
462 IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012 

Contributed Paper 
Manuscript received 04/15/12     
Current version published 06/22/12  
Electronic version published 06/22/12.                                        0098 3063/12/$20.00 © 2012 IEEE 

Resource-Aware Sector Translation Layer  
for Resource-Sensitive NAND flash-based Storage Systems 

Keonsoo Ha, Taejin Kim, Byoung Young Ahn, and Jihong Kim, Member, IEEE 

 
Abstract — As a need for high-density storage capacity 

increases on many high-end mobile devices such as 
smartphones, large NAND flash-based storage systems are 
more commonly used in such smart devices. For these storage 
systems, however, it becomes a challenge to use large NAND 
flash without incurring a large system overhead such as a 
large memory requirement. We propose a novel flash 
translation layer (FTL), called Resource-Aware Sector 
Translation Layer (RAST), which is optimized to reduce the 
memory footprint of an FTL for resource-sensitive storage 
systems. RAST is based on a hybrid mapping scheme which 
uses a group of blocks as a unit of mapping so that a small 
mapping table can cover a large number of blocks. RAST 
further saves the memory footprint by using an on-demand 
metadata management scheme which brings only recently 
accessed metadata into memory. RAST employs a sampling-
based wear-leveling scheme which provides competitive wear-
leveling performance with very small memory. Our 
experimental results show that RAST can achieve a good 
performance level for resource-constraint storage systems 
with the small memory footprint. For 32 GB NAND flash 
memory, RAST can achieve the write throughput of up to 57 
MB/s using only 34 kB memory1. 
 

Index Terms — NAND Flash Memory, Flash Translation 
Layer, Data Structure, Mobile Storage System. 

I. INTRODUCTION 

As a need for high-density storage capacity increases on 
high-end mobile devices such as smartphones and tablet PCs, 
large-capacity mobile secondary storage systems are widely 
used. For example, latest smartphones and tablet PCs employ 
large NAND flash memory with a capacity of 16 GB to 64 
GB. Although the storage capacity of these high-end mobile 
NAND-based storage systems has dramatically increased, 
their power and cost constraints have not been relaxed as 
much. For example, most high-end mobile storage systems are 
responsible for delivering their available maximum power 
budget to mobile storage systems. The storage systems can 
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internally optimize performance under the strict power budget. 
Furthermore, since most high-end mobile devices such as 
smartphones and table PCs are consumer products, these 
mobile storage systems are also very cost-sensitive. Therefore, 
it is important to optimize the system’s resource usage in 
designing these mobile storage systems.  

In NAND flash-based storage systems, as the capacity of 
NAND flash memory grows, the required amount of memory 
for implementing a flash translation layer (FTL) also increases. 
In general, an FTL uses memory to store various metadata such 
as information about a mapping table, block types, block erasure 
counts, and the availability of pages in blocks. Since the size of 
metadata is increasing proportionally to the capacity of NAND 
flash memory, a large capacity storage system requires a large 
amount of memory space in storing metadata. For example, 
even in a memory-efficient mapping scheme such a block-level 
mapping scheme, 32 GB NAND flash memory with the 4 kB 
page size requires about 9 MB of memory to keep the required 
metadata of a block mapping-based FTL. Considering most 
resource-sensitive storage systems use less than 256 kB of 
SRAM, 9 MB memory requirement is not acceptable for most 
mobile storage systems.  

One of the most commonly used methods to cope with the 
large memory requirement of FTLs in resource-sensitive 
storage systems is to use NAND flash memory to store the 
metadata of an FTL. In this case, the performance of a storage 
system is suffered significantly from frequent accesses to 
NAND flash memory to read metadata. Another common 
solution is to use SDRAM, which is often used as a data 
buffering purpose for improving storage performance. In this 
case, however, if a large portion of SDRAM is used for 
storing the metadata instead of buffering data, the 
performance of storage systems will be degraded significantly. 
Moreover, adopting the extra memory component may be a 
burden in resource-sensitive mobile storage systems in terms 
of cost and energy consumption. 

