
FlashBench: A Workbench for a Rapid

Development of Flash-Based Storage Devices

Sungjin Lee, Jisung Park, and Jihong Kim

School of Computer Science and Engineering, Seoul National University, Korea

{chamdoo, jspark, jihong}@davinci.snu.ac.kr

Abstract—As the cell size of NAND flash memory is shrinking,
its physical characteristics such as performance and lifetime
are significantly degraded. As effective solutions of overcoming
such poor physical characteristics, more cross-layer system-level
approaches (such as compression and deduplication techniques)
are expected to be developed. These system-level techniques
typically employ intelligent software algorithms supported by
specialized hardware accelerators. Using hardware accelerators
combined with sophisticated software algorithms greatly in-
creases the design complexity of flash-based storage devices.
However, existing storage design environments are not adequate
enough to handle this increased design complexity in a timely
and efficient manner. To address this new challenge, we propose
a novel storage development environment, called FlashBench,
that helps developers to build high-complexity storage solu-
tions quickly. FlashBench is designed to provide a generic
framework for the rapid development and validation of storage
software/hardware algorithms by supporting multi-level design
environments, specifically optimized for seamless hardware/soft-
ware cross-layer integrations. Our case study demonstrates that
FlashBench enables developers to implement high-complexity
flash devices with specialized optimization functions in a shorter
development time over traditional design environments.

I. INTRODUCTION

NAND flash-based storage devices have been widely used

in mobile embedded systems because of its low-power con-

sumption and high mobility. Recently, thanks to the continued

scale-down of a NAND memory cell size combined with the

use of the multi-level cell (MLC) technology, NAND flash-

based solid-state drives (SSDs) have emerged as an attractive

storage solution, replacing hard disk drives (HDDs).

Unfortunately, as the semiconductor process is scaled down

and the multi-level cell (MLC) technology is commonly used,

the performance and lifetime of NAND flash memory deterio-

rates significantly. For example, the number of program/erase

(P/E) cycles of single-level cell (SLC) flash memory fabricated

in a 7x nm process is 100K P/E cycles. On the other hand, for

2-bit MLC flash memory fabricated in a 3x nm process, the

number of P/E cycles is reduced to 10K [1]. The performance

of MLC flash memory is also seriously degraded with an

increase of the NAND flash memory density. The read and

write latencies of SLC flash memory are about 20 µs and 200

µs, respectively, but these numbers are increased to more than

40 µs and 800 µs in MLC flash memory [1].

In order to overcome the poor physical characteristics of the

semiconductor substrate, a cross-layer system-level approach,

which employs intelligent software algorithms supported by

specialized hardware accelerators, is emerging as a promising

solution [2]–[4]. Data compression is a representative cross-

layer approach that takes advantage of a high-speed hardware

compression accelerator [2], [3]. The endurance of flash mem-

ory depends on the amount of data written to it. Thus, if

the amount of written data is reduced by data compression,

the lifetime of flash devices can be proportionally improved.

Moreover, since hardware-assisted compression reduces data

physically transferred from/to flash memory with a small com-

putational overhead, the I/O performance can be improved as

well. Data deduplication [4] also reduces the number of bytes

written to flash devices by storing only unique data blocks

by identifying duplicate blocks using cryptographic functions,

e.g., SHA-1. The identification of the unique data block can

be accomplished with a minimal performance penalty if a

cryptographic function is supported by hardware.

Flash software must be carefully redesigned and be inte-

grated with hardware modules to fully utilize the capabilities

of hardware acceleration. For example, if hardware-accelerated

compression is employed, requested data are to be stored

in flash memory in a compressed form. To effectively deal

with such compressed data, several flash software modules,

including address mapping and garbage collection, must be

redesigned properly; otherwise, the benefits of using hardware

compression cannot be maximally exploited [3]. The similar

design issues are also raised when data deduplication is used.

With data deduplication, different logical blocks could share

the same physical block if their contents are identical. If

these identical blocks are improperly managed, serious data

reliability/integrity problem cannot be avoided.

