5) of the slack can compensate the misprediction in the previous stage. 

static
oF

Since the execution time of each object can vary according to its dynamic characteristics frame by frame, 
we construct an object list and store the object’s characteristics including number of vertices, triangles, 
fragments and execution time while drawing a scene. When the first frame is rendered, the object list is 
created and updated frame by frame. When updating the object list, the variations on the characteristics is also 
stored for the correct prediction of the slack times of the consecutive frames or objects. 

Furthermore, slack times can be made by the variation of the characteristics in a scene or the movement of 
objects. Since the intra-frame estimation is a conservative approach, it cannot find all the slack times in 
advance. Such unused dynamic slacks are added to the deadline for the next frame. We call this approach 
inter-frame DVS. In this paper, the slack from the previous frame is used by the first object in the next frame. 
In inter-frame DVS, we assume the frame deadline is a constant for each frame. Determining the frequency 
for inter-frame DVS is similar to (5). In this paper, we implement the proposed DVS techniques at a level of 
3D graphics library. If the frame rate is controlled by an application itself, however, the inter-frame DVS has 
no effect on having slack time, since we cannot start processing the next scene earlier at a library. 

In order to generate more intra-frame slacks for our implementation, we add vertex caching technique to the 
object list. This technique can avoid repetitive transformations and lighting calculations of shared vertices, 
since triangles neighboring with each other usually share vertices in many 3D applications. We construct a 
vertex cache structure by a binary search tree before transformation stage. When a new vertex enters 
the transformation stage, we first search the vertex cache to check whether the same vertex has been 
processed before. If there is a match, we reuse the previous results for the vertex, thus skipping 
computationally expensive transformation and lighting stages. Especially for applications that need 
a sophisticated lighting model, the vertex cache can keeps away from very heavy lighting calculations many 
times, since shared vertices possibly have the same averaged normal vectors from neighboring triangles in 
many applications for smooth shape. 
 
 
5. Implementation and Experiment 
 

We have implemented the proposed techniques with a software implementation of a 3D graphics library on 
a prototype PDA system (Figure 3) of which CPU and memory are power measurable. The main CPU is an 
Intel PXA255, which can change the clock frequency to one of 7 levels between 100 MHz and 400 MHz, and 
the target board has a programming core voltage regulator; supply voltage can scale to one of 3 levels 
between 1.0 V and 1.3 V. The LCD display has a color depth of 16 bits at a 320ⅹ240 screen resolution, and 
3D graphics accelerations are not supported. 

In our experiment, we have evaluated the efficiency of the proposed approach using three applications 
(Figure 4). Texsub is a simple texture mapping tutorial scene of OpenGL. Face model is a 3D character 
model, and Jellyfish is a 3D shooting game [18]. 



                    
                                        a. Texsub    b. Face model    c. Jellyfish 

Figure 3: Target PDA prototype system                 Figure 4: Applications 
 

Figure 5 shows the relative proportions of energy consumption and performance for each pipeline stage of 
those applications whose characteristics are summarized in Table 1. Texsub has a small number of vertices 
and large triangles, spends most its energy during the Rasterization phase. On the other hand, Face 
model, which has a relatively large number of vertices with lighting and small triangles, consumes about 
52% of the CPU energy on Geometry phase. Jelly fish has a large number of vertices and a relatively 
large number of fragments. 

 
Table 1: The statistics of applications features            

Application Vertex Triangle Fragment Texel access Time(sec) Lighting

Texsub 8 4 24388 24388 0.161571 x

Face model 4281 1427 16562 16562 0.806431 o

Jellyfish
(average)

9187 3073 47070 47006 0.669926 x  
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Figure 5: The distribution of energy consumption and performance of three applications 

 
Figure 6 shows the power consumption patterns of the results of applying DVS to Face model and 

Jellyfish along their 10 frames, where the measured powers are relative values. In Face model, energy 
gain was 47% of CPU and 43% of memory, 46% in the total energy consumption. The performance of Face 
model benefited from the vertex caching by 43% and thus the voltage was more effectively adjusted every 
frame. Jellyfish has 40 or more moving objects each frame, and the number of objects varies frame by 
frame. We saved 12% total energy with 5% performance overhead and 8% without performance overhead in 
Jellyfish (Figure 7). 
 
 
6. Conclusions 
 

We described DVS scheme for general 3D graphics and introduced low-power intra-frame and inter-frame 
DVS techniques into 3D graphics pipeline stages based on the statistics of applications’ features. And we 
implemented an energy-efficient software implementation of the OpenGL ES 1.1 API, for mobile devices 
based on a variable-voltage processor. In our implementation, the object list with vertex cache was useful to 
make more slacks and manage variations for both intra-frame and inter-frame DVS. Our implementation on a 
PDA development board shows that the proposed techniques achieve an energy saving of up to 46% over a 
power-unaware implementation. 

Even though our software-only implementation has performance limitations as usual in 3D graphics, we 



give the feasibility of efficient power-saving DVS schemes applicable to 3D graphics system. And our 
platform can help flexible simulation to design low-power mobile 3D graphics system. We are evaluating 
several optimization techniques suitable for low-power mobile 3D graphics. In addition to the DVS 
techniques, DPM techniques need to be considered when implementing 3D accelerators, since the leakage 
power is increasing with the CMOS technology generation. 
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Figure 6: The results of applying DVS           Figure 7: The experimental results 
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