In this paper, we propose a novel FTL, called resource-
aware sector translation layer (RAST), which was 
specifically designed for resource-sensitive storage systems. 
RAST dramatically reduces the memory footprint of an FTL 
by minimizing the memory usage in implementing key 
functions of an FTL. RAST reduces the memory requirement 
of storing a mapping table by adopting a hybrid mapping 
scheme which operates at both page level and block-group 
level. This large granularity mapping scheme can cover a 
large number of blocks with limited memory space. RAST 
further saves the memory footprint by applying an on-demand 
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metadata management scheme which maintains only recently 
accessed metadata in memory, thus requiring a very small-
sized memory. In addition to the on-demand metadata 
management scheme, RAST performs the partial garbage 
collection process by exploiting long idle times of mobile 
storage systems in order to avoid performance degradation 
from excessive garbage collection. RAST also employs a 
sampling-based block allocation technique which contributes 
to the wear-leveling management with limited memory 
resource while minimizing the implementation overhead of a 
wear-leveling technique such as unnecessary NAND flash 
memory accesses.  

In order to evaluate the proposed FTL, RAST, we have 
implemented RAST in both a trace-driven FTL simulator and 
a real platform board. We carried out experiments to evaluate 
the memory requirement, the write performance, and the 
wear-leveling performance of RAST. The experimental results 
show that RAST uses only about 34 kB of memory for 32 GB 
NAND flash memory-based storage systems. In terms of 
performance, RAST achieves write throughput up to about 57 
MB/s with sequential write requests. Finally, the experimental 
results show that RAST has wear-leveling performance which 
is comparable to other existing memory-intensive wear-
leveling schemes. 

The rest of this paper is organized as follows. In Section II, we 
show that it is important for resource-sensitive storage systems to 
reduce the memory footprint of an FTL.  In Section III, we 
review previous works related to memory usage in FTLs. We 
describe our proposed FTL, RAST, in Section IV. Section V 
shows the experimental results, and we conclude in Section VI. 

II. FTL MEMORY REQUIREMENTS 

FTLs use metadata to support its main functions such as 
address translation, free block allocation, wear-leveling 
management, and garbage collection. Typical metadata are 
maintained using a mapping table, a page status table, a block 
status table, and erasure count table. The mapping table 
contains translation information between a logical block 
address used in a host system and corresponding physical 
address in NAND flash memory. The page status table keeps 
track of information on the page availability. Before an FTL 
writes the requested data to a page, the status of the page in 
the page status table is checked by the FTL to find out 
whether the page has been written by previously requested 
data or not. The block status table indicates the current status 
of blocks. A block can be in one of four states: free, clean, 
dirty, or dead. This block state information is used when an 
FTL allocates a free block and performs a garbage collection 
process. The block erasure count table stores the number of 
performed erase operations of each block. This erasure count 
information is also necessary to perform wear-leveling 
management.  

Although the size of the metadata necessary for an FTL 
implementation will be a function of various factors such as 
the total flash capacity, the mapping policy, and the wear-

leveling management scheme, it is generally true that the 
larger NAND flash memory is, the higher FTL memory 
footprint is. TABLE I shows how the memory requirements of 
an FTL with various mapping units are used. We assume that 
32 GB NAND flash memory is used with the 512 kB block 
size and the 4 kB page size. In TABLE I, a block group 
consists of four blocks. Nentry indicates the number of entries 
in a mapping table, and SMapping, SPage, SBlock, and SErasure denote 
the required memory footprint for storing the mapping table, 
the status of pages, the status of blocks, and erasure counts of 
blocks, respectively. In the case of a mapping table, as the size 
of a mapping unit is getting larger, the required memory 
footprint becomes smaller.  