Even though a cross-layer system-level solution is very

effective in overcoming many challenges of newer NAND

flash memory technologies, it greatly increases the design

complexity of flash-based storage devices. Unfortunately, ex-

isting storage design environments (such as ones based on

functional simulation [5], [6] and ones based on custom

storage prototyping [7], [8]) are ill-prepared to deal with such

complicated hardware/software design issues effectively. Since

most existing environments focus on a single design level,

when multiple design levels are necessary ranging from a

highly software-oriented level to a detailed hardware-software

interaction level, developers often need to move a different de-

sign environment by manually modifying their designs, which

is a very time-consuming process. In order to build a more-

978-1-4673-2789-3/12/$31.00 c©2012 IEEE

163

optimized flash storage device that satisfies challenging perfor-

mance and lifetime requirements of new NAND flash memory

in a timely and efficient manner, therefore, we strongly believe

that a more efficient storage design environment is necessary.

In this paper, we present a flash storage development envi-

ronment, called FlashBench. The FlashBench provides multi-

ple design environments at different design levels so that stor-

age developers can work on the most appropriate design level

for a given development stage. In particular, FlashBench satis-

fies three important requirements in designing high-complexity

flash devices. First, FlashBench enables a rapid development

and validation of tightly coupled software/hardware modules

by providing high-level software and hardware development

platforms. Thus, developers evaluate the feasibility and cor-

rectness of new algorithms at an earlier stage of development.

Second, FlashBench supports a seamless and easy cross-layer

integration of software/hardware modules. With a well-defined

and easy-to-extend interface, FlashBench makes it easy for

developers to seamlessly integrate software/hardware modules

and to easily extend the hardware/software interface. Third,

FlashBench helps to implement highly flexible and portable

software modules. This allows developers to implement, eval-

uate, or optimize software algorithms at the most appropriate

design level without modifying software modules themselves.

Besides satisfying the requirements above, FlashBench offers

a set of useful libraries, reference software designs, and a high-

level debugging facility.

In order to evaluate the effectiveness of FlashBench, we per-

formed a case study that designs and implements flash-based

SSDs with hardware compression and specialized software

algorithms. By leveraging multiple design environments (at

different design levels) offered by FlashBench, the algorithms

were designed and implemented quickly in an incremental

fashion without greatly increasing the design complexity. The

integration of software modules into hardware modules was

accomplished smoothly with no great difficulty. The result

is a highly-optimized SSD prototype developed during a

relatively short time. Our resulting SSD prototype improved

the performance and lifetime by 28% and 43% respectively,

over the existing SSD without hardware compression.

The remainder of this paper is organized as follows. In

Section 2, we describe existing design environments for de-

veloping flash devices. Section 3 presents the detailed de-

scriptions of FlashBench and our storage design flow based

on FlashBench. In Section 4, we illustrate our case study

of building an SSD prototype based on hardware-accelerated

data compression. Section 5 concludes with a summary and

directions for future extensions to FlashBench.

II. RELATED WORK

Over the past few years, functional simulation [5], [6] and

custom storage prototyping [7], [8] have been typically used

in designing flash-based storage devices. Functional simulation

environments can be grouped into two types, one based on an

abstract device model and the other based on a detailed device

model. The abstract model-based simulation uses a simple and

Fig. 1: An overall architecture of FlashBench.

abstract storage device model, which functionally models the

primitive I/O behaviors of NAND flash memory, but actual

data are ignored [5], [6], It is useful to explore and evaluate the

design of new algorithms quickly using various I/O traces. Un-

like the abstract model-based simulation, the detailed model-

based simulation provides a realistic storage environment by

simulating/emulating a real storage device accurately. It helps

developers to evaluate new algorithms while executing real

applications. Furthermore, it enables developers to verify the

correctness of new algorithms, e.g., data consistency and data

integrity, which cannot be assured by the abstract model-

based simulation. The custom storage prototyping environment

provides a real storage platform where hardware/software

modules are to be implemented. It thus has an advantage of

providing more accurate and correct assessment of algorithms

over the functional simulation environment [7], [8].

