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Abstract

Dynamic voltage scaling (DVS) is an effective low-power
design technique for embedded real-time systems, adjusting
the clock speed and supply voltage dynamically. In this pa-
per, we evaluate state-of-art DVS algorithms recently proposed
for hard real-time periodic task sets. We compare the en-
ergy efficiency of the proposed DVS algorithms under vari-
ous task/system configurations. Experimental results both from
the simulation tool and real H/W-based DVS platform are pre-
sented. Our results provide important insights in understand-
ing the performance differences among the proposed DVS al-
gorithms in a unified fashion.

I. Introduction

Dynamic voltage scaling (DVS), which adjusts the supply
voltage and clock frequency dynamically, is an effective low-
power design technique for embedded real-time systems. Since
the energy consumption E of CMOS circuits has a quadratic
dependency on the supply voltage, lowering the supply voltage
is one of the most effective ways of reducing the energy con-
sumption.

With a recent growth in the portable and mobile embedded
device market, where a low-power consumption is an impor-
tant design requirement, several commercial variable-voltage
microprocessors were developed. Targeting these microproces-
sors, many DVS algorithms have been proposed or developed,
especially for hard real-time systems [4, 5, 14, 1, 9, 12, 2, 6, 7].
Since lowering the supply voltage also decreases the maximum
achievable clock speed [11], various DVS algorithms for hard
real-time systems have the goal of reducing supply voltage dy-
namically to the lowest possible level while satisfying the tasks’
timing constraints.

Although each DVS algorithm is shown to be quite effective
in reducing the energy/power consumption of a target system
under its own experimental scenarios, these recent DVS algo-
rithms have not been quantitatively evaluated under a unified

framework, making it a difficult task for low-power embedded
system developers to select an appropriate DVS algorithm for a
given application/system. A quantitative analysis of the energy-
efficiency is particularly important because most of these DVS
algorithms are based on both static and dynamic slack analy-
sis techniques whose performance is difficult to predict ana-
lytically. In addition, their energy efficiency fluctuates signif-
icantly depending on the workload variations, task set charac-
terizations, and execution paths taken, further requiring a quan-
titative comparison study.

In this paper, we quantitatively evaluate the energy effi-
ciency of several recent DVS algorithms proposed for hard
real-time systems using a unified DVS simulation environment
called SimDVS [13]. In order to better observe the impact of
DVS algorithms on system behaviors, we also perform similar
experiments using DVS Evaluation Workbench (DEW), which
is an XScale-based DVS evaluation environment. We focus on
preemptive hard real-time systems in which periodic real-time
tasks are scheduled, under the Earliest-Deadline-First (EDF) al-
gorithm or the Rate-Monotonic (RM) algorithm (which repre-
sent the most widely used real-time system models [8]).

II. Classification of DVS Algorithms

For hard real-time systems, there are two types of voltage
scheduling approaches depending on the voltage scaling gran-
ularity: intra-task DVS (IntraDVS) and inter-task DVS (Inter-
DVS). The intra-task DVS algorithms [12, 2] adjust the voltage
within an individual task boundary, while the inter-task DVS al-
gorithms determine the voltage on a task-by-task basis at each
scheduling point. The main difference between two approaches
is whether the slack times are used for the current task or for
the tasks that follow. InterDVS algorithms distribute the slack
times from the current task for the following tasks, while In-
traDVS algorithms use the slack times from the current task
for the current task itself. Table 1 summarizes representative
techniques used in existing DVS algorithms.

Table 2 summarizes the DVS algorithms selected for the
comparative study. Nine InterDVS algorithms are chosen,
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Table 1. Classification of DVS techniques.
Voltage Scaling Methods Scaling Decision

IntraDVS (1) Path-based method
(2) Stochastic method Off-Line

(3) Maximum constant speed
InterDVS (4) Stretching to NTA

(5) Priority-based slack-stealing On-Line
(6) Utilization updating

(7) Short-term work-demand analysis

Table 2. Target DVS algorithms.
Category Scheduling Policy DVS Policy Used Methods†

lppsEDF [14] (3)+(4)
ccEDF [9] (6)

EDF laEDF [9] (6)∗

InterDVS DRA [1] (3)+(4)+(5)
AGR [1] (4)∗+(5)
lpSHE [6] (3)+(4)+(5)∗

lppsRM [14] (3)+(4)
RM ccRM [9] (3)+(4)∗

lpWDA [7] (4)+(7)
† Numbers indicate corresponding techniques in Table 1.