 
TABLE I 

MEMORY REQUIREMENTS FOR STORING METADATA OF FTLS 

Mapping 
Unit 

Nentry 
Memory Requirements (kB) 

SMapping SPage SBlock SErasure Total 
 

Page 8 M 32,768 0 256 256 33,280 
Block 64 k 256 8,192 256 256 8,960 
Block 
Group 

16 k 64 8,192 16 16 8,288 
 

 
Although the required memory footprint for storing a 

mapping table can be reduced by increasing the mapping 
granularity, however, the total required memory footprint is 
not decreased as much as the size of a mapping table is 
reduced. This is mainly because, unlike a page-level mapping 
table, a mapping table using a bigger mapping unit which is 
larger than a page does not maintain information about the 
availability of each page. Therefore, FTLs using a bigger 
mapping unit need to manage page status in extra memory. 
Because of the large-sized metadata, even an FTL using a 
block group as a mapping unit requires at least about 8 MB of 
memory. Since most resource-sensitive storage systems have a 
very small-sized SRAM whose size is ranging from 32 kB to 
256 kB, the large memory requirement can be a burden in 
such storage systems. 

Unfortunately, an FTL requiring large-sized memory 
cannot perform well under a limited memory constraint of 
resource-sensitive storage systems. In performing address 
translation, performance of an FTL decreases if the whole 
mapping table cannot be loaded into SRAM. In this case, only 
some parts of the mapping table can be loaded into SRAM 
and the rest of the mapping table must be stored in either 
SDRAM or NAND flash memory. SDRAM can be adopted in 
a mobile storage system as an option for a data buffering 
purpose if there is a need for improved performance. If 
SDRAM stores some portion of the mapping table, it is 
difficult to expect performance improvement by data buffering 
because available SDRAM space for data buffering decreases. 

On the other hand, if the address information of the 
requested data has been stored in NAND flash memory, an 
FTL reads the NAND flash memory so that the address 
information can be loaded into memory. Although this 
approach is effective to reduce the required memory, the 
frequent accesses to NAND flash memory decrease the 
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performance of a storage system. In particular, as the mapping 
unit gets smaller, an FTL is likely to read NAND flash 
memory more frequently. The reason is that as a mapping unit 
gets smaller, the range of addresses covered by a single 
mapping entry becomes narrower, so it is more likely that a 
requested address does not exists in the same size of memory. 
For this reason, the existing page-level mapping-based FTL 
using this on-demand approach [1] is not suitable for 
resource-sensitive storage systems.  

Besides address translation, the tight memory resource 
budget may cause performance degradation in wear-leveling 
management. The basic approach of a wear-leveling algorithm 
is to allocate the youngest block with the minimum erasure 
counts when an FTL requires a free block. In this approach, 
the FTL has to keep track of erasure counts of all the blocks in 
memory. Although the required memory footprint for storing 
the erasure counts information is much smaller than that of a 
mapping table, 512 kB of memory requirement for keeping 
the information on erasure count of all blocks cannot be 
acceptable for the mobile storage systems. Similar to the data 
block mapping table, since the absence of the erasure counts 
information in memory causes extra accesses to NAND flash 
memory, the method which maintains erasure counts of all 
blocks and finds the youngest block among them is not 
suitable for such storage systems. From the discussions, above, 
it is clean that an FTL employed in resource-sensitive mobile 
storage systems should be designed carefully to satisfy 
performance requirement under a given resource constraint. 

III. RELATED WORKS 

The memory requirement of an FTL has been regarded as a 
critical constraint in designing NAND flash memory-based 
storage systems. The page-level mapping scheme is an ideal 
solution in terms of performance if there is no limitation in 
resource usage. Although this scheme efficiently utilizes 
blocks within the flash, it requires a large mapping table to be 
stored in memory. As the size of NAND flash memory 
increases, the amount of required memory becomes a system 
burden. In addition to the translation information, other 
metadata also need memory space to be stored. Therefore, it is 
impractical to implement the page-level mapping scheme in 
mobile systems because of limited system resources.  