Each storage design environment has a distinctive advantage

over the others in terms of the design exploration speed,

algorithm validation, and evaluation accuracy. However, since

the existing design environments are not vertically integrated

from the abstract design level to the most detailed level, the

advantage of each environment is rarely realized in practice

because they require significantly different software/hardware

interface. FlashBench overcomes such limitations by providing

multiple design environments that enable developers to pro-

duce highly flexible and portable software algorithms running

on various hardware device models. This makes it possible for

developers to easily obtain the benefits of functional simulation

and custom storage prototyping.

III. DESIGN AND IMPLEMENTATION OF FLASHBENCH

We start by describing an overall architecture of FlashBench

and presenting our design flow. We then explain the important

components of FlashBench in details.

A. Overview of FlashBench

Figure 1 shows an overall architecture of FlashBench, which

is composed of two main platforms: a hardware platform and

a software platform. The hardware platform provides various

storage hardware device models at different design abstraction

levels from an abstract device model to a hardware prototype.

The software platform provides a framework for the design

164

Fig. 2: A design flow and use cases with FlashBench.

and implementation of flash software algorithms, in addition

to offering several libraries and tools for fast development

and easy evaluation. Input requests for FlashBench can be in

different formats. FlashBench can work with 1) I/O request

traces collected from various host systems, 2) I/O requests

issued from a file system, 3) I/O requests transmitted through

the bus interface, e.g., Ethernet, SATA, and PCIe, from a host

system running on a different machine.

The hardware platform supports three kinds of hardware

device models, an abstract device, an emulated device, and a

flash hardware prototype, depending on their modeling accu-

racy. The abstract device model is similar to the device models

used in abstract model-based functional simulators [5], [6] in

that it models the high-level behaviors of both NAND flash

memory and hardware modules with simple parameter values.

As expected, the abstract device is useful to develop new

algorithms quickly. The emulated device model is similar to

detailed model-based functional simulators in that it emulates

a real storage device using DRAM chips or external DRAM

disks. In the emulated device model, custom/special hardware

modules are emulated in software as well. Real applications

thus can be executed in the emulated device, making it possible

to verify the correctness of algorithms without a real hardware

prototype. Finally, the flash hardware prototype model is an

FPGA-based hardware prototyping system, which provides a

more accurate development framework for developing hard-

ware modules using real NAND flash chips.

The software platform is designed to implement highly

flexible and portable software modules that can be executed

on various hardware device models offered by the hardware

platform. This high-level flexibility and portability can be

realized by adopting a device-side interface which provides a

common and extensible interface for flash software to access

a hardware device. Moreover, in order to support various host

systems, the software platform employs a host-side interface

and a host adapter. The host-side interface defines a set of

functions for accessing flash software. The host adapter is an

intermediate layer between a host system and flash software

that receives I/O requests from a host system and then delivers

them to flash software through the host-side interface. The

host adapter is capable of handling I/O requests issued from

various file systems or transmitted via the bus interface1. The

host adapter also makes it possible to evaluate new algorithms

by replaying I/O traces.

Currently, the hardware and software platforms are im-

plemented in the Linux operating system using the ANSI-C

language, except for the flash hardware prototype implemented

in an Xilinx FPGA board using Bluespec SystemVerilog

(BSV) [9]. Due to its high flexibility and portability, software

algorithms can be directly executed in a block device driver

of the Linux kernel or can be easily ported to firmware inside

a flash-based storage device.

B. Design Flow Based on FlashBench

In this section, we describe our design approach for develop-

ing flash-based storage devices using FlashBench. As shown in

Figure 2, the overall design flow is very similar to the approach

typically used in the conventional software/hardware codesign.

The main difference is that FlashBench is more suitable for

designing flash-based storage devices by taking into account

the software/hardware hierarchy of a storage subsystem.