(n)∗ indicates an improved version ofn.

three [14, 9, 7] of which are based on the RM scheduling pol-
icy, while the other six algorithms [14, 9, 1, 6] are based on the
EDF scheduling policy. The ”used methods” column of Table 2
shows the DVS techniques employed by each target DVS algo-
rithm. For example, inlppsEDF andlppsRM which were
proposed by Shinet al. in [14], a slack time of a task is es-
timated using the maximum constant speed and stretching-to-
NTA methods.

III. Evaluation Environments

As shown in the previous section, many DVS algorithms
have been proposed for hard real-time systems. In this section,
we present evaluation results for several key DVS algorithms
using SimDVS, a unified simulation environment for DVS al-
gorithms. We also present analysis results obtained from actual
measurements using DEW, an XScale-based DVS evaluation
environment. Using actual implementation of DVS algorithms
on an XScale development board, we can verify the validity of
the simulation study and better understand the side effects as
well as overheads of DVS, if any.

SimDVS is a software simulator designed for performance
evaluation of hard real-time DVS algorithms. It is useful in
estimating the energy efficiencies of several DVS algorithms
under different machine specifications for various task sets. On
the other hand, DEW is an XScale-based DVS evaluation en-
vironment. Both SimDVS and DEW implement all the DVS
algorithms listed in Table 2.

Two evaluation tools have different pros and cons each other.
Although SimDVS can produce various simulation results of
several DVS algorithms under the different machine specifica-
tions and task sets fast, it is difficult to capture the overhead and
side-effects of DVS - such as context switching overhead, DVS
operation delay, memory access behavior, and other delays due
to the kernel service.

On the other hand, DEW is slower than SimDVS (because
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Figure 1. Overview of DEW.

DEW runs actual applications) and less flexible for experimen-
tal studies (because DEW represents a single machine specifi-
cation). However, it allows to monitor real system behaviors
under DVS.

Figure 1 shows the overview of DEW. (For the detailed de-
scription of SimDVS, refer [13].) DEW is based on an XS-
cale evaluation board, Intel Board DBPXA250. Intel Board
DBPXA250 includes Intel PXA250 microprocessor which sup-
ports dynamic voltage scaling. In DEW, tasks run on top of a
POSIX-compliant embedded real-time operating system, VE-
LOS [3].

IV. Experimental Results

A. Simulation Results

The energy efficiency of InterDVS algorithms depends sig-
nificantly on the accuracy of slack estimation and the appro-
priateness of slack distribution. To evaluate the effectiveness
of the slack estimation method used in each InterDVS algo-
rithm, extensive experiments while varying the number of tasks
are performed. Then, to evaluate the effect of slack distribu-
tion methods, experiments were performed while restricting the
amount of slack time that a task can utilize.

Number of Tasks
To evaluate the impact of the number of tasks on the en-

ergy efficiency of DVS algorithms, experiments with varying
numbers of tasks were performed. For each task set with n
tasks (where n = 2, 4, 6, ..., 16), 100 task sets were randomly
generated. The period and the WCET of each task were ran-
domly generated using uniform distribution with the ranges of
[10,100] ms and [1, period] ms, respectively. To eliminate
the effect of static slack times, we chose the task sets which
have high worst case processor utilization (WCPU); WCPUs
are equal to 1.0 for EDF InterDVS algorithms and 0.9 for RM
InterDVS algorithms. The execution time of each task instance
was randomly drawn from a Gaussian distribution, and the re-
sulting average case processor utilization (ACPU) was set to
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Figure 2. Impact of the number of tasks.

0.55.
Figure 2 shows the impact of the number of tasks on the en-

ergy consumption1. In the figure, the y-axis indicates the nor-
malized energy consumption value over the energy consump-
tion of an application running on a DVS-unaware system with
a power-down mode only. As the number of tasks increases, the
energy efficiency of lppsEDF, lppsRM, and ccRM that only use
the stretching-to-NTA technique do not improve significantly,
while that of the other more aggressive InterDVS algorithms
improves significantly. This can be explained by the fact that,
in the stretching-to-NTA method, the slack time that can be ex-
ploited is limited to the time between the completion of a task
instance and the arrival time of the next task instance, which is
largely independent of the number of tasks in the system. On
the other hand, for the other InterDVS algorithms, since the
slack times can be taken from any completed task instance, as
the number of task increases, each task has more slack sources
and can be scheduled with a lowered clock speed.