As an alternative for systems with a limited resource 
environment, the block-level mapping scheme has been used, 
which reduces the size of a mapping table by a factor of the 
number of pages per block. However, since requested data 
must be stored in a particular page within each block, this 
block-mapping scheme cannot efficiently use a block, thus 
increasing required blocks for storing data. As a result, the 
block-level mapping scheme invokes frequent garbage 
collection processes, and the performance overhead by the 
garbage collection can dramatically decrease the performance 
of storage systems. Moreover, although the required data size 
decreases compared to the page-level mapping, the whole 
mapping table may not be small enough to be stored in 
memory if a target storage system has a small-sized memory. 

In order to overcome the disadvantages of these mapping 
schemes, the hybrid mapping schemes based on both page-
level and block-level mapping schemes have been proposed 
[2]-[4]. This hybrid mapping scheme uses a page-level 
mapping table only for updated data and a block-level 
mapping table for other data. Since the hybrid mapping 
scheme can place a given data in any offset within a block 
where the page-level mapping table covers, it can avoid 
excessive garbage collection overhead. Moreover, this scheme 
reduces the required memory footprint for storing mapping 
information by adopting a block-level mapping scheme. 
However, like the above mapping schemes, if the target 
system does not have enough memory space to keep both the 
mapping tables in the hybrid-mapping scheme, the scheme 
cannot be applied to the resource-sensitive systems.  

As an enhanced page-level mapping scheme, an on-demand 
based page-level FTL (DFTL) [1] has been proposed. This 
scheme enables the page-level mapping scheme to be 
implementable with the limited memory by loading only 
requested mapping table entries in the memory. The FTL 
assumes that a high temporal locality exists in requested 
addresses. Thus, NAND flash memory may suffer from 
performance degradation by frequent read accesses if the 
temporal locality of the translated addresses is low. Moreover, 
since the scheme is based on the page-level mapping scheme, 
an entry covers only one address, thus limiting the range 
covered by loaded memory entries. As a result, DFTL is 
vulnerable to performance degradation when a sequential-
dominant workload exists.  

u-FTL [5] also reduces the required memory footprint for 
storing metadata of an FTL. This FTL implements a mapping 
table with a tree data structure called u-FTL which consists of 
mapping entries whose sizes can be varied. Since each 
mapping entry can translate the consecutive addresses of a 
sequential workload, u-FTL can reduce the size of a mapping 
table. However, since the size of this FTL is dependent on the 
workload pattern, the number of entries can reach that of a 
page-level mapping table under completely random workloads. 
Therefore, u-FTL is not implementable as well in the 
resource-scarce storage systems because the worst case, in 
terms of the required memory footprint, may occur. 

Besides a mapping table, maintaining block erasure count 
information in memory is another challenging problem in 
mobile storage systems. If there is no block erasure 
information when a free block is requested by an FTL, a 
NAND flash memory must be accessed in order to find the 
youngest block. Since the whole block status information is 
too large to be stored in memory, a sampling-based block 
selection technique has been suggested [6]. This scheme holds 
a small number of candidate blocks and sorts them according 
to performed erasure counts. The candidate free blocks are 
randomly selected among free blocks. After allocating the 
youngest free block among the candidate blocks, some parts 
of the candidate blocks are replaced with newly selected free 
blocks. This scheme can reduce the amount of required 
memory for maintaining the certain number of free blocks. 
However, the selection based on a random function causes 
several extra NAND flash memory read operations if the 
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block erasure count information is scattered in various pages. 
As a result, the response time of a NAND flash memory 
operation is extended corresponding to the status of metadata 
in NAND flash memory. 

IV. RAST: RESOURCE-AWARE SECTOR TRANSLATION 

LAYER 

We thus propose a novel FTL, namely RAST, which is 
designed for resource-sensitive NAND flash-based storage 
systems. Fig. 1 shows an overview of the target storage 
system. Its layout is similar to a typical solid state drive 
(SSD), which has multi-channel architecture, but the resource 
of the target storage system is not as abundant as an SSD. This 
target storage system consists of a NAND flash memory array, 
a processor, SRAM, and mobile SDRAM. The NAND flash 
memory array in the storage system is organized with four 
channels and four ways which can be operated in parallel. 
This storage communicates with an external host system 
through an interface.  