In the initial stage of developing flash storage devices,

we often explore several design candidates and evaluate the

feasibility of various algorithms. Since quick explorations of

design alternatives are required, abstract model-based func-

tional simulation is commonly used, which can be easily

supported by utilizing the I/O trace replaying and abstract

device facilities of FlashBench. Once a promising design

solution is decided, we perform software/hardware partitioning

based on the result of our simulation analysis and define the

key interface between partitioned software and hardware mod-

ules. We implement the proposed software modules using the

emulated device and verify the correctness of the algorithms

while executing real applications. As with most designs, the

software modules will be refined multiple times. At the same

time, hardware acceleration modules are implemented in the

flash hardware prototype. The next step is to integrate software

modules into hardware modules. Since software and hardware

modules are implemented using the same interface defined

at the functional simulation step, the actual integration step

proceeds very smoothly. Finally, we iterate the previous steps

whenever necessary to improve the current design solution.

The high flexibility and portability of FlashBench helps us

to perform the optimization and debugging steps in a more

efficient manner. For example, if some bugs were detected

during the integration step of software and hardware modules,

we can easily go back to the emulated device mode without

changing the algorithms themselves so that we can quickly

identify whether the bugs are from the software modules or

1Currently, FlashBench supports only the Ethernet interface. But, it can be
easily extended for other bus interfaces, including SATA and PCIe.

165

Fig. 3: Standard and custom functions of a device-side inter-

face.

hardware modules. Since the emulated device model repre-

sents an error-free hardware, it is relatively straightforward to

check if the software models have errors. The optimization

and tuning of software algorithms can be conducted easily as

well. We can switch to the functional simulation mode with

the abstract device model, and then optimize and re-evaluate

the algorithms quickly with various I/O traces. Furthermore,

the easy-to-extend hardware/software interface of FlashBench

allows us to change the current interface easily even if the

need for a better hardware/software interface arises at the late

stage of the design cycle.

C. Software Platform

We describe four main components that compose the soft-

ware platform of FlashBench in details. Note that the software

platform itself is a standalone software development environ-

ment that can be exploited to evaluate the effect of various

software algorithms and modules (such as block device drivers,

address mapping, garbage collection, and wear-leveling) on

performance and lifetime while varying several parameters

under a fixed hardware design.

Host-Side Interface: The host-side interface defines func-

tions that are required for a host system to communicate with

flash software. The prototypes of some important functions in

the host-side interface are listed in Code 1.

bool host_inf_open_disk(struct* param);

void host_inf_close_disk();

bool host_inf_make_request(int request_type,

int offset, int length, char* buffer);

Code 1: Prototypes of host-side interface functions

host_inf_open_disk() is invoked when the host system

attempts to open a flash device. The host system sends

an argument containing some parameters needed for the

initialization of a flash device. host_inf_close_disk()

is called when the host system closes a flash device. The

host system sends I/O requests to flash software using

host_inf_make_request() with some parameters, includ-

ing a type of I/O operations, i.e, read or write, the offset of a

page, the number of pages to be read or to write starting from

the offset, and the pointer to the buffer memory that holds

data to be written or the buffer memory where data read are

to be stored. The actual behaviors of the host-side interface

have to be implemented by software developers according to

the algorithms they develop.

Device-Side Interface: The device-side interface is a set

of functions that offer access to a hardware device, which are

Fig. 4: Debugging support in FlashBench.

categorized into two types: standard and custom functions.

The standard functions are used for handling the normal I/O

operations of flash memory, such as read, write, and erase

operations, and the custom functions are used for the access

of hardware accelerators. Code 2 below shows the prototypes

of some representative functions in the device-side interface.

/* standard functions */

bool hw_inf_read_page(int bus, int chip, int block,

int page, char* buffer);

bool hw_inf_write_page(int bus, int chip, int block,

int page, char* buffer);

bool hw_inf_erase_block(int bus, int chip,

int block);

/* custom function */

bool hw_inf_custom_accele1(/*some arguments*/);

Code 2: Prototypes of device-side interface functions.

As depicted in Figure 3, hw_inf_read_page() and

hw_inf_read_write() are invoked when software algo-

rithms need to read or write some data from or to a

page of flash memory. hw_inf_erase_block() is used to

erase a block in flash memory. The custom functions, e.g.,

hw_inf_custom_accele1() in Code 2, are manually added

by developers after hardware and software are partitioned.

All of the functions in the device-side interface must be

implemented by software developers so that I/O commands

issued from flash software can be delivered to the underlying

hardware device. The standard functions for three different

hardware devices are already implemented. The custom func-

tions have to be implemented by developers later.