Speed Bound
In the previous experiments, we assumed the greedy method

in the slack distribution. That is, all the slack time identified is
given to the current task instance. While the greedy policy is
simple, it is not the best one. For example, in aggressive Inter-
DVS algorithms such as laEDF, AGR and lpSHE, slack times
may be distributed unevenly among task instances. When the
current task instance exhausts its assigned slack time by the
greedy distribution policy, task instances that follow may not
benefit from slack times at all. In order to understand the ef-
fect of different slack distribution policies, we experimented by
varying the amount of usable slack times. In the experiments,
we specified the lower bound on the clock speed regardless of
available slack times.

Figure 3(a) shows the experimental results for various min-
imum speeds. In each experiment, it is assumed that the clock
speed can be varied within the range of with a step size of 1
MHz where = 100 MHz and is the speed bound factor. As be-
comes larger, the task instances is scheduled with lowered clock

1Unless stated otherwise in this paper, the energy consumption includes
only the energy consumed in a processor core.
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Figure 3. Impact of speed bound.

speed less aggressively because the clock scaling is restricted
by. When is close to the lowest possible clock speed of the tar-
get machine, it is similar to when the greedy slack distribution
is used. The experiments were performed varying from 0.1 to
0.9. In Figure 3(a), the x-axis indicates the speed bound fac-
tor. The energy efficiency of InterDVS algorithms (except for
lppsEDF and ccEDF) is generally higher when values are be-
tween 0.3 and 0.5. For example, when the speed bound factor
is 0.5 in Figure 3(a), an improvement of 6 11% was achieved
over when the greedy policy is used.

In Figure 3(a), it is shown that the energy efficiency of AGR
and lpSHE is very close to the theoretical lower bound2 when
the speed bound factor is near 0.5. In fact, one interesting ob-
servation is that for the aggressive InterDVS algorithms, the
energy efficiency is highest when the speed bound factor was
set to ACPU.

To show the relationship between the speed bound and
ACPU, extensive experiments were performed for various task
sets while varying ACPU and scaling bound. Figure 3(b) shows
the results. (Due to the lack of space, only the results for laEDF
(an example of aggressive InterDVSs) are shown. The results
for AGR and lpSHE are very similar to that of laEDF.) The
results confirm that when the selected speed bound factor is
close to ACPU (= 0.55 * WCPU), the best energy efficiency is
achieved for laEDF.

B. Real Platform Evaluation Results

Although SimDVS is a useful tool to experiment with vari-
ous scenarios under different machine configurations/task spec-
ifications, it may not accurately describe the actual system be-
havior of a real DVS platform. In order to validate the useful-
ness of SimDVS and better understand the impact of various
system overheads on the energy efficiency of DVS algorithms
on the real DVS platform, we performed various experiments

2For EDF scheduling, the theoretical lower bound is computed with the
complete execution trace information using Yao’s algorithm [15]. For RM
scheduling, the theoretical lower bound also can be computed using Quan’s
algorithm [10].
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(a) Energy consumption in
SimDVS
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(b) Energy consumption in DEW

Figure 4. Evaluation results using SimDVS and
DEW.

using DEW.
Figures 4(a) and 4(b) show the normalized energy consump-

tion for the same task sets using SimDVS and DEW, respec-
tively. In these experiments, the same machine specification
and same energy consumption model were used. Each task set
consists of 2 8 tasks, and its WCET and ACET are set to be 1.0
and 0.5, respectively. In the experiments using DEW, each pe-
riodic task performs simple matrix operations repeatedly. We
controlled the execution time of each task instance by adjusting
the loop count of matrix operations. The loop body consists of
a 16-KB single basic block. (Since PXA250 has a 32-way set-
associative cache of 32-KB, the 16-KB program does not incur
any conflict misses for a single task. However, as the number
of tasks increases, the number of conflict misses increases.)