 
 

 
 
 

 

 
 
 
 
 

 
Fig. 1. An architectural overview of our target storage 

 
RAST is a hybrid mapping-based FTL which uses page-

level mapping scheme and block-group level mapping scheme 
for log blocks and data blocks, respectively. Fig. 2 shows the 
layout of memory and NAND flash memory of RAST. The 
memory is divided into three regions to store the log block 
mapping table, the data block mapping table, and the blocks 
status table. The data block mapping table stores mapping 
information as well as information about the availability of 
each page. The availability information is checked, in turn, 
after a requested address is translated using the data block 
mapping table. The block status table maintains both the status 
of block and the block erasure counts because they are used 
together during a garbage collection process. 

 
 

 

 
 

 
 

 

Fig. 2. The layout of memory and NAND flash memory of RAST 

On the other hand, NAND flash memory consists of three 
types of blocks such as log blocks, data blocks, and metadata 
blocks. Like existing hybrid mapping-based FTLs, updated 
data are stored in a log block. Besides an update request, since 
NAND flash memory has a restriction that the pages in a 
block must be written sequentially, a write request which 
violates the sequential write restriction is also written to a log 
block. The original mapping information of written data in the 
lob block is maintained in a page-level mapping table. With 
the exception of the two cases, other write requests are written 
to data blocks. A metadata block stores metadata of RAST. 
Since a metadata block also does not allow in-place update of 
data, RAST conducts a garbage collection process for the 
metadata blocks if there is no free page in the metadata block. 

A. Large Granularity-based Hybrid Mapping Scheme 
 As shown in TABLE I, the most effective way to reduce the 
required memory footprint is to employ a large mapping unit 
in a mapping table. In order to reduce the memory footprint, 
RAST uses a group of blocks as a mapping unit to map data 
blocks. The blocks located in the same offset in each channel 
are grouped into a block group. In Fig. 1, the blocks which are 
located in n-th offset of flash chips 0, 1, 2, and 3 are grouped 
into one block-group N. RAST can cover the addresses of the 
pages in the four blocks with just one logical block-group 
number, whereas existing hybrid mapping-based FTLs require 
four logical block numbers to map the same four blocks.  

Considering I/O characteristics in mobile devices, it is 
reasonable for RAST to use a block group as a mapping unit. 
Since a mapping scheme based on a large granularity has a bad 
performance under the random write request, the performance 
of RAST may be suffered seriously from the random write 
requests. However, since most applications in mobile systems 
handle multimedia-rich applications and the multimedia 
applications access sequentially files and infrequently update 
files [7], RAST can save the required memory footprint without 
serious performance degradation. Although there are some 
random write requests which write previously written data again 
or violate sequential write restriction, log blocks can serve the 
random write requests without performance degradation if there 
is enough space to store new data in log blocks. In RAST, log 
blocks as large as possible are allocated for avoiding frequent 
garbage collection processes. 

B. Partial Garage Collection Technique 
The behavior of garbage collection process in RAST is 

similar to that of FTL using fully-associative sector 
translation (FAST) [4]. Since a log block in a channel stores 
the data allocated to the same channel, the data in the log 
block are migrated to data blocks in the same channel during 
garbage collection processes. Since it may take a long time to 
complete all migrations without a pause in this approach, 
RAST utilizes long idle times of mobile systems for 
conducting garbage collection. In order to investigate a 
portion of idle time among the total execution time, we 
developed a custom mobile workload generation environment 
based on the representative usage scenario of mobile 
applications such as  the personal information management 
system (PIMS), the short message service (SMS), and the 
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media players [8]. From our observations, many mobile 
systems are likely to have a long idle time, and the average 
idle time accounts for about 89% of the total execution time. 

RAST carries out a partial garbage collection process when 
a long idle time is detected. If there is a longer idle time than a 
preset threshold, RAST copies part of data in a log block, 
which are associated with only one data block, to a new data 
block group. RAST distributes the overheads of garbage 
collection by conducting the partial garbage collection process 
across multiple times. In order to decrease the number of 
occurrences of partial garbage collection processes, the partial 
garbage collection process is performed if above 50% of log 
blocks are filled with data.  