Debugging Support: The flash software is typically running

in the OS kernel, especially in a block device driver, or

it is implemented as firmware inside a flash-based storage

device. Therefore, debugging flash software is difficult and

challenging. FlashBench mitigates this difficulty by allowing

software algorithms to be implemented in the user space of

an operating system. Therefore, lots of useful debugging and

profiling tools, gdb and gprof, can be used when developing

software algorithms. For its easy deployment, the software

algorithms implemented in the user space can be ported to a

block device driver or to firmware with no or minimal changes.

To realize this benefit, we must carefully address the follow-

ing two technical issues. The first issue is to keep interface-

166

level compatibility. The interface and its parameters of the

software algorithms have to remain the same, regardless of

where software algorithms run, i.e., user space or kernel space.

As shown in Figure 4, we solve this problem by employing

a proxy/stub model widely used in a remote procedure call

(RPC) system. The host-side and device-side interfaces are

divided into the proxy and the stub each. If the software

algorithms are implemented at the user level, the proxy and the

stub communicate with one another using a netlink protocol,

a socket-like mechanism for IPC between the kernel and user

space processes in Linux. If the software algorithms are im-

plemented in the kernel, the proxy and the stub communicate

with one another by a direct function call. The second issue is

code-level compatibility. The algorithms implemented in the

user space must be able to be run in a block device driver or

firmware without any changes in source codes. Since software

modules are written in the ANSI-C language compatible with

a variety of platforms, FlashBench is able to achieve high-

level source-code compatibility.

Libraries & Tools: FlashBench offers ready-to-use libraries

which manage the status of several flash storage elements,

such as chips, blocks, and pages. This helps developers to

implement their own algorithms rapidly. FlashBench provides

two well-known flash software designs, page-level mapping

and block-level mapping FTLs [5], as a reference design for

software developers. In addition, FlashBench includes several

benchmark tools and a performance monitoring unit that help

to evaluate the performance and lifetime of flash devices.

D. Hardware Platform

In this subsection, we explain three device models in the

hardware platform of FlashBench in details. For these device

models, the hardware modules (corresponding to standard

functions in the device-side interface) that handle normal I/O

operations are implemented already and provided to develop-

ers by default. On the other hand, the acceleration modules

have to be implemented by developers.

Abstract Device: The abstract device is implemented in

software in FlashBench. In the abstract device, the high-level

behaviors of NAND flash memory and hardware accelerators

are characterized by parameter values, which are taken from

the datasheets of real devices or are estimated by simulation.

For example, the performance parameters of NAND flash

memory, e.g., read and write latencies, can be taken from

the datasheet of flash memory parts. As another example, if a

hardware compression module is required as a hardware accel-

erator, the average compression ratio of a given compression

algorithm and the time spent for data compression can be used

as these parameter values.

Emulated Device: The emulated device models the key

components of flash-based storage devices, including buses,

chips, blocks, and pages, using system DRAM memory or

external DRAM disks, and emulates the detailed I/O be-

haviors of NAND flash memory in software. For example,

if data compression is necessary as a hardware-acceleration

Fig. 5: An overall architecture of a flash hardware prototype.

unit, a software compression algorithm is implemented in

the emulated device to include a compression ability in a

hardware side. More accurate evaluation is possible with the

emulated device over the abstract device. In the example of

data compression, a compression ratio of actual data under

a realistic storage device can be used for the evaluation of

algorithms.

Prototype Device: The flash hardware prototype is an

FPGA-based development environment for implementing new

hardware modules. Note that the flash hardware prototype

is an extended version of our previous FPGA-based SSD

prototype, called BlueSSD [10]. Therefore, several hardware

configurations (such as the number of buses, the number

of channels, and the use of DMA) can be easily changed

according to the design requirements.

Figure 5 shows the overall architecture of our flash hardware

prototype, which is composed of two main parts: an FPGA

board and a flash storage board. The FPGA board is based on

the Xilinx’s Virtex6 FPGA development board which provides

the reconfigurable fabric that developers use to implement

various hardware modules, including hardware accelerators.