As shown in Figures 4(a) and 4(b), the overall trend on rela-
tive energy efficiencies among various DVS algorithms is sim-
ilar in both SimDVS and DEW, partially demonstrating the va-
lidity of SimDVS as a research tool. However, absolute val-
ues on the energy consumption are not exactly same; Measure-
ments in DEW were generally higher.

As the main sources of this difference, we consider three
factors that may affect the task execution and slack estimation
in DVS algorithms: 1) the impact of the system overhead, 2)
the effect of system timing resolution, and 3) the influence of
the cache and memory system. Using DEW, we analyze how
these factors influence the energy efficiency of each DVS algo-
rithm.

Impact of System Overhead
In a real DVS-enabled system, (at least) two kinds of ba-

sic overheads exist: a context switching overhead and a tick
scheduler overhead. At each context switching, the DVS-
enabled kernel 1) selects the next task, 2) computes the slack,
3) changes the clock/voltage, and 4) saves and restores the con-
texts of the previous task and the selected task, respectively. At
each tick scheduling, the DVS-enabled kernel 1) increases the
global system clock count, and 2) performs timer-related ker-

nel services. When both overheads are taken into account, the
task execution traces from DEW will be different from that of
SimDVS.

In order to see whether the system overhead can affect the
energy efficiency of a DVS algorithm, we performed additional
experiments by varying the execution frequencies of tasks. We
increase the task execution frequencies by shortening the pe-
riods and WCETs of the same tasks used in Figure 4. Fig-
ures 5(a), 5(b), and 5(c) show the changes of system over-
head when the task execution frequencies increase by 2 times,
4 times, and 40 times, respectively. In these figures, each bar
represents the ratio of the execution time by the system over-
head to the total execution time. In the bar, the top part repre-
sents the ratio of time delay caused by the clock/voltage scaling
hardware, the middle part indicates the ratio of extra execution
times caused by the slack computation in a DVS algorithm, and
the bottom part represents the ratio of the rest of the system
overhead such as context switching and timer service. (PM in
Figure 5 indicates a power-down only system.)

As illustrated in Figure 5, when a DVS algorithm is used, the
system overhead increases as the number of tasks increases. For
the task sets with the same number of tasks, the system over-
head increases very quickly as the task execution frequency in-
creases. In particular, as shown in Figure 5(b) and 5(c), and
parts increase quickly. (Note that, the scale of y-axis in Fig-
ure 5(c) is 10 times greater than that of the others.)

It is interesting to observe that the parts are relatively larger
in ccEDF and laEDF than in other algorithms. This is because
ccEDF and laEDF perform the voltage scaling step more fre-
quently. In ccEDF and laEDF, voltage scaling steps are exe-
cuted additionally when each task is activated.

Figures 6(a), 6(b), and 6(c) show the changes in the energy
efficiencies of DVS algorithms when the execution frequency
is increased. In DRA, AGR, and lpSHE, the increased sys-
tem overhead (due to the increased execution frequency) sig-
nificantly affect the energy efficiency. However, in lppsEDF,
ccEDF, and laEDF, the energy efficiencies are less sensitive to
the increased execution frequency.

Impact of Timing Resolution
One of the major differences between SimDVS and DEW is

the timing resolution. While DEW is based on a discrete time
model, SimDVS assumes a continuous time model. In the ker-
nel of DEW, the global clock count increases at every 10 ms, as
with all other timing services. Therefore, the execution times
and periods of tasks are specified in the unit of 10 ms. Although
a discrete timing resolution does not affect the overall schedule
of tasks significantly, it can change the accuracy of slack com-
putation in a DVS algorithm, thus influencing the algorithm’s
energy efficiency.

In DRA, AGR and lpSHE, slack times are computed based
on the remaining WCETs of activated task instances and un-
used times of completed task instances. Since the remaining
WCETs and unused times of task instances are expressed in the
number of timing tick intervals, there can be a discrepancy be-
tween the estimated slack value and the theoretically available
slack time. For example, even if a task executed 15 ms, its re-
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(a) Long-period task set
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(b) Medium-period task set
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(c) Short-period task set

Figure 5. System overhead variations in DVS algorithms.

maining WCET is decreased by only 10 ms (instead of 15 ms)
because of the 10 ms tick interval.

On the contrary, in ccEDF and laEDF, slack times are es-
timated based on the system’s local utilization, which is com-
puted based on a real number (i.e., not an integer value). Thus,
even though the timing tick is 10 ms, a slack can be computed
accurately.