 

C. On-Demand Metadata Management Scheme 

Although RAST reduces the amount of required memory by 
improving mapping tables, it is not still affordable for a 
resource-sensitive storage system to keep all metadata in its 
small-sized memory. Instead of maintaining the metadata in 
memory, RAST manages the metadata excluding a log block 
mapping table by using an on-demand approach. Since data 
stored in a log block are likely to be accessed again compared to 
other data, the log block mapping table always stays in memory. 
As a result, some parts of block group level mapping table and 
the whole page-level mapping table are loaded on memory. 

In the case of the data block mapping table, RAST keeps 
only some parts of mapping entries in the data block mapping 
table in memory. By limiting the number of mapping entries 
in memory, RAST has an upper bound of memory usage. Fig. 
3 shows a snapshot of the on-demand management scheme in 
RAST. Each mapping entry in the data block mapping table 
has a logical block-group number, a physical block-group 
number, and a page status bitmap. A logical block group 
number is computed by dividing a logical block address from 
a file system by the number of pages in a block group. On the 
other hand, a bit in the page status bitmap is set to one if the 
page associated with the bit is written. The bits in a bitmap are 
set to zero when the block associated with the bitmap is erased.  

 

 
Fig. 3. A snapshot of the on-demand metadata management scheme. 

 
As shown in Fig. 3, the mapping table entries loaded in 

memory forms a linked list of tracks according to recency of 
access. When a request arrives, RAST searches the linked list 
to find the mapping table entry which covers the requested 
logical block address. If it is a hit in the linked list, RAST 

utilizes the entry for address translation of the currently 
requested data. In the opposite case, RAST reads metadata 
blocks to load the requested mapping table entry into memory. 
At this moment, if there is not enough space in the memory to 
load new mapping entry, the mapping table entry located in 
the tail of the linked list is evicted to a metadata block. This 
evicted entry will be loaded again when a requested logical 
block-group address is covered by the evicted mapping entry. 

As well as the data block mapping table, the rest of 
metadata are also managed by an on-demand approach. 
Compared to mapping table, a very small amount of memory 
is required to present information about the status of blocks 
and block erasure counts. This means that a page can store a 
wide range of metadata excluding the mapping tables. In 
Table 1, a block-group mapping scheme requires only 32 kB 
for storing them if 32 GB NAND flash memory is used. In 
this case, they are stored in only 8 pages in a metadata block, 
and each page can present the blocks status and erasure counts 
of 4096 block groups. Since each page can cover the metadata 
of a large number of blocks, RAST maintains only the 
information in a page among the several pages, and manages 
them with an on-demand approach. 

 

D. Sampling-Based Wear-Leveling Management Scheme 

RAST induces block groups to be erased evenly by allocating 
a free block group in the sequence of a physical block-group 
number. As time goes by, however, the gap between the erasure 
counts of the oldest and the youngest block groups grows. In 
order to minimize the difference of the erasure counts, RAST 
maintains a sample of the physical addresses of relatively young 
block groups in an extra queue and gives a high priority to the 
young block groups in the sample when allocating a free block 
group. In order to find young block groups, RAST compares the 
erasure counts between the currently erased block group and the 
oldest block group whenever a block group is erased. Note that 
the erasure count of the oldest physical block group is maintained 
in RAST. If the gap of erasure counts of them is greater than a 
preset threshold, the erased block group is classified as a young 
block group. Since the young block group has to be allocated in 
the near future, RAST inserts a physical block-group number of 
the young block group into an extra queue, and the block groups 
in the queue are allocated prior to other block groups. 