All of the hardware modules in the FPGA board are written

in BSV [9]. The flash storage board is a custom PCB board

that holds several NAND flash memory chips.

The flash hardware prototype includes basic hardware mod-

ules, a PCIe controller, a main controller, and a flash controller.

The PCIe controller accepts I/O commands (along with data

if they are present) from flash software through the PCIe

interface, and then delivers them to the main controller. The

main controller is responsible of handling I/O commands sent

from the PCIe controller. If the I/O command is a normal

flash I/O operation, e.g., a read or write operation, the main

controller forwards it to the flash controller, so as to read or

write data from/to flash memory. If the I/O command requires

hardware acceleration, the main controller sends data to the

hardware accelerator so that the data are processed by the

accelerator. As depicted in Figure 5, hardware acceleration

modules are connected to the main controller through FIFOs

in a latency-insensitive style [10], [11]. This approach allows

various hardware accelerators to be easily inserted into or

removed from the main controller.

The device-side interface receives commands from flash

167

Fig. 6: An internal fragmentation problem and our solution.

software specifying the parameters for read, write, erase, or

custom commands, as depicted in Code 2. Then, it makes a

request for the hardware using the received parameters, and

sends it through the PCIe interface. Once the request has

finished processing on the hardware, the device-side interface

returns results to flash software.

IV. CASE STUDY:

HARDWARE-ACCELERATED COMPRESSION FOR

FLASH-BASED SSDS

In this section, we describe our case study using Flash-

Bench in building flash-based solid-state drives (SSDs) with

hardware-accelerated compression coupled by specialized soft-

ware algorithms. Our SSD prototype is designed and imple-

mented according to the design flow shown in Figure 2. First

of all, we analyze several compression algorithms to choose

a suitable one and then investigate important design issues

by leveraging the abstract device model of FlashBench. After

partitioning hardware and software based on the result of our

analysis, we define the hardware/software interface and then

implement hardware and software algorithms simultaneously

in the emulated device and in the flash hardware prototype,

respectively. Finally, we perform an initial evaluation with

the resulting SSD prototype and then conduct optimization

to further improve the performance and lifetime of the SSD2.

A. Design and Implementation

We first investigate three well-known compression algo-

rithms, LZ77 [12], X-Match [13], and LZRW3 [14], so as

to figure out which algorithm is suitable for being used in

data storage. We investigate some important characteristics of

the algorithms, including a compression ratio, computational

overhead, and hardware complexity, by doing software simu-

lation and analyzing the properties of the algorithms. After the

analysis, LZRW3 is chosen as the best compression algorithm

because of its high compression ratio and relatively low design

complexity. As expected, for all the compression algorithms,

software-based compression turns out to be infeasible because

of its high computational overhead. Based on these results, we

decide to implement the LZRW3 algorithm in hardware.

We then perform simulation using the abstract device model,

so as to rapidly investigate technical issues raised by the use of

compression. We use the page-level FTL, which is provided by

2For more detailed descriptions, refer to our previous work [3].

Sensor Linux Document MP3 Average

Compression
0.25 0.55 0.72 1.25 0.69

Ratio

TABLE I: A summary of compression ratios of data files.

FlashBench by default, as our reference software design under

the assumption that a compression ratio is fixed to 45%, which

is the average compression ratio of LZRW3 [14]. We find that

there is an internal fragmentation problem when data compres-

sion is used in a flash-based storage device [3]. The unit of

read and write operations in NAND flash memory is a page.

As shown in Figure 6(a), if data compression is performed for

an individual page, the size of compressed data does not fit

into a unit of a page, wasting the rest of the page. Thus, the

actual number of pages written to NAND flash memory is not

reduced. To mitigate the internal fragmentation problem, we

propose a chunk-based I/O strategy, which compresses several

pages together and writes them to NAND flash memory in

their entirety, as illustrated in Figure 6(b).