Figure 6(a) and 6(c) also illustrate the impact of timing res-
olution on the energy efficiencies. When the ratio of the timing
tick interval to the tasks’ WCETs is relatively small as in Fig-
ure 6(c)3, DRA, AGR and lpSHE perform worse than ccEDF
and laEDF. This is an opposite to result to the SimDVS result.
As shown in Figure 6(a), ccEDF and laEDF perform poorly
than DRA, AGR and lpSHE in SimDVS.

Impact of Memory Behavior
Since a DVS algorithm generally lowers the task execution

speed, the execution time of the task will be increased under
a DVS-enabled RTOS. Although the lowered execution speed
is desirable for reducing the energy consumption, it can intro-
duce negative side effects as well. One such a side effect is
an increase in the number of task preemptions, which, in turn,
increases the number of memory accesses.

In order to see the impact of a DVS algorithm on the con-
text switching frequency and memory energy consumption, we
measured the preemption count and memory access count for
the same task sets used in Figure 4(b). Figures 7(a) and 7(b)
show the results. In both figures, the preemption count and
memory access count are normalized to that of a power-down
only system. As shown in Figure 7(a), the preemption count
increases with increasing number of tasks. Especially, in ag-
gressive algorithms such as laEDF, DRA, AGR, and lpSHE, the
number of preemptions increases more rapidly than the others.
For example, in lpSHE, the preemption count increases roughly
5 times compared to that of PM.

We also measured the memory access count using the hard-
ware performance monitoring counters available on PXA250.
As shown in Figure 7(b), all the DVS algorithms require more

3In the 8-task set of Figure 6(c), the range of tasks’ WCET is [20,90]ms
where the tick interval used is 10ms.
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(a) Normalized preemption count
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(b) Memory access ratio

Figure 7. Changes in memory system behaviors.

memory accesses than PM. In ccEDF and laEDF, the increases
in memory accesses can be attributed to two sources: 1) the
increase in the number of preemptions and 2) the increase in
memory accesses from the algorithm itself. The 2-task set
of Figure 7(a) and Figure 7(b) show that the latter source is
also significant. Since ccEDF and laEDF perform the voltage
scaling step more frequently, they require more memory ac-
cesses. In DRA, AGR and lpSHE, memory access counts in-
crease as their preemption counts increase along with the num-
ber of tasks.

The increase in memory accesses will result in the increase
in the energy consumed in memory system. For example, if
DRAMs were used as the memory system (where the energy
consumption is proportional to the number of accesses), the
memory energy consumption may increase up to 55% due to
DVS. Our measurements show that the memory system behav-
ior should be carefully considered if a DVS algorithm can be
an effective low-power technique. For example, depending on
the characteristics of the memory system, it might be better to
use the simple DVS algorithm such as lppsEDF or ccEDF than
more aggressive ones for overall system energy savings.
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(a) Long-period task set
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(b) Medium-period task set

�

���

���

���

���

���

���

��	

��


���

�

� � � 


��������	�
���

�
�
��
�
��
�
�
�
��
�
�
��
�
��
�
�
�
�
�
�
��
�
�

������� ����� ����� ��� ��� ��� �

(c) Short-period task set

Figure 6. Energy efficiency variations of DVS algorithms.

V. Conclusion

We have compared the energy efficiencies of recent DVS
algorithms for hard real-time periodic tasks, and analyzed the
impact of these algorithms on system behaviors. Our compar-
ative study shows that the existing EDF InterDVS algorithms
such as laEDF, AGR, and lpSHE are theoretically close to opti-
mal. We also evaluated the performance of the DVS algorithms
based on an XScale-based research platform. Our analysis re-
sults based on actual measurements show that a DVS algorithm
may negatively influence the system overheads as well as the
energy consumption in the memory system.

Our study is the first comprehensive performance evaluation
work of DVS algorithms for hard real-time systems, covering
both the simulation-based analysis and the real platform-based
analysis. Based on the findings of our evaluation, the existing
DVS algorithms can be further improved as well. For example,
since DVS algorithms are shown to interact with memory sys-
tems (often in a negative fashion), it will be an interesting future
work to make the DVS algorithms more dynamically adaptive
on the behavior of the memory system.
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