 
 
 
 
 

 

 
 
 
 
 
 

Fig. 4. An example of selecting a young block group to perform wear-
leveling management in RAST. 
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Fig. 4 shows a snapshot of young block-group selection. 
RAST keeps a pointer which points to a block-group number 
which is to be allocated in next allocation. When RAST 
allocates a free block group, if the sample queue is not empty, 
the block group in the queue is allocated, and it is removed 
from the queue. In Fig. 4, the block group 101 is allocated. If 
the queue is empty at that moment, the pointer takes a step 
forward after the pointed block group is allocated. By 
allocating block groups evenly and keeping young block 
groups separately, RAST performs efficient wear-leveling 
management. 

V. EXPERIMENTS 

A. Experimental Environment 

In order to evaluate RAST, we implemented it in both a 
trace-driven FTL simulator and an SSD prototype board. 
The prototype board was used to evaluate the memory 
footprint and performance of RAST, whereas wear-leveling 
performance was evaluated in the trace-driven FTL 
simulator. Fig. 5 shows a snapshot of the prototype board 
which has an embedded processor, 96 kB of SRAM, and 64 
MB of SDRAM. In order to evaluate in a resource-sensitive 
storage system, SDRAM less than 1 MB and the whole 
SRAM were used for our experiments. We used 32 GB 
NAND flash memory array which consists of 16 MLC 
NAND flash memory chips. The size of a block is 512 kB, 
and each block has 128 pages. Experiments were performed 
using Iometer and an in-house I/O generator which can 
change workload characteristics such as the working set size 
and the access patterns. 
 

 
 

 
 
 
 
 
 
\ 
 
 
 
 

Fig. 5. A snapshot of the prototype board used for our experiments. 

 

B. Memory Requirement of RAST on the Real Platform 

In order to judge the memory requirement of RAST, we 
used a cross-compiler which can generate the breakdown 
of memory usage of a compiled binary. Since RAST uses 
only static memory allocation, we could figure out the 
total memory requirement for metadata and code, 
respectively. Fig. 6 shows the breakdown of the memory 
usage of RAST. RAST requires only about 34 kB of 

memory which is as small as it can work with only small-
sized SRAM. The memory footprint for a page mapping 
table accounts for 40% of the total amount of memory. 
Meanwhile, regions for a data block mapping table and 
the block status information in RAST take up only 32% of 
the required memory footprint. Since these regions are 
managed by using an on-demand scheme, the size of those 
memory regions can be changed according to system 
parameters. 

 
 

 
 

Fig. 6. The breakdown of memory usage of RAST. 

 

C. Performance Evaluation 

In order to investigate the potential maximum 
performance of RAST, we ran Iometer in a raw device, 
which had not been formatted with a file system. Iometer 
has generated 4 kB write requests for one minute without a 
break in various patterns from sequential to random ones. 
TABLE II shows the write throughput and average IOPS of 
RAST with the different access patterns. The result shows 
that RAST write performance achieves up to 57 MB/s with 
sequential write requests, whereas it has weak performance 
with random write requests. Since RAST exploits inherent 
parallelism of the flash array, it has a competitive write 
performance with a sequential pattern. On the other hands, 
RAST has a very bad performance for random write requests 
because random write requests are likely to violate 
restrictions of NAND flash memory such as the sequential 
write restriction and in-place update. Since these data 
requests quickly consume free pages in log blocks, garbage 
collection processes happen without a break, thus decreasing 
performance rapidly. 

 
TABLE II 

WRITE THROUGHPUT AND IOPS OF RAST 

Pattern Type 
Average 

Throughput (MB/s) 
Average IOPS 

Sequential 57.1  14,616 
Random 0.8  176 

 
We generated random write requests to the target board 

with the in-house I/O generator in order to investigate the 
effectiveness of random write requests on performance of 
RAST. Fig. 7 shows the write throughput and the number 
of performed garbage collection processes with various 
working set sizes of random write requests. The x-axis 
presents the working set sizes of random write requests. 
The left y-axis gives the write throughput, whereas the right 
y-axis indicates the number of performed garbage 
collection processes. In terms of the write throughput, as 
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the working set size is larger, the write throughput 
decreases from about 6 MB/s to less than 1 MB/s. On the 
other hand, the number of performed garbage collection 
processes describes the reason by showing it increases 
according to the working set size. Given that RAST uses 
only 8 MB of log blocks, the results mean that RAST can 
archive write throughput up to about 6 MB/s with random 
write request if the working set size is less than the that of 
log blocks. 