This chunk-based I/O strategy requires significant changes

in the conventional software, hardware, and interface ar-

chitectures. First, the flash software must be redesigned to

carefully handle data chunks in flash memory, each of which

is composed of multiple compressed pages. Second, the soft-

ware/hardware interface must be changed to transfer the data

of several pages immediately from/to the hardware. Finally, the

flash hardware needs to be designed to compress the whole

data chunk received from the software using the LZRW3 com-

pression algorithm. Furthermore, it lets the software know the

number of pages actually used for writing for the management

of compressed data by the software.

Based on the design requirements derived from the simu-

lation using the abstract device, we implement our software

and hardware algorithms in the emulated device and in the

flash hardware prototype, respectively. We also add some

custom functions to the device-side interface so that reads and

writes are carried out in a unit of several pages, instead of

an individual page. In our case study, the integration of the

software and the hardware can be done in a straight manner

by just changing the configuration of FlashBench.

B. Evaluation and Optimization

We evaluate the effect of our flash-based SSD prototype

on performance and lifetime using various data files, which

exhibit different compression ratios. Table I summarizes the

compression ratio of our data files. Figure 7 displays our

evaluation results. Here, Baseline is the SSD prototype

without hardware-assisted compression, and Compalwz is the

SSD prototype with hardware-assisted compression. The de-

tailed descriptions of Compsel will be presented later.

As shown in Figure 7(a), Compalwz improves write perfor-

mance by 23% on average. In addition, Compalwz reduces the

number of pages written to NAND flash memory by 37%, thus

extending the lifetime of SSDs by the same amount. However,

for the data file whose compression ratio is low, e.g., MP3 files,

the performance and the lifetime of Compalwz are worse than

168

 0

 5

 10

 15

 20

 25

 30

 35

Sensor Linux Document MP3

W
rit

e
tim

e
(s

ec
)

Baseline
Compalwz

Compsel

(a) Write time (sec)

 0

 10000

 20000

 30000

 40000

 50000

 60000

Sensor Linux Document MP3

Th
e

nu
m

be
r o

f w
rit

te
n

pa
ge

s Baseline
Compalwz

Compsel

(b) The number of written pages

Fig. 7: Evaluation results.

those of Baseline. Dictionary-based compression usually

appends some metadata to compressed data for decompression.

Therefore, if the compression ratio of input files is quite low,

the size of compressed data could be larger than that of the

original files due to metadata overhead. This is the reason

why Compalwz performs poorly, in terms of performance and

lifetime, in comparison to Baseline for MP3 files.

In order to prevent the side effects of compression, we de-

cide to further optimize our SSD prototype so that compression

is performed selectively depending on the compression ratio of

input files. For optimization, we simply change the configura-

tion of FlashBench to use the emulated device, and then design

and implement a selective compression policy in the software.

Our selective compression policy determines whether to use

compression or not by monitoring the compression ratio of

previously written data. We also add an additional interface

between the hardware and the software so that a decision of the

software is delivered to the hardware. Finally, we implement

hardware logic that bypasses the hardware compression step

if it is not necessary. Compsel in Figure 7 shows how selective

compression affects the performance and lifetime of SSDs. As

shown in Figure 7, Compsel mitigates the performance penalty

caused by compression and reduces the amount of data written

to SSDs by filtering useless compression for incompressible

data: Compsel exhibits 28% higher performance and 43%

longer lifetime compared with Baseline.

In our experience, the design and implementation of our

SSD prototype can be eased by leveraging multiple design

environments of FlashBench, which enable us to develop

storage solutions incrementally from algorithm selection to

hardware/software implementation without a significant in-

crease of design complexity. The seamless integration support

for hardware and software modules helps us to produce a

high-quality storage solution by allowing optimization at the

late stage of the design cycle. Our case study shows that

FlashBench has great potential as a development environment

for designing and implementing a well-optimized storage

device in a reasonable time.

V. CONCLUSION

In this paper, we presented a workbench, called FlashBench,

which aims to provide a generic software/hardware devel-

opment framework for NAND flash-based storage devices.

FlashBench allows storage developers both to assess the

effectiveness of new algorithms and to verify their correctness

at an earlier stage of a system design. For the seamless

and easy cross-layer integration of hardware and software

modules, FlashBench supports a standardized and extensible

hardware/software interface infrastructure. From the result of

our case study on a flash-based storage device with hardware-

accelerated compression, FlashBench reduces the design time

greatly in comparison with traditional design environments,

improving 28% higher performance and 43% longer lifetime

than that without hardware compression.

The proposed FlashBench environment can be improved in

several directions. First, in the current version of FlashBench,

a hardware/software interface code must be manually imple-

mented or modified by system designers. For more efficient

hardware/software co-design, the functionality of automatic

interface synthesis, which is based on Bluespec Codesign

Language (BCL) [15], will be added to FlashBench. Second,

we will improve the host adapter so that it supports various

bus interfaces, including PCIe and SATA, which are widely

used in commercial SSD products.

ACKNOWLEDGEMENT

We would like to thank anonymous referees for valuable

suggestions that greatly improved the paper. This work was

supported by the National Research Foundation of Korea

(NRF) grant funded by the Korea government (MEST) (No.

R33-10095 and No. 2012-0006417).

REFERENCES

[1] L. Grupp, A. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. Siegel, and J. Wolf,

“Characterizing Flash Memory: Anomalies, Observations, and Applications,” in

Proceedings of the International Symposium on Microarchitecture, 2009.

[2] T. Park and J.-S. Kim, “Compression Support for Flash Translation Layer,” in

Proceedings of the International Workshop on Software Support for Portable

Storage, 2010.

[3] S. Lee, J. Park, K. Fleming, Arvind, and J. Kim “Improving Performance and

Lifetime of Solid-State Drives Using Hardware-Accelerated Compression,” IEEE

Transactions on Consumer Electronics, 2011.

[4] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasubramaniam, “Leveraging Value

Locality in Optimizing NAND Flash-Based SSDs,” in Proceedings of the USENIX

Conference on File and Storage Technologies, 2011.

[5] N. Agrawal, V. Prabhakaran, and T. Wobber, “Design Tradeoffs for SSD Perfor-

mance,” in Proceedings of the USENIX Annual Technical Conference, 2008.

[6] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “FlashSim: A Simulator for NAND

Flash-Based Solid-State Drives,” in Proceedings of the International Conference on

Advances in System Simulation, 2009.

[7] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance Impact and

Interplay of SSD Parallelism through Advanced Commands, Allocation Strategy

and Data Granularity,” in Proceedings of the International Conference on Super-

computing, 2011.

[8] Y. Seong, E. Nam, J. Yoon, H. Kim, J.-Y. Choi, S. Lee, Y. Bae, J. Lee, Y. Cho,

and S.-L. Min, “Hydra: A Block-Mapped Parallel Flash Memory Solid-State Disk

Architecture”, IEEE Transactions on Computers, vol. 59, no. 7, pp. 905-921, 2010.

[9] R. Nikhil, “Bluespec System Verilog: Efficient, Correct RTL from High Level

Specifications,” in Proceedings of the International Conference on Formal Methods

and Models for Co-Design, 2004.

[10] S. Lee, K. Fleming, J. Park, K. Ha, A. Caulfield, S. Swanson, Arvind, and J. Kim,

“BlueSSD: An Open Platform for Cross-layer Experiments for NAND Flash-based

SSDs,” in Proceedings of the International Workshop on Architectural Research

Prototyping, 2010.

[11] K. Fleming, C.-C. Lin, N. Dave, Arvind, G. Raghavan, J. Hicks, “H.264 Decoder:

A Case Study in Multiple Design Points,” in Proceedings of the International

Conference on Formal Methods and Models for Co-Design, 2008.

[12] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,”

IEEE Transactions on Information Theory, 1977.

[13] M. Kjelso, M. Gooch, and S. Jones, “Design and Performance of a Main Memory

Hardware Data Compressor,” in Proceedings of the EUROMICRO Conference, 1996.

[14] R. N. Williams, “An Extremely Fast Ziv-lempel Data Compression Algorithm,” in

Proceedings of the Data Compression Conference, 1991.

[15] M. King, N. Dave, and Arvind, “Automatic Generation of Hardware/Software

Interfaces,” in Proceedings of the International Conference on Architectural Support

for Programming Languages and Operating Systems, 2012.

169