Fig. 7. The write throughput and the number of performed garbage 
collection processes with various working set sizes of random write requests. 
  

In order to evaluate the effectiveness of the partial 
garbage collection technique of RAST, we measured both 
the average response time and the maximum response time 
with different idle times. Iometer has generated 4 MB 
random write requests with various time intervals ranging 
from 0 to 10 seconds. This time interval provides an idle 
time to RAST. TABLE III shows the response times of 
RAST with different idle times. From the idle time 0 to 7, 
both the average response time and the maximum response 
time are far longer than those of the idle time 10 seconds. 
These results mean that if idle time is as long as about 10 
seconds, RAST can avoid a response time delay by 
excessive garbage collection processes.  

 TABLE III  
RESPONSE TIMES OF RAST WITH DIFFERENT IDLE TIMES 

Idle Time 
(second) 

0 5 7 10 

Average 
Response 
Time (ms) 

8.51 9.89 8.17 1.94 

Maximum 
Response 
Time (ms) 

9121.42 9426.54 9404.20 251.08 

 

    

D. Wear-Leveling Performance Scheme 

In order to evaluate wear-leveling performance scheme of 
RAST, we performed experiments in the trace-driven FTL 
simulator with a disk access trace collected from a running 
desktop PC for a month [9]. In order to induce block groups to 
be erased frequently, the size of NAND flash memory is set to 
512 MB and the input trace is repeatedly given to the simulator.  

 

Fig. 8. The maximum erasure count with different wear-leveling schemes 

Fig. 8 shows the erasure counts of the oldest block group in 
NAND flash memory with different wear-leveling schemes. 
The x-axis and the y-axis present the number of write request 
and the erasure counts of the oldest block group. Since our 
proposed technique makes a sample of young block groups, 
the scheme is denoted as YB Sample. On the other hand, Full 
Search and RB Sample [6] denote existing wear-leveling 
schemes used for comparisons. Full Search finds the oldest 
block groups among all block groups, whereas RB Sample 
scheme selects the youngest block group in a sample of 
randomly selected blocks. The results show that YB Sample 
has similar wear-leveling performance compared to other 
techniques. Since Full Search maintains erasure counts of all 
blocks, this approach cannot used for resource-sensitive 
storage system. In the case of RB Sample, it uses the same 
size of memory as that of YB Sample, but it accesses to 
NAND flash memory more frequently than YB Sample 
because it randomly selects some block groups for making a 
block group sample. In our experiment, YB Sample and RB 
Sample reads NAND flash memory on average 0.26 and 3.14 
times, respectively, when allocating a free block group. These 
results mean that RAST performs competitive wear-leveling 
management without serious performance degradation. 

VI. CONCLUSION 

We have proposed a novel resource-aware FTL, RAST. 
The proposed RAST FTL minimizes the memory footprint for 
address translation, metadata management, and wear-leveling 
management so that a large capacity NAND flash-based 
mobile storage systems can perform well while satisfying cost 
and power constraints. For reducing the required memory, our 
proposed FTL applies a hybrid mapping scheme with a large 
granularity mapping for data blocks. In addition to the 
mapping scheme, RAST keeps only recently accessed 
metadata into memory to reduce the memory footprint. Finally, 
RAST provides competitive wear-leveling performance with 
limited memory resource which is comparable to other wear 
leveler. Experimental results show that RAST can operate 
with a very small amount of memory without serious 
performance loss. Although the current version of RAST 
performs reasonably well, there still is a room for 
improvement. For example, since RAST uses a block group as 
a mapping unit, the overhead of a garbage collection process 
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is very high. In order to reduce the overhead, we plan to 
employ the advanced data separation techniques such as hot 
cold separation techniques [10] and program context-based 
data separation technique [11]. 